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About this class

Goal To introduce some methods for unsupervised learn-

ing: Gaussian Mixtures, K-Means, ISOMAP, HLLE,

Laplacian Eigenmaps.



Unsupervised learning

Only u i.i.d. samples drawn on X from the unknown

marginal distribution p(x)

{x1, x2, . . . , xu}.

The goal is to infer properties of this probability density.

In low-dimension many nonparametric methods allow di-

rect estimation of p(x) itself. Owing to the curse of di-

mensionality, this methods fail in high dimension.

One must settle for estimation of crude global models.



Unsupervised learning (cont.)

Different types of simple descriptive statistics that characterize aspects
of p(x)

• mixture modelling

representation of p(x) by a mixture of simple densities representing
different types or classes of observations [eg. Gaussian mixtures]

• combinatorial clustering

attempt to find multiple regions of X that contain modes of X
[eg. K-Means]

• dimensionality reduction

attempt to identify low-dimensional manifolds in X that represent
high data density [eg. ISOMAP,HLLE, Laplacian Eigenmaps]

• manifold learning

attempt to determine very specific geometrical or topological in-
variants of p(x) [eg. Homology learning]



Limited formalization

With supervised and semi-supervised learning there is a

clear measure of effectiveness of different methods. The

expected loss of various estimators I[fS] can be estimated

on validation set.

In the context of unsupervised learning, it is difficult to

find such a direct measure of success.

This situation has led to proliferation of proposed meth-

ods.



Mixture Modelling

Assumption that data is i.i.d. sampled from some proba-

bility distribution p(x).

p(x) is modelled as a mixture of component density func-

tions, each component corresponding to a cluster or mode.

The free parameters of the model are fit to the data by

maximum likelihood.



Gaussian Mixtures

We first choose a parametric model Pθ for the unknown

density p(x), hence maximize the likelihood of our data

relative to the parameters θ.

Example: two-component gaussian mixture model with pa-

rameters

θ = (π, µ1,Σ1, µ2,Σ2).

The model:

Pθ(x) = (1 − π)GΣ1
(x − µ1) + πGΣ2

(x − µ2)

Maximize the log-likelihood

`(θ|{x1, . . . , xu}) =
u

∑

i=1

logPθ(xi)



The EM algorithm

Maximization of `(θ|{x1, . . . , xu}) is a difficult problem. Iterative max-
imization strategies, as the EM algorithm, can be used in practice to
get local maxima.

1. Expectation: compute the responsibilities

γi =
πGΣ2

(xi − µ2)

(1 − π)GΣ1
(xi − µ1) + πGΣ2

(xi − µ2)

2. Maximization: compute means and variances

µ2 =

∑

i γixi
∑

i γi

, Σ2 =

∑

i γi(xi − µ2)(xi − µ2)T

∑

i γi

, etc

and the mixing probability π = 1
u

∑

i γi.

3. Iterate until convergence



Combinatorial Clustering

Algorithms in this class work on the data without any ref-

erence to an underlying probability model.

The goal is assigning each data point xi to a cluster k

belonging a predefined set {1,2, . . . , K}

C(i) = k, i = 1,2, . . . , u

The optimal encoder C∗(i) minimizes the overall dissimi-

larities d(xi, xj) between points xi, xj assigned to the same

cluster

W (C) =
1

2

K
∑

k=1

∑

C(i)=k

∑

C(j)=k

d(xi, xj)

The simplest choice for the dissimilarity d(·, ·) is the squared

Euclidean distance in X



Combinatorial Clustering (cont.)

The minimization of the within-cluster point scatter W (C)

is straightforward in principle, but...

the number of distinct assignments grows exponentially

with the number of data points u

S(u, K) =
1

K!

K
∑

k=1

(−1)K−k
(K

k

)

ku

already S(19,4) ' 1010!

In practice, clustering algorithms look for good suboptimal

solutions.

Most popular algorithms are based on iterative descent

strategies. Convergence to local optima.



K-Means

If d(xi, xj) = ‖xi−xj‖2, introducing the mean vectors x̄k as-

sociated to the k-th cluster, the within-cluster point scatter

W (C) can be rewritten as

W (C) =
1

2

K
∑

k=1

∑

C(i)=k

∑

C(j)=k

‖xi−xj‖2 =
K
∑

k=1

∑

C(i)=k

‖xi−x̄k‖2.

Exploiting this representation one can easily verify that the

optimal encoder C∗ is the solution of the enlarged mini-

mization problem

min
C,(m1,...,mK)

K
∑

k=1

∑

C(i)=k

‖xi − mk‖2.



K-Means (cont.)

K-Means attempts the minimization of the enlarged problem by an it-
erative alternating procedure. Each step 1 and 2 reduces the objective
function, so convergence is assured.

1. minimization with respect to (m1, . . . , mK), getting

mk = x̄k

2. minimization with respect to C, getting

C(i) = arg min
1≤k≤K

‖xi − mk‖

3. do until C does not change

One should compare solutions derived from different initial random

means, and choose best local minimum.



Voronoi tessellation



Dimensionality reduction

Often reducing the dimensionality of a problem is an ef-

fective preliminary step toward the actual solution of a

regression or classification problem.

We look for a mapping Φ from the high dimensional space

IRD to the low dimensional space IRd which preserves some

relevant geometrical structure of our problem.



Dimensionality reduction



Principal Component Analysis (PCA)

Trying to approximate data {x1, . . . , xu} in IRD by a d-

dimensional hyperplane

H = {c + Vθ|θ ∈ IRd}

c vector in IRD, θ coordinates vector in IRd and V =

(v1, . . . ,vd), D × d matrix with {vi} orthonormal system

of vectors in IRD.

Problem: find H which minimizes sum of squared dis-

tances of data points xi from H

H∗ = argmin
H

u
∑

i=1

‖xi − PH(xi)‖2



Linear approximation



PCA: the algorithm

1. center data points:
∑u

i=1 xi = 0

2. define u × D matrix X = (x1, . . . , xu)T

3. construct singular value decomposition X = UΣWT

• D × D matrix W = (w1, . . . ,wD), with {wi} right eigenvectors

of X

• u×D matrix U = (u1, . . . ,uD), with {ui} left eigenvectors of X

• D×D matrix Σ = diag(σ1, . . . , σD), with σ1 ≥ σ2 ≥ · · · ≥ σD ≥ 0
singular eigenvectors of X

4. answer: V = (w1, . . . ,wd)



Sketch of proof

• Rewrite the minimization problem

min
c,V,{θi}

u
∑

i=1

‖xi − c − Vθi‖2

• Centering and minimizing with respect to c and θi gives

c = 0, θi = VTxi

• Plugging into the minimization problem

argmin
V

u
∑

i=1

‖xi − VVTxi‖2 = argmax
V

u
∑

i=1

xT
i VVTxi

= argmax
V

d
∑

j=1

vT
j XTXvj

hence (v1, . . . ,vd) are the first d eigenvectors of XTX: (w1, . . . ,wd)



Mercer’s Theorem

Consider the pd kernel K(x, x′) on X ×X , and the proba-

bility distribution p(x) on X.

Define the integral operator LK

(LK f)(x) =
∫

X
K(x, x′)f(x′)dp(x′).

Mercer’s Theorem states that

K(x, x′) =
∑

i

λiφi(x)φi(x
′)

where (λi, φi)i is the eigensystem of LK.



Feature Map

From Mercer’s Theorem, the mapping Φ defined over X

Φ(x) = (
√

λ1φ1(x),
√

λ2φ2(x), . . . )

is such that

K(x, x′) = Φ(x)TΦ(x).

• K(x, x′) can be interpreted as the dot product in the

“feature space”.

• given a mapping of X into an Euclidean space, we can

construct a pd kernel X × X.



Kernelization

Algorithms that depend on the data, only through the dot

products xT
i xj, can be easily kernelized:

1. Choose pd kernel K(·, ·)

2. Replace xT
i xj with K(xi, xj)

Example: PCA can be kernelized computing the eigen-

vectors of the matrix

Mij = K(xi, xj)

instead of those of the matrix XTX.



ISOMAP ∗

• Assumption: the support of the marginal distribution

p(x) is a convex region of IRd (our manifold M) iso-

metrically embedded in IRD.

• Goal: constructing a map Φ : IRD → IRd which “trans-

forms” geodesic distances in M into Euclidean dis-

tances in IRd

• Construction 1: approximate the matrix dM of pair-

wise geodesic distances between data points, estimat-

ing the shortest distances dij over the neighborhood

graph.

∗Tenenbaum, et al, 00



• Construction 2: compute the u × u “kernel matrix”

K = −1

2
HDH, H = I − 1

u
1111T ,

with 11 the u-dimensional column vector (1,1, . . . ,1),

and D the matrix of squared distances, that is: Dij =

d2
ij.

• Result: let (λa,ua)u
a=1 be the eigensystem of K. The

embedding Φ, of {xi}u
i=1

Φ(xi) = (
√

λ1(u1)i,
√

λ2(u2)i, . . . ,
√

λd(ud)i),

is the isometry we were looking for.



ISOMAP global isometry



Explaining ISOMAP

Firstly, we have to verify that the matrix K is a genuine

pd kernel on the data points.

1. Symmetry: since both H and D are symmetric, K =

−1
2HTDH, hence KT = K.

2. Positivity: Note that, by assumption, there exist vec-

tors {φi}u
i=1, such that dij = ‖φi − φj‖. For all c =

(c1, . . . , cu), defining ing c′ = c − 1
u

∑u
i=1 ci11, we get

cTKc = −1

2
(Hc)TD(Hc) = −1

2
c′TDc′

[Dij = ‖φi − φj‖2] = −1

2

∑

ij

c′i(φ
T
i φi + φT

j φj − 2φT
i φj)c

′
j

[
∑

i c′i = 0] = (
∑

i

c′iφi)
T (

∑

i

c′iφi) ≥ 0.



Explaining ISOMAP (cont.)

• We must prove that the pd kernel Kij induces the cor-

rect pairwise distances dij between data points

d2
ij = Kii + Kjj − 2Kij.

This can be verified by direct computation.

• By Mercer’s Theorem, the feature map

Φ0(xi) = (
√

λ1(u1)i,
√

λ2(u2)i, . . . ,
√

λu(uu)i),

is an isometry. If the manifold M is d-dimensional,

λa = 0 for a > d, and we can use the truncated mapping

Φ.



Hessian Locally Linear Embedding (HLLE)∗

ISOMAP outputs an embedding of the data points {xi}u
i=1

into IRd, attempting to preserve pairwise distances on the

underlying manifold M. The method gives guarantees of

convergence if M is isometric to a convex region in IRd.

Convexity is a very strong hypothesis. Typically, linear

combinations of images are not reasonable images!

HLLE gives guarantees of convergence while relaxing the

convexity hypothesis.

∗Hessian Eigenmaps; Donoho, Grimes 03



HLLE local isometry



Core idea of HLLE

For every point x ∈ M and system of coordinates (ξ1, . . . , ξd)

on its tangent space, the Hessian at x of a function f :

M → IR , is the matrix of second derivatives

(Hf(x))ij =
∂

∂ξi

∂

∂ξj
f(x), i, j = 1, . . . , d

The core idea of HLLE is that the null space of the quadratic

form

H(f) =
∫

M

∑

ij

(Hf(x))
2
ij

is independent of the choice of local coordinates ξi.

The null space of H is the d-dimensional linear space spanned

by the global cartesian coordinates



Computing the Hessian

In order to implement this idea, HLLE has to evaluate the

quadratic form H using the data points xi.

1. construct proxies for the tangent spaces using the k-

nearest neighborhood graph

2. implement a finite differences scheme to evaluate sec-

ond derivatives

3. compute eigensystem of approximation of H. Use d

eigenvectors with smallest eigenvalues as embedding

coordinates.



Local Linear Neighborhood



Laplacian based methods ∗

Unsupervised methods based on the eigensystem of the

Laplacian on the neighborhood graph with weights Wij.

• Dimensionality Reduction: consider the solutions of

the eigenvector problem (0 = λ0 ≤ λ1 ≤ · · · ≤ λu−1)

Lfa = λaDfa

where D = diag(D11, . . . , Duu). The considered embed-

ding into the d-dimensional Euclidean space is

Φ(xi) = ((f1)i, . . . , (fd)i).

• Spectral Clustering: use sign of components (f1)j to

define two clusters: connection to min cut problem.

∗Belkin, Niyogi, 02


