Introduction to non-linear optimization

Ross A. Lippert
D. E. Shaw Research

March 2, 2007

Optimization problems

problem: Let $f: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$,

$$
\begin{array}{ll}
\text { find } & \min _{x \in \mathbb{R}^{n}}\{f(x)\} \\
\text { find } & x_{*} \text { s.t. } f\left(x_{*}\right)=\min _{x \in \mathbb{R}^{n}}\{f(x)\}
\end{array}
$$

Quite general, but some cases, like f convex, are fairly solvable. Today's problem: How about $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, differentiable?

$$
\text { find } \quad x_{*} \text { s.t. } \nabla f\left(x_{*}\right)=0
$$

We have a reasonable shot at this, especially if f is twice differentiable.

Two pillars of multi-variate optimization

The simplest we can get

Quadratic optimization: $f(x)=\frac{1}{2} x^{t} A x-x^{t} b+c$.

- very common (actually universal)
- Taylor expansion

$$
f(x+\Delta x)=f(x)+(\Delta x)^{t} \nabla f(x)+\frac{1}{2}(\Delta x)^{t} \nabla \nabla f(x) \Delta x+\cdots
$$

Finding $\nabla f(x)=0$

$$
\begin{aligned}
\nabla f(x)=A x-b & =0 \\
x_{*} & =A^{-1} b
\end{aligned}
$$

Does this mean A has to be invertible? Is this all we need?

Max, min, saddle, or what?

Requires A be positive definite, why?

Universality of linear algebra in optimization

$$
f(x)=\frac{1}{2} x^{t} A x-x^{t} b+c
$$

Linear solve: $x_{*}=A^{-1} b$.
Even for non-linear problems: if optimal x_{*} near our x

$$
\begin{aligned}
f\left(x_{*}\right) & \sim f(x)+\left(x_{*}-x\right)^{t} \nabla f(x)+\frac{1}{2}\left(x_{*}-x\right)^{t} \nabla \nabla f(x)\left(x_{*}-x\right)+\cdots \\
\Delta x & =x_{*}-x \sim-(\nabla \nabla f(x))^{-1} \nabla f(x)
\end{aligned}
$$

Optimization \leftrightarrow Linear solve

$$
x=A^{-1} b
$$

But really we just want to solve

$$
A x=b
$$

No need to form A^{-1} if we can avoid it!
For a general A, there are three important special cases,

- diagonal: $A=\left(\begin{array}{ccc}a_{1} & 0 & 0 \\ 0 & a_{2} & 0 \\ 0 & 0 & a_{3}\end{array}\right)$ thus $x_{i}=\frac{1}{a_{i}} b_{i}$
- orthogonal $A^{t} A=I$, thus $A^{-1}=A^{t}$ and $x=A^{t} b$
- triangular: $A=\left(\begin{array}{ccc}a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33}\end{array}\right), x_{i}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j<i} a_{i j} x_{j}\right)$
A is symmetric positive definite.
Cholesky factorization:

$$
A=L L^{t}
$$

where L lower triangular. So $L L^{t} x=b$ by

$$
\begin{aligned}
L z & =b, \quad z_{i}=\frac{1}{L_{i i}}\left(b_{i}-\sum_{j<i} L_{i j} z_{j}\right) \\
L^{t} x & =z, \quad x_{i}=\frac{1}{L_{i i}}\left(z_{i}-\sum_{j>i} L_{i j} x_{j}\right)
\end{aligned}
$$

Direct methods

A is symmetric positive definite.
QR factorization:

$$
A=Q R
$$

where Q is orthogonal and R is upper triangular. Then $x=R^{-1} Q^{t} b$ (second subproduct by back-substitution). Slightly more expensive than Cholesky
Eigenvalue factorization:

$$
A=Q D Q^{t}
$$

where Q is orthogonal and D is diagonal. Then $x=Q D^{-1} Q^{t} b$ (each subproduct is easy to form).
Much more expensive than QR
Direct methods can be very expensive.

Iterative method basics

What's an iterative method?

Definition (Informal definition)

An iterative method is an algorithm \mathcal{A} which takes what you have, x_{i}, and gives you a new x_{i+1} which is less bad such that $x_{1}, x_{2}, x_{3}, \ldots$ converges to some x_{*} with badness $=0$.

A notion of badness could come from
(1) distance from x_{i} to our problem solution
(2) value of some objective function above its minimum e.g. If x is supposed to satisfy $A x=b$, we could take $\|b-A x\|$ to be the measure of badness.

Iterative method considerations

How expensive is one $x_{i} \rightarrow x_{i+1}$ step?
How quickly does the badness decrease per step?
A thousand and one years of experience yields two cases
(1) $B_{i} \propto \rho^{i}$ for some $\rho \in(0,1)$ (linear)
(2) $B_{i} \propto \rho^{\left(\alpha^{i}\right)}$ for $\rho \in(0,1), \alpha>1$ (superlinear)

Can you tell the difference?

Convergence

Now can you tell the difference?

When evaluating an iterative method against manufacturer's claims, be sure to do semilog plots.

Iterative methods

For spd systems, sometimes cheaper to directly optimize $f(x)=\frac{1}{2} x^{t} A x-x^{t} b$.

gradient descent:

(1) Search direction: $r_{i}=-\nabla f=b-A x_{i}$
(2) Search step: $x_{i+1}=x_{i}+\alpha_{i} r_{i}$
(3) Pick alpha: $\alpha_{i}=\frac{r_{i}^{t} r_{i}}{r_{i}^{\prime} A r_{i}}$ minimizes $f\left(x+\alpha r_{i}\right)$

$$
\begin{aligned}
f\left(x_{i}+\alpha r_{i}\right) & =\frac{1}{2} x_{i}^{t} A x_{i}-x_{i}^{t} b+\frac{1}{2} \alpha^{2} r_{i}^{t} A r_{i}+\alpha r_{i}^{t}\left(A x_{i}-b\right) \\
& =\frac{1}{2} x_{i}^{t} A x_{i}-x_{i}^{t} b+\frac{1}{2} \alpha^{2} r_{i}^{t} A r_{i}-\alpha r_{i}^{t} r_{i}
\end{aligned}
$$

Iterative methods

Optimize $f(x)=\frac{1}{2} x^{t} A x-x^{t} b$.

conjugate gradient descent:

(1) Search direction: $d_{i}=r_{i}+\beta_{i} d_{i-1}$, with $r_{i}=b-A x_{i}$.
(2) Pick $\beta_{i}=-\frac{d_{i-1}^{t} A r_{i}}{d_{i-1}^{t} A d_{i-1}}$, ensures $d_{i-1}^{t} A d_{i}=0$.
(3) Search step: $x_{i+1}=x_{i}+\alpha_{i} d_{i}$
(9) Pick $\alpha_{i}=\frac{{ }_{i}^{t} r_{i}}{d_{i}^{i} A d_{i}}:$ minimizes $f\left(x_{i}+\alpha d_{i}\right)$

$$
f\left(x_{i}+\alpha d_{i}\right)=\frac{1}{2} x_{i}^{t} A x_{i}-x_{i}^{t} b+\frac{1}{2} \alpha^{2} d_{i}^{t} A d_{i}-\alpha d_{i}^{t} r_{i}
$$

(also means that $r_{i+1}^{t} d_{i}=0$)
Avoid extra A-multiply: using $A d_{i-1} \propto r_{i-1}-r_{i}$

$$
\beta_{i}=-\frac{\left(r_{i-1}-r_{i}\right)^{2} r_{i}}{\left(r_{i-1}-r_{i}\right)^{2} d_{i-1}}=-\frac{\left(r_{i-1}-r_{i}\right)^{t} r_{i}}{r_{i-1}^{(} d_{i-1}}=\frac{\left(r_{i}-r_{i-1} t^{t} r_{i}\right.}{r_{i-1}^{(-1} r_{i-1}}
$$

A cute result

conjugate gradient descent:

(1) $r_{i}=b-A x_{i}$
(2) Search direction: $d_{i}=r_{i}+\beta_{i} d_{i-1}\left(\beta\right.$ s.t. $\left.d_{i} A d_{i-1}=0\right)$
(3) Search step: $x_{i+1}=x_{i}+\alpha_{i} d_{i}$ (α minimizes).

Cute result

Theorem (sub-optimality of CG)

(Assuming $x_{0}=0$) at the end of step k, the solution x_{k} is the optimal linear combination of $b, A b, A^{2} b, \ldots A^{k} b$ for minimizing

$$
\frac{1}{2} x^{t} A x-b^{t} x
$$

(computer arithmetic errors make this less than perfect) Very little extra effort. Much better convergence.

Slow convergence: Conditioning

The eccentricity of the quadratic is a big factor in convergence

Convergence

$$
\kappa=\frac{\max \operatorname{eig}(A)}{\min \operatorname{eig}(A)}
$$

For gradient descent,

$$
\left\|r_{i}\right\| \sim\left|\frac{\kappa-1}{\kappa+1}\right|^{i}
$$

For CG,

$$
\left\|r_{i}\right\| \sim\left|\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right|^{i}
$$

useless CG fact: in exact arithmetic $r_{i}=0$ when $i>n(A$ is
$n \times n$).

The truth about descent methods

Very slow unless κ can be controlled. How do we control κ ?

$$
A x=b \rightarrow\left(P A P^{t}\right) y=P b, \quad x=P^{t} y
$$

where P is a pre-conditioner you pick. How to make $\kappa\left(P A P^{t}\right)$ small?

- perfect answer, $P=L^{-1}$ where $L^{t} L=A$ (Cholesky factorization).
- imperfect answer, $P \sim L^{-1}$

Variations on the theme of incomplete factorization:

- $P^{-1}=D^{\frac{1}{2}}$ where $D=\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right)$
- more generally, incomplete Cholesky decomposition
- some easy nearby solution or simple approximate A (requiring domain knowledge)

Class project?

One idea for a preconditioner is by a block diagonal matrix

$$
P^{-1}=\left(\begin{array}{ccc}
L_{11} & 0 & 0 \\
0 & L_{22} & 0 \\
0 & 0 & L_{33}
\end{array}\right)
$$

where $L_{i j}^{t} L_{i i}=A_{i j}$ a diagonal block of A.
In what sense does good clustering give good preconditioners?

End of solvers: there are a few other iterative solvers out there I haven't discussed. They are not generally good.

1D optimization presents some important insights.

$$
\min _{s \in \mathbb{R}} f(s), \quad f \text { continuous. }
$$

A derivative-free option:
A bracket is (a, b, c) s.t. $a<b<c$ and $f(a)>f(b)<f(c)$ then $f(x)$ has a local min for $a<x<b$

Golden search based on picking $a<b^{\prime}<b<c$ and either $\left(a<b^{\prime}<b\right)$ or $\left(b^{\prime}<b<c\right)$ is a new bracket... continue Linearly convergent, $e_{i} \propto G^{i}$, golden ratio G.

Fundamentally limited accuracy of the argmin:

Derivative-based methods: $f^{\prime}(s)=0$ (accurate argmin)

- bracketed: (a, b) s.t. $f^{\prime}(a), f^{\prime}(b)$ opposite sign
(1) bisection (linearly convergent)
(2) modified regula falsi \& Brent's method (superlinear)
- unbracketed:
(1) secant method (superlinear)
(2) Newton's method (superlinear; requires another derivative)

Unless $f^{\prime \prime}$ is very easy, bracketed methods are best.

Adapting to non-linear problems

What can happen when far from the optimum?

- $-\nabla f(x)$ always points in a direction of decrease
- $\nabla \nabla f(x)$ may not be positive definite

Actually for convex problems $\nabla \nabla f$ is always positive semi-definite and for strictly convex it is positive definite.
What do we want?

- eventually find a convex neighborhood of x_{*} (be robust against mistakes)
- apply a quadratic approximation (do linear solve)

Fact: \forall non-linear optimization algorithms, $\exists f$ which fools it.
(Actually Newton's method finding x s.t. $\nabla f(x)=0$)

$$
\begin{aligned}
\Delta x_{i} & =-\left(\nabla \nabla f\left(x_{i}\right)\right)^{-1} \nabla f\left(x_{i}\right) \\
x_{i+1} & =x_{i}+\Delta x_{i}
\end{aligned}
$$

(1) if $\nabla \nabla f\left(x_{i}\right)$ posdef, $\left(\nabla f\left(x_{i}\right)\right)^{t}\left(x_{i+1}-x_{i}\right)<0$ so Δx_{i} is a direction of decrease (could overshoot)
(2) if $\nabla \nabla f\left(x_{i}\right)$ not posdef, Δx_{i} might be in an increasing direction.
(3) if f is convex, $f\left(x_{i+1}\right) \leq f\left(x_{i}\right)$, so problems go away.

1D example of trouble

- Has one local minimum
- Is not convex (note the concavity near $\mathrm{x}=0$)

1D example of trouble

derivative of trouble: $f^{\prime}(x)=4 x^{3}-4 x+12$

the negative $f^{\prime \prime}$ region around $x=0$ repells the iterates:
$0 \rightarrow 3 \rightarrow 1.96154 \rightarrow 1.14718 \rightarrow 0.00658 \rightarrow 3.00039 \rightarrow 1.96182 \rightarrow$
$1.14743 \rightarrow 0.00726 \rightarrow 3.00047 \rightarrow 1.96188 \rightarrow 1.14749 \rightarrow \cdots$

Try to enforce $f\left(x_{i+1}\right) \leq f\left(x_{i}\right)$

$$
\begin{aligned}
\Delta x_{i} & =-\left(\nabla \nabla f\left(x_{i}\right)\right)^{-1} \nabla f\left(x_{i}\right) \\
x_{i+1} & =x_{i}+\alpha_{i} \Delta x_{i}
\end{aligned}
$$

pick $\alpha_{i}>0$ such that $f\left(x_{i}+\alpha_{i} \Delta x_{i}\right) \leq f\left(x_{i}\right)$. If Δx_{i} is a direction of decrease, some α_{i} exists.

- 1D-minimization do 1D optimization problem,

$$
\min _{\alpha_{i} \in(0, \beta]} f\left(x_{i}+\alpha_{i} \Delta x_{i}\right)
$$

- Armijo-search use this rule: $\alpha_{i}=\rho \mu^{n}$ some n

$$
f\left(x_{i}+s \Delta x_{i}\right)-f\left(x_{i}\right) \leq \nu s\left(\Delta x_{i}\right)^{t} \nabla f\left(x_{i}\right)
$$

with ρ, μ, ν fixed (e.g. $\rho=2, \mu=\nu=\frac{1}{2}$).

1D optimization: Let $f: \mathbb{R} \rightarrow \mathbb{R}$, continuous.

$$
\begin{array}{ll}
\text { find } & x_{*} \text { s.t. } f\left(x_{*}-\epsilon\right) \geq f\left(x_{*}\right) \leq f\left(x_{*}+\epsilon\right) \\
\text { or } & \\
\text { find } & x_{*} \text { s.t. } f^{\prime}\left(x_{*}-\epsilon\right)=0 \quad \text { (requires differentiability) }
\end{array}
$$

We can do this without differentiability - important case exposes many issues.

1D-minimization looks like less of a hack than Armijo. For Newton, asymptotic convergence is not strongly affected, and function evaluations can be expensive.

- far from x_{*} their only value is ensuring decrease
- near x_{*} the methods will return $\alpha_{i} \sim 1$.

Asymptotic convergence, $e_{i}=x_{i}-x_{*}$

$$
\begin{aligned}
\nabla f\left(x_{i}\right) & =\nabla \nabla f\left(x_{*}\right) e_{i}+O\left(\left\|e_{i}\right\|^{2}\right) \\
\nabla \nabla f\left(x_{i}\right) & =\nabla \nabla f\left(x_{*}\right)+O\left(\left\|e_{i}\right\|\right) \\
e_{i+1} & =e_{i}-\left(\nabla \nabla f_{i}\right)^{-1} \nabla f_{i}=O\left(\left\|e_{i}\right\|^{2}\right)
\end{aligned}
$$

"squares the error" at every step (exactly eliminates the linear error).

Practicality

Direct (non-iterative, non-structured) solves are expensive! $\nabla \nabla f$ information is often expensive!

Iterative methods

gradient descent:

(1) Search direction: $r_{i}=-\nabla f\left(x_{i}\right)$
(2) Search step: $x_{i+1}=x_{i}+\alpha_{i} r_{i}$
(3) Pick alpha: (depends on what's cheap)
(1) linearized $\alpha_{i}=\frac{r_{(}^{t}(\nabla \nabla f) r_{i}}{r_{i}^{t_{i}}}$
(2) 1D minimization $f\left(x_{i}+\alpha r_{i}\right)$ (danger: low quality)
(3) zero-finding $r_{i}^{t} \nabla f\left(x_{i}+\alpha r_{i}\right)=0$

Iterative methods

conjugate gradient descent:

(1) Search direction: $d_{i}=-r_{i}+\beta_{i} d_{i-1}$, with $r_{i}=-\nabla f\left(x_{i}\right)$.
(2) Pick β_{i} without $\nabla \nabla f$
(1) $\beta_{i}=\frac{\left(r_{i}-r_{i-1}\right)^{t} r_{i-1}}{\left(r_{i}-r_{i-1}\right)^{t_{i}}}$ (Polak-Ribiere)
(2) can also use $\beta_{i}=\frac{r_{i}^{t} r_{i}}{r_{i-1}^{t} r_{i-1}}$ (Fletcher-Reeves)
(3) Search step: $x_{i+1}=x_{i}+\alpha_{i} d_{i}$
(1) linearized $\alpha_{i}=\frac{d_{i}^{t}(\nabla \nabla f) d_{i}}{r_{i}^{\prime} d_{i}}$
(2) 1D minimization $f\left(x_{i}+\alpha d_{i}\right)$ (danger: low quality)
(3) zero-finding $d_{i}^{t} \nabla f\left(x_{i}+\alpha d_{i}\right)=0$

Don't forget the truth about iterative methods

To get good convergence you must precondition!

$$
B \sim\left(\nabla \nabla f\left(x_{*}\right)\right)^{-1}
$$

For $B=P P^{t}$
(1) Search direction: $d_{i}=-r_{i}+\beta_{i} d_{i-1}$, with $r_{i}=-P^{t} \nabla f\left(x_{i}\right)$.
(2) Pick $\beta_{i}=\frac{\left(r_{i}-r_{i-1}\right)^{t} r_{i-1}}{\left(r_{i}-r_{i-1}\right)^{t} r_{i}}$ (Polak-Ribiere)
(3) Search step: $x_{i+1}=x_{i}+\alpha_{i} d_{i}$
(4) zero-finding $d_{i}^{t} \nabla f\left(x_{i}+\alpha d_{i}\right)=0$
change of metric
(1) Search direction: $d_{i}=-r_{i}+\beta_{i} d_{i-1}$, with $r_{i}=-\nabla f\left(x_{i}\right)$.
(2) Pick $\beta_{i}=\frac{\left(r_{i}-r_{i-1}\right)^{t} B r_{i-1}}{\left(r_{i}-r_{i-1}\right)^{t} r_{i}}$
(3) Search step: $x_{i+1}=x_{i}+\alpha_{i} d_{i}$
(4) zero-finding $d_{i}^{t} B \nabla f\left(x_{i}+\alpha d_{i}\right)=0$

What else?

Theorem (sub-optimality of CG)

(Assuming $x_{0}=0$) at the end of step k, the solution x_{k} is the optimal linear combination of $b, A b, A^{2} b, \ldots A^{k} b$ for minimizing

$$
\frac{1}{2} x^{t} A x-b^{t} x
$$

In other words, CG learns about A from the outputs of $b-A x_{i}$. In principle
(1) computer arithmetic errors ruin this nice property quickly
(2) non-linearity ruins this property quickly

Quasi-Newton

What if we learned $\left(\nabla \nabla f\left(x_{*}\right)\right)^{-1}$ from the data

$$
\nabla f\left(x_{i}\right)-\nabla f\left(x_{k-1}\right) \sim\left(\nabla \nabla f\left(x_{*}\right)\right)\left(x_{i}-x_{k-1}\right)
$$

over some fix-finite history.
Data: $y_{i}=\nabla f\left(x_{i}\right)-\nabla f\left(x_{k-1}\right), s_{i}=x_{i}-x_{k-1}$ with $1 \leq i \leq k$ Problem: Find symmetric positive def H_{k} s.t.

$$
H_{k} y_{i}=s_{i}
$$

Multiple solutions, but BFGS works best in most situations.

BFGS update

$$
H_{k}=\left(1-\frac{s_{k} y_{k}^{t}}{y_{k}^{t} s_{k}}\right) H_{k-1}\left(1-\frac{y_{k} s_{k}^{t}}{y_{k}^{t} s_{k}}\right)+\frac{s_{k} s_{k}^{t}}{y_{k}^{t} s_{k}}
$$

Lemma

The BFGS update minimizes $\min _{H}\left\|H^{-1}-H_{k-1}^{-1}\right\|_{F}^{2}$ such that $H y_{k}=s_{k}$.

Forming H_{k} not necessary, e.g. $H_{k} v$ can be recursively computed.

Quasi-Newton

Typically keep about 5 data points in the history. initialize Set $H_{0}=I, r_{0}=-\nabla f\left(x_{0}\right), d_{0}=r_{0}$ goto 3
(1) Compute $r_{k}=-\nabla f\left(x_{k}\right), y_{k}=r_{k-1}-r_{k}$
(2) Compute $d_{k}=H_{k} r_{k}$
(3) Search step: $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ (line-search)

Can also precondition this, though in practice, it is less critical than in CG or GD.
Armijo line searching has good theoretical properties. Typically used.
Quasi-Newton ideas generalize to many situations (e.g. fixed-point iterations)

Summary

- All multi-variate optimizations relate to posdef linear solves
- Simple iterative methods require pre-conditioning to be effective in high dimensions.
- Line searching strategies are highly variable
- Timing and storage of $f, \nabla f, \nabla \nabla f$ are all critical in selecting your method.

f	∇f	concerns	method
fast	fast	2	quasi-N (zero-search)
fast	fast	5	CG (zero-search)
fast	slow	$1,2,3$	derivative-free methods
fast	slow	2	quasi-N (min-search)
fast	slow	3,4	CG (min-search)
fast/slow	slow	2,4	quasi-N with Armijo
fast/slow	slow	4,5	CG (linearized α)
1=time		2=space	$3=$ accuracy
4=robust vs. nonlinearity	$5=$ precondition		
Don't take this table too seriously. .			

