
Regularized Least Squares
9.520 Class 04, 21 February 2006

Ryan Rifkin



Plan

• Introduction to Regularized Least Squares

• Computation: General RLS

• Large Data Sets: Subset of Regressors

• Computation: Linear RLS



Regression

We have a training set S = {(x1,y1), . . . , (xℓ,yℓ)}. The yi

are real-valued. The goal is to learn a function f to predict

the y values associated with new observed x values.



Our Friend Tikhonov Regularization

We pose our regression task as the Tikhonov minimization

problem:

f = argmin
f∈H

1

2

ℓ
∑

i=1

V (f(xi),yi) +
λ

2
‖f‖2K

To fully specify the problem, we need to choose a loss

function V and a kernel function K.



The Square Loss

For regression, a natural choice of loss function is the

square loss V (f(x), y) = (f(x) − y)2.

−3 −2 −1 0 1 2 3

0

1

2

3

4

5

6

7

8

9

y−f(x)

L2
 lo

ss



Substituting In The Square Loss

Using the square loss, our problem becomes

f = argmin
f∈H

1

2

ℓ
∑

i=1

(f(xi) − yi)
2 +

λ

2
‖f‖2K.



The Return of the Representer Theorem

Theorem. The solution to the Tikhonov regularization

problem

min
f∈H

1

2

ℓ
∑

i=1

V (yi, f(xi)) +
λ

2
‖f‖2K

can be written in the form

f =
ℓ

∑

i=1

ciK(xi, ·).

This theorem is exceedingly useful — it says that to solve

the Tikhonov regularization problem, we need only find the

best function of the form f =
∑ℓ

i=1 ciK(xi). Put differently,

all we have to do is find the ci.



Applying the Representer Theorem, I

NOTATION ALERT!!! We use the symbol K for the

kernel function, and boldface K for the ℓ-by-ℓ matrix:

Kij ≡ K(xi, xj)

Using this definition, consider the output of our function

f =
ℓ

∑

i=1

ciK(xi, ·).

at the training point xj:

f(xj) =
ℓ

∑

i=1

K(xi,xj)ci

= (Kc)j



Using the Norm of a “Represented”

Function

A function in the RKHS with a finite representation

f =
ℓ

∑

i=1

ciK(xi, ·),

satisfies

‖f‖2k =

〈

ℓ
∑

i=1

ciK(xi, ·),
ℓ

∑

j=1

cjK(xj, ·)

〉

=
ℓ

∑

i=1

ℓ
∑

j=1

cicj

〈

K(xi, ·), K(xj, ·)
〉

=
ℓ

∑

i=1

ℓ
∑

j=1

cicjK(xi,xj)

= ctKc.



The RLS Problem

Substituting, our Tikhonov minimization problem becomes:

min
c∈Rℓ

1

2
‖Kc − y‖22 +

λ

2
cTKc.



Solving the Least Squares Problem, I

We are trying to minimize

g(c) =
1

2
‖Kc − y‖22 +

λ

2
cTKc.

This is a convex, differentiable function of c, so we can

minimize it simply by taking the derivative with respect to

c, then setting this derivative to 0.

∂g(c)

∂c
= K(Kc − y) + λKc.



Solving the Least Squares Problem, II

Setting the derivative to 0,

∂g(c)

∂c
= K(Kc − y) + λKc = 0

→ K(Kc) + λKc = Ky

“ → ” Kc + λc = y

→ (K + λI)c = y

→ c = (K + λI)−1y

The matrix K + λI is positive definite and will be well-

conditioned if λ is not too small.



Leave-One-Out Values

Recalling that S = {(x1,y1), . . . , (xℓ,yℓ)}, we define fS to

be the solution to the RLS problem with training set S.

We define

Si = {S\xi}

= {(x1,y1), . . . , (xi−1,yi−1), (xi+1,yi+1), . . . , (xℓ,yℓ)},

the training set with the ith point removed.

We call fSi(xi) the ith LOO value, and yi − fSi(xi) the ith

LOO error. Let LOOV and LOOE be vectors whose ith

entries are the ith LOO value and error.

Key Intuition: if ‖LOOE‖ is small, we will generalize well.



The Leave-One-Out Formula

Remarkably, for RLS, there is a closed form formula for

LOOE. Defining G(λ) = (K + λI)−1, we have:

LOOE =
G−1y

diag(G−1)

=
c

diag(G−1)
.

Proof: Later, Blackboard.



Computing: Naive Approach

Suppose I want to minimize ‖LOOE‖, testing p different

values of λ.

I form K, which takes O(n2d) time (I assume d-dimensional

data and linear-time kernels throughout).

For each λ, I form G, I form G−1 (O(n3) time), and com-

pute c = G−1y and diag(G−1).

Over p values of λ, I will pay O(pn3) time.

We can do much better...



Computing: Eigendecomposing K

We form the eigendecomposition K = QΛQt, where Λ is

diagonal with Λii ≥ 0 and QQt = I.

Key point:

G = K + λI

= QΛQt + λI

= Q(Λ + λI)Qt,

and G−1 = Q(Λ + λI)−1Qt.

Forming the eigendecomposition takes O(n3) time (in prac-

tice).



Computing c and LOOE efficiently

c(λ) = G(λ)−1y

= Q(Λ + λI)−1Qty.

G−1
ij = (Q(Λ + λI)−1Qt)ij

=
n

∑

k=1

QikQjk

Λkk + λ
,

Given the eigendecomposition, I can compute c,diag(G−1),

and LOOE in O(n2) time. Over p values of λ, I pay only

O(n3 + pn2). If p < n, searching for a good λ is effectively

free!



Nonlinear RLS, Suggested Approach

• 1. Form the eigendecomposition K = QΛQt.

• 2. For each value of λ over a logarithmically spaced

grid, compute c = Q(Λ+λI)−1Qty and diag(G−1) using

the formula for the last slide. Form LOOE, a vector

whose ith entry is ci

diag(G−1)i
.

• 3. Choose the λ that minimizes ‖LOOE‖ in some norm

(I use L2).

• 4. Given that c, regress a new test point x with f(x) =
∑

i ciK(xi, x).



Limits of RLS

RLS has proved very accurate. There are two computa-

tional problems:

• Training: We need O(n2) space (to store K), and

O(n3) time (to eigendecompose K)

• Testing: Testing a new point x takes O(nd) time to

compute the n kernel products in f(x) =
∑

i K(x,xi).

Next class, we will see that an SVM has a sparse solu-

tion, which gives us large constant factor (but important

in practice!) improvements for both the training and test-

ing problems.

Can we do better, sticking with RLS?



First Idea: Throw Away Data

Suppose that we throw away all but M of our data points,

where M << ℓ. Then we only need time M2d to form our

new, smaller kernel matrix, and we only need time O(M3)

to solve the problem. Great, isn’t it?

Well, if we have too much data to begin with (say 1,000,000

points in 3 dimensions) this will work just fine. In general,

we will lose accuracy.



Subset of Regressors

Suppose, instead of throwing away data, we restrict our

hypothesis space further. Instead of allowing functions of

the form

f(x) =
ℓ

∑

i=1

ciK(xi, x),

we only allow

f(x) =
M
∑

i=1

ciK(xi, x),

where M << ℓ. In other words, we only allow the first M

points to have non-zero ci. However, we still measure the

loss at all ℓ points.



Subset of Regressors, Cont’d

Suppose we define KMM to be the kernel matrix on just

the M points we’re using to represent our function, and

KML to be the kernel product between those M points

and the entire dataset, we can derive (homework) that the

minimization problem becomes:

(KMLKLM + λKMM)c = KMLy,

which is again an M-by-M system.

Various authors have reported good results with this or

similar, but the jury is still out (class project!). Sometimes

called Rectangular Method.



λ is Still Free

To solve

(KMLKLM + λKMM)c = KMLy,

consider a Cholesky factorization KMM = GGt:

(KMLKLM + λKMM)c = KMLy

→ (KMLKLM + λGGt)c = KMLy

→ (KMLKLM + λGGt)G−tGtc = KMLy

→ (KMLKLMG−t + λG)Gtc = KMLy

→ G(G−1KMLKLMG−t + λI)Gtc = KMLy,

and we use the “standard” RLS free-λ algorithm on an

eigendecomposition of G−1KMLKLMG−t.



Linear Kernels

An important special case is the linear kernel

K(xi,xj) = xi · xj.

The solution function f simplifies as:

f(x) =
∑

cixi · x

= (
∑

cixi) · x

≡ wt · x.

We can evaluate f in time d rather than ℓd.

This is a general property of Tikhonov regularization with

a linear kernel, not related to the use of the square loss.



Linear RLS

In the linear case, K = XtX (xi is the ith column of X).

Note that w = Xc.

We work with an “economy-sized SVD” X = UΣV t, where

U is d×d orthogonal, Σ is d×d diagonal spd, and V is n×d

with orthogonal columns (V tV = I).

w = X(XtX + λI)−1y

= UΣV t(V Σ2V t + λI)−1y

= UΣ(Σ2 + λI)−1V ty.

We need O(nd2) time and O(nd) memory to form the SVD.

Then we can get w(λ) in O(d2) time. Very fast.



Linear RLS, Sparse Data

Suppose that d, the number of dimensions, is enormous,

and that n is also large, but the data are sparse: each

dimension has only a few non-zero entries. Example: doc-

ument classification. We have dimensions for each word

in a “dictionary”. Tens of thousands of words, but only a

few hundred appear in a given document.



The Conjugate Gradient Algorithm

The conjugate gradient algorithm is a popular algorithm

for solving linear systems. For this class, we need to know

that CG is an iterative algorithm. The major operation is

multiplying taking a matrix-vector product Av. A need not

be supplied explicitly.

CG is the method of choice when there is a way to multiply

by A “quickly”.



CG and Sparse Linear RLS

Remember, we are trying to solve

(K + λI)c = y

→ (XtX + λI)c = y.

K is too big to write down. X is “formally” too big, so

we can’t take its SVD, but it’s sparse. We can use CG,

because we can form the matrix vector-product (XtX+λI)c

quickly:

(XtX + λI)c = Xt(Xc) + λc

Cost per iteration: 2d̄ℓ, where d̄ is the average number of

nonzero entries per data point.



Square-Loss Classification

There is nothing to formally stop us for using the above al-

gorithm for classification. By doing so, we are essentially

treating our classification problem as a regression problem

with y values of 1 or -1.

How well do you think this will work?


