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About this class

Goal To introduce the problem of variable selection,
discuss its connection to sparse approximation
and describe some of the methods designed to
solve such problems
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Why Selecting Variables?

interpretabilty of the model: in many learning problems a
main goal, besides good prediction , is to gain a better
understanding of the problems, for example detecting the
most discriminative information
data driven representation: in place of tailoring an ad
hoc representation (for example via a kernel) we can take
a large, redundant set of measurements and then try to
devise a data driven selection scheme
compression it is often desirable to have parsimonious
models, that is models requiring a (possibly very) small
number of parameters to be described
...
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A Useful Example

Biomarker Identification
Set up:
• n patients belonging to 2 groups (say two different diseases)
• p measurements for each patient quantifying the expression
of p genes
Goal:
• learn a classification rule to predict occurrence of the disease
for future patients
• detect which are the genes responsible for the disease

p � n paradigm

typically n is in the order of tens and p of thousands....
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Some Notation

Measurement matrix
Let X be the n × p measurements matrix.

X =

 x1
1 . . . . . . . . . xp

1
...

...
...

...
...

x1
n . . . . . . . . . xp

n


• n is the number of examples
• p is the number of variables
• we denote with X i , i = 1, . . . , p the columns of X
For each patient we have a response (output) y ∈ R or y = ±1.
In particular we are given the responses for the training set

Y = (y1, y2, . . . , yn)
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Approaches to Variable Selection

So far we still have to define what are "relevant" variables.
Different approaches are based on different way to specify what
is relevant.

Filters methods.
Wrappers.
Embedded methods.

We will focus on the latter class of methods.

(see "Introduction to variable and features selection" Guyon and
Elisseeff ’03)
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Few Words on Filter Methods

The idea is to rank the variables X i , i = 1, . . . , p according to
some criteria r(i)

correlation score (similar criteria for non linear
correlation):

r(i) =
cov(X i , Y )√

Var(X i)Var(Y )

single variable classifiers, r(i) is the test error of a
classifier trained with only the i-th variable
information based criteria

r(i) =

∫
X i

∫
Y

P(X i , Y ) log
P(X i , Y )

P(X i)P(Y )
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Filter or Non Filter?

Cons
Filter methods usually look separately at each variable and are
prone to provide us with redundant set of variables.
Moreover no explicit selection is embedded in the method and
some thresholding procedure is needed.

Pros
Nonetheless they are often pretty fast and provide indications if
some variables are by far more important than some others.
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Wrapper methods

An algorithm of choice is used (as a black box) to evaluate the
importance of a set of variables for the given task.

⇒ a strategy is needed to explore the variable space.

A brute force approach is infeasible even for relatively few
features.

two main approaches
backward elimination: start with all the variables and
proceed iteratively to discard them...
forward selection: start with no variables and
incrementally add them...

...until some stopping criteria is satisfied. For example a fixed
number of variables, or a certain validation error, is reached.
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About Wrappers

Such methods often require massive computation unless a
favorable search strategy can be used.
Using a learning algorithm as a black box make them often
simple and problems independent...
...still we risk to forget what the learning machine does to
avoid overfitting.
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Embedded Methods

The selection procedure is embedded in the training phase.

An intuition
what happens to the generalization properties of empirical risk
minimization as we subtract variables?

if we keep all the variables we probably overfit
if we take just a few variables we are likely to oversmooth
(in the limit we have a single variable classifier!)

We are going to discuss this class of methods in detail.
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Function Approximation

Suppose the output is a linear combination of the variables

f (x) =

p∑
i=1

βixi = 〈β, x〉

each coefficient βi can be seen as a weight on the i-th variable.
For a given training set we have to solve (approximatively)

f (xi) = yi i = 1, . . . , n

recall that that data are sampled and noisy.
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Solving a BIG linear system

In vector notation we can can write the problem as a linear
system of equation

Y = Xβ

Though existence is ensured (recall p � n) solution is not
unique. Moreover we can expect unstable behavior w.r.t. noisy
data.

In other words the problem is ill-posed
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Sparse Approximation

We can consider a more general framework.
Given a function (a signal) f : X → R we look for a sparse
approximation on an overcomplete dictionary.

Overcomplete Dictionary
Let

D = {φi : X → R; i = 1, . . . } ⊂ H

be a set of functions, namely the dictionary. The functions φi
are called atoms.
Overcomplete means that we have many ways to write

f =
∑

i

βiφi

where f ∈ H.
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Examples of Overcomplete Dictionary

In the last years a large number of overcomplete dictionary
have been proposed: stationary wavelets, wavelet packets,
cosine packets, chirplets, and warplets ...
The simplest example we can think of, is a union of
orthonormal basis (ei), (gi), ... in some space H.
It is clear that every function in H can be written in many
ways using the elements of D.
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Finite dimensional problem

Typically one has to solve a (noisy) discretization of the sparse
approximation problem: the signal f is replaced by a vector f.

Discretization via Sampling
sampling: a possible discretization is obtained
considering a sample x1, . . . , xn and

f = (f (x1), . . . , f (xn)) ∈ Rn

noise: the signal is often noisy so that f one has a noisy
vector

Y = (y1, . . . , yn) ∈ Rn

where
yj = f (xj) + noise; j = 1, . . . , n
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Truncated Dictionary

In such cases it often suffices to consider a truncated dictionary
φ1 . . . , φp and write

f (xj) =

p∑
i=1

βiφi(xj) j = 1, . . . , n

The measurements matrix is now

Φ =

 φ1(x1) . . . . . . . . . φp(x1)
...

...
...

...
...

φ1(xn) . . . . . . . . . φp(xn)
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Few Comments

It is easy to check that if the dictionary is simply an
orthonormal basis φi = ei , then

ei(x) = xi

and the measurement matrix Φ is simply the matrix X we
previously defined;
in principle if we sample (x1, . . . , xn) and n can increase
the size of the truncated dictionary should depend on n,
that is p = p(n);
if f is a discrete and finite signal (e.g. an image) the idea is
simply to take p � n.

In any case one should be aware of the possible effects of the
discretization step.
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Ill-Posed Problem

Ill-posed problem
Using again vector notation, we have to solve (approximatively)
the ill-posed problem

Y = Φβ

Even in the noiseless case there is not a unique solution and in
general for noisy data we need some regularization procedure.

⇒ In particular we would like to have sparsity enhancing
regularization.
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Generalized and Tikhonov Regularized Solutions

To restore well posedeness:
if there is no noise then take the generalized solution

min
β∈Rp

( p∑
i=1

β2
i

)1/2

s.t f = Φβ

(called method of frames (MOF) in signal processing)
if there is noise use Tikhonov regularization

min
β∈Rp

{1
n

n∑
j=1

V (yj ,
〈
β, Φ(xj)

〉
) + λ

p∑
i=1

β2
i }

⇒ in general all the βi will be different from zero.
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Sparsity

Define the "zero"-norm (not a real norm) as

‖β‖0 = #{i = 1, . . . , p | βi 6= 0}

It is a measure of how "complex" is f and of how many
variables are important.

Is it a good way to define sparsity?
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L0 Regularization

If we have the prior information that only a few variables are
meaningful we can look for

minβ∈Rp ‖β‖0

s.t . f = Φβ

or, since the data are noisy, we would like to consider

min
β∈RP

{1
n

n∑
j=1

V (yj ,
〈
β, Φ(xj)

〉
) + λ ‖β‖0}

⇒ This is as difficult as trying all possible subsets of variables.

Can we find meaningful approximations?
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Approximate solutions

Two main approaches
There exist approximations for various choices of loss function.
Most of them fall in either one of the following two approaches

1 Convex relaxation (L1 regularization, L0-SVM...)
2 Greedy schemes (boosting algorithms, projection pursuit...)

We mostly discuss the first class of methods.
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One Slide on Greedy Approaches

Very similar techniques have been proposed by different
communities with different names:

statistics - forward stagewise regression,
approximation theory - greedy algorithms,
learning - boosting methods,
signal processing - projection pursuit methods.

The various algorithms are often based on the iteration of the
following steps. After some initialization:

1 selection an element of the dictionary,
2 update of the solution.

These schemes proceed incrementally and are not based on a
global optimization procedure.
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Convex Relaxation

A natural approximation to L0 regularization is given by:

1
n

n∑
j=1

V (yj ,
〈
β, Φ(xj)

〉
) + λ ‖β‖1

where ‖β‖1 =
∑p

i=1 |βi |.

If we choose the square loss

1
n

n∑
j=1

(yj −
〈
β, Φ(xj)

〉
)2 = ‖Y − Φβ‖2

n

Such a scheme is related to Basis Pursuit and the Lasso
algorithms.
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Lq regularization?

One might wonder why L1 penalty should ensure sparseness
and what happens using more general penalty of the form

‖β‖q = (

p∑
i=1

|β|q)1/q

(related to bridge regression in statistics).
It can be proved that:

limq→0 ‖β‖q → ‖β‖0,
for 0 < q < 1 the norm is not a convex map,
for q = 1 the norm is a convex map and is strictly convex
for q > 1.

How about sparsity?
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Geometrical View
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Graphical Solution in in 2D
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Back to L1 regularization

We focus on the square loss so that we now have to solve

min
β∈Rp

‖Y − βΦ‖2 + λ ‖β‖1 .

Though the problem is no longer hopeless there is no
straightforward way to solve it.
The functional is convex but not strictly convex, so that the
solution is not unique.
One possible approach relies on linear or quadratic
programming techniques.
Using convex analysis tools we can get a constructive
representation theorem.
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An Iterative Thresholding Algorithm

If we let βλ be a solution of the convex relaxation problem, it
can be proved that the following iterated algorithm converges to
βλ as the number of iteration increases.

Set βλ
0 = 0 and let

βλ
t = Sλ[βλ

t−1 + τΦT (Y − Φβλ
t−1)]

where τ is a normalization constant ensuring ‖Φ‖ ≤ 1 and the
map Sλ is defined component-wise as

Sλ(βi) =


βi + λ if βi < −λ/2
0 if |βi | ≤ λ/2
βi − λ if βi < λ/2

(see Daubechies et al.’05)
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Thresholding

L. Rosasco Sparse Approximation



Algorithmics Aspects

Set βλ
0 = 0

for t=1:tmax

βλ
t = Sλ[βλ

t−1 + τΦT (Y − Φβλ
t−1)]

The algorithm we just described is very easy to implement
but can be quite heavy from a computational point of view.
The number of iteration t can be stopped when a certain
precision is reached.
The complexity of the algorithm is O(tp2) for each value of
the regularization parameter.
The regularization parameter controls the degree of
sparsity of the solution.
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Some Final Remarks

Computational Burden: algorithms for feature selection
are often computationally expansive. This should be no
surprise since the problem we are trying to solve is more
difficult then a simple regression/classification task.
About Uniqueness: the solution of in L1 regularization is
not unique. Note however that the various solution have
the same prediction properties but different selection
properties.
Correlated Variables: If we have a group of correlated
variables the algorithm is going to select just one of them.
This can be bad for interpretability but maybe good for
compression.
Connections: the same approaches is used MANY
different problem: compressed sensing, inverse problems,
linear coding...
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