
Introduction to non-linear optimization

Ross A. Lippert

D. E. Shaw Research

March 2, 2007

R. A. Lippert Non-linear optimization



Optimization problems

problem: Let f : R
n → (−∞,∞],

find min
x∈Rn

{f (x)}

find x∗ s.t. f (x∗) = min
x∈Rn

{f (x)}

Quite general, but some cases, like f convex, are fairly solvable.
Today’s problem: How about f : R

n → R, differentiable?

find x∗ s.t. ∇f (x∗) = 0

We have a reasonable shot at this, especially if f is twice
differentiable.
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Two pillars of multi-variate optimization

n−D optimization

linear solve/quadratic opt. 1D optimization
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The simplest we can get

Quadratic optimization: f (x) = 1
2x t Ax − x tb + c.

very common (actually universal)
Taylor expansion
f (x + ∆x) = f (x) + (∆x)t∇f (x) + 1

2(∆x)t∇∇f (x)∆x + · · ·
Finding ∇f (x) = 0

∇f (x) = Ax − b = 0
x∗ = A−1b

Does this mean A has to be invertible? Is this all we need?
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Max, min, saddle, or what?

Requires A be positive definite, why?
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Universality of linear algebra in optimization

f (x) =
1
2x t Ax − x tb + c

Linear solve: x∗ = A−1b.
Even for non-linear problems: if optimal x∗ near our x

f (x∗) ∼ f (x) + (x∗ − x)t ∇f (x) +
1
2 (x∗ − x)t ∇∇f (x) (x∗ − x) + · · ·

∆x = x∗ − x ∼ − (∇∇f (x))−1 ∇f (x)

Optimization ↔ Linear solve
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Linear solve

x = A−1b
But really we just want to solve

Ax = b

No need to form A−1 if we can avoid it!
For a general A, there are three important special cases,

diagonal: A =





a1 0 0
0 a2 0
0 0 a3



 thus xi = 1
ai

bi

orthogonal At A = I, thus A−1 = At and x = Atb

triangular: A =





a11 0 0
a21 a22 0
a31 a32 a33



 , xi = 1
aii

(

bi −
∑

j<i aijxj
)
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Direct methods

A is symmetric positive definite.
Cholesky factorization:

A = LLt ,

where L lower triangular. So LLtx = b by

Lz = b, zi =
1
Lii



bi −
∑

j<i
Lijzj





Ltx = z, xi =
1
Lii



zi −
∑

j>i
Lijxj
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Direct methods

A is symmetric positive definite.
QR factorization:

A = QR,

where Q is orthogonal and R is upper triangular. Then
x = R−1Qtb (second subproduct by back-substitution).
Slightly more expensive than Cholesky
Eigenvalue factorization:

A = QDQt ,

where Q is orthogonal and D is diagonal. Then x = QD−1Qt b
(each subproduct is easy to form).
Much more expensive than QR
Direct methods can be very expensive.
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Iterative method basics

What’s an iterative method?
Definition (Informal definition)
An iterative method is an algorithm A which takes what you
have, xi , and gives you a new xi+1 which is less bad such that
x1, x2, x3, . . . converges to some x∗ with badness= 0.

A notion of badness could come from
1 distance from xi to our problem solution
2 value of some objective function above its minimum

e.g. If x is supposed to satisfy Ax = b, we could take ||b − Ax ||
to be the measure of badness.
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Iterative method considerations

How expensive is one xi → xi+1 step?
How quickly does the badness decrease per step?
A thousand and one years of experience yields two cases

1 Bi ∝ ρi for some ρ ∈ (0, 1) (linear)
2 Bi ∝ ρ(αi ) for ρ ∈ (0, 1), α > 1 (superlinear)
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Can you tell the difference?
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Convergence
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Now can you tell the difference?
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When evaluating an iterative method against manufacturer’s
claims, be sure to do semilog plots.
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Iterative methods

For spd systems, sometimes cheaper to directly optimize
f (x) = 1

2x tAx − x t b.
gradient descent:

1 Search direction: ri = −∇f = b − Axi
2 Search step: xi+1 = xi + αi ri

3 Pick alpha: αi =
r t
i ri

r t
i Ari

minimizes f (x + αri )

f (xi + αri) =
1
2x t

i Axi − x t
i b +

1
2α2r t

i Ari + αr t
i (Axi − b)

=
1
2x t

i Axi − x t
i b +

1
2α2r t

i Ari − αr t
i ri
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Iterative methods

Optimize f (x) = 1
2x t Ax − x tb.

conjugate gradient descent:
1 Search direction: di = ri + βidi−1, with ri = b − Axi .
2 Pick βi = − d t

i−1Ari
d t

i−1Adi−1
, ensures d t

i−1Adi = 0.
3 Search step: xi+1 = xi + αidi

4 Pick αi =
d t

i ri
d t

i Adi
: minimizes f (xi + αdi)

f (xi + αdi) =
1
2x t

i Axi − x t
i b +

1
2α2d t

i Adi − αd t
i ri

(also means that r t
i+1di = 0)

Avoid extra A-multiply: using Adi−1 ∝ ri−1 − ri
βi = − (ri−1−ri)t ri

(ri−1−ri)t di−1
= − (ri−1−ri)t ri

r t
i−1di−1

=
(ri−ri−1)t ri

r t
i−1ri−1
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A cute result

conjugate gradient descent:
1 ri = b − Axi
2 Search direction: di = ri + βidi−1 (β s.t. diAdi−1 = 0)
3 Search step: xi+1 = xi + αidi (α minimizes).

Cute result
Theorem (sub-optimality of CG)
(Assuming x0 = 0) at the end of step k, the solution xk is the
optimal linear combination of b, Ab, A2b, . . . Akb for minimizing

1
2x t Ax − btx .

(computer arithmetic errors make this less than perfect)
Very little extra effort. Much better convergence.
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Slow convergence: Conditioning

The eccentricity of the quadratic is a big factor in convergence
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Convergence

κ =
max eig(A)

min eig(A)

For gradient descent,

||ri || ∼
∣

∣

∣

∣

κ − 1
κ + 1

∣

∣

∣

∣

i

For CG,

||ri || ∼
∣

∣

∣

∣

√
κ − 1√
κ + 1

∣

∣

∣

∣

i

useless CG fact: in exact arithmetic ri = 0 when i > n (A is
n × n).
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The truth about descent methods

Very slow unless κ can be controlled.
How do we control κ?

Ax = b → (PAP t)y = Pb, x = P t y

where P is a pre-conditioner you pick.
How to make κ(PAP t) small?

perfect answer, P = L−1 where LtL = A (Cholesky
factorization).
imperfect answer, P ∼ L−1

Variations on the theme of incomplete factorization:
P−1 = D 1

2 where D = diag (a11, . . . , ann)

more generally, incomplete Cholesky decomposition
some easy nearby solution or simple approximate A
(requiring domain knowledge)
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Class project?

One idea for a preconditioner is by a block diagonal matrix

P−1 =





L11 0 0
0 L22 0
0 0 L33





where Lt
iiLii = Aii a diagonal block of A.

In what sense does good clustering give good preconditioners?

End of solvers: there are a few other iterative solvers out there
I haven’t discussed. They are not generally good.
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1D optimization

1D optimization presents some important insights.

min
s∈R

f (s), f continuous.

A derivative-free option:
A bracket is (a, b, c) s.t. a < b < c and f (a) > f (b) < f (c) then
f (x) has a local min for a < x < b

a b c

Golden search based on picking a < b′ < b < c and either
(a < b′ < b) or (b′ < b < c) is a new bracket. . . continue
Linearly convergent, ei ∝ Gi , golden ratio G.
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1D optimization

Fundamentally limited accuracy of the argmin:

a b c

Derivative-based methods: f ′(s) = 0 (accurate argmin)
bracketed: (a, b) s.t. f ′(a), f ′(b) opposite sign

1 bisection (linearly convergent)
2 modified regula falsi & Brent’s method (superlinear)

unbracketed:
1 secant method (superlinear)
2 Newton’s method (superlinear; requires another derivative)

Unless f ′′ is very easy, bracketed methods are best.
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Adapting to non-linear problems

What can happen when far from the optimum?
−∇f (x) always points in a direction of decrease
∇∇f (x) may not be positive definite

Actually for convex problems ∇∇f is always positive
semi-definite and for strictly convex it is positive definite.
What do we want?

eventually find a convex neighborhood of x∗ (be robust
against mistakes)
apply a quadratic approximation (do linear solve)

Fact: ∀ non-linear optimization algorithms, ∃f which fools it.

R. A. Lippert Non-linear optimization



Naïve Newton’s method

(Actually Newton’s method finding x s.t. ∇f (x) = 0)

∆xi = − (∇∇f (xi))
−1 ∇f (xi)

xi+1 = xi + ∆xi

1 if ∇∇f (xi) posdef, (∇f (xi))
t (xi+1 − xi) < 0 so ∆xi is a

direction of decrease (could overshoot)
2 if ∇∇f (xi) not posdef, ∆xi might be in an increasing

direction.
3 if f is convex, f (xi+1) ≤ f (xi), so problems go away.
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1D example of trouble

1D example of trouble: f (x) = x 4 − 2x2 + 12x

−20

−15

−10

−5

 0

 5

 10

 15

 20

−2 −1.5 −1 −0.5  0  0.5  1  1.5
−20

−15

−10

−5

 0

 5

 10

 15

 20

−2 −1.5 −1 −0.5  0  0.5  1  1.5

Has one local minimum
Is not convex (note the concavity near x=0)
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1D example of trouble

derivative of trouble: f ′(x) = 4x3 − 4x + 12
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the negative f ′′ region around x = 0 repells the iterates:
0 → 3 → 1.96154 → 1.14718 → 0.00658 → 3.00039 → 1.96182 →
1.14743 → 0.00726 → 3.00047 → 1.96188 → 1.14749 → · · ·
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Non-linear Newton

Try to enforce f (xi+1) ≤ f (xi)

∆xi = − (∇∇f (xi))
−1 ∇f (xi)

xi+1 = xi + αi∆xi

pick αi > 0 such that f (xi + αi∆xi) ≤ f (xi). If ∆xi is a direction
of decrease, some αi exists.

1D-minimization do 1D optimization problem,

min
αi∈(0,β]

f (xi + αi∆xi)

Armijo-search use this rule: αi = ρµn some n

f (xi + s∆xi) − f (xi) ≤ νs (∆xi)
t ∇f (xi)

with ρ, µ, ν fixed (e.g. ρ = 2, µ = ν = 1
2 ).
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1D optimization: Let f : R → R, continuous.

find x∗ s.t. f (x∗ − ε) ≥ f (x∗) ≤ f (x∗ + ε)

or
find x∗ s.t. f ′(x∗ − ε) = 0 (requires differentiability)

We can do this without differentiability — important case
exposes many issues.
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Line searching

1D-minimization looks like less of a hack than Armijo. For
Newton, asymptotic convergence is not strongly affected, and
function evaluations can be expensive.

far from x∗ their only value is ensuring decrease
near x∗ the methods will return αi ∼ 1.

Asymptotic convergence, ei = xi − x∗

∇f (xi) = ∇∇f (x∗)ei + O(||ei ||2)
∇∇f (xi) = ∇∇f (x∗) + O(||ei ||)

ei+1 = ei − (∇∇fi)−1 ∇fi = O(||ei ||2)

“squares the error” at every step (exactly eliminates the linear
error).
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Practicality

Direct (non-iterative, non-structured) solves are expensive!
∇∇f information is often expensive!
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Iterative methods

gradient descent:
1 Search direction: ri = −∇f (xi)
2 Search step: xi+1 = xi + αi ri
3 Pick alpha: (depends on what’s cheap)

1 linearized αi =
r t
i (∇∇f )ri

r t
i ri

2 1D minimization f (xi + αri) (danger: low quality)
3 zero-finding r t

i ∇f (xi + αri) = 0
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Iterative methods

conjugate gradient descent:
1 Search direction: di = −ri + βidi−1, with ri = −∇f (xi).
2 Pick βi without ∇∇f

1 βi =
(ri−ri−1)

t ri−1
(ri−ri−1)t ri

(Polak-Ribiere)
2 can also use βi =

r t
i ri

r t
i−1ri−1

(Fletcher-Reeves)

3 Search step: xi+1 = xi + αidi
1 linearized αi =

d t
i (∇∇f )di

r t
i di

2 1D minimization f (xi + αdi ) (danger: low quality)
3 zero-finding d t

i ∇f (xi + αdi ) = 0
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Don’t forget the truth about iterative methods

To get good convergence you must precondition!
B ∼ (∇∇f (x∗))−1

For B = PP t

1 Search direction: di = −ri + βidi−1, with ri = −P t∇f (xi).
2 Pick βi =

(ri−ri−1)t ri−1
(ri−ri−1)t ri

(Polak-Ribiere)
3 Search step: xi+1 = xi + αidi
4 zero-finding d t

i ∇f (xi + αdi) = 0
change of metric

1 Search direction: di = −ri + βidi−1, with ri = −∇f (xi).
2 Pick βi =

(ri−ri−1)tBri−1
(ri−ri−1)t ri

3 Search step: xi+1 = xi + αidi
4 zero-finding d t

i B∇f (xi + αdi) = 0
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What else?

Theorem (sub-optimality of CG)
(Assuming x0 = 0) at the end of step k, the solution xk is the
optimal linear combination of b, Ab, A2b, . . . Akb for minimizing

1
2x t Ax − btx .

In other words, CG learns about A from the outputs of b − Axi .
In principle

1 computer arithmetic errors ruin this nice property quickly
2 non-linearity ruins this property quickly
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Quasi-Newton

What if we learned (∇∇f (x∗))−1 from the data

∇f (xi) −∇f (xk−1) ∼ (∇∇f (x∗))(xi − xk−1)

over some fix-finite history.
Data: yi = ∇f (xi) −∇f (xk−1), si = xi − xk−1 with 1 ≤ i ≤ k
Problem: Find symmetric positive def Hk s.t.

Hk yi = si

Multiple solutions, but BFGS works best in most situations.
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BFGS update

Hk =

(

I − sk y t
k

y t
k sk

)

Hk−1

(

I − yk st
k

y t
k sk

)

+
sk st

k
y t

k sk

Lemma
The BFGS update minimizes minH ||H−1 − H−1

k−1||2F such that
Hyk = sk .

Forming Hk not necessary, e.g. Hk v can be recursively
computed.
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Quasi-Newton

Typically keep about 5 data points in the history.
initialize Set H0 = I, r0 = −∇f (x0), d0 = r0 goto 3

1 Compute rk = −∇f (xk ), yk = rk−1 − rk
2 Compute dk = Hk rk
3 Search step: xk+1 = xk + αk dk (line-search)

Can also precondition this, though in practice, it is less critical
than in CG or GD.
Armijo line searching has good theoretical properties. Typically
used.
Quasi-Newton ideas generalize to many situations (e.g.
fixed-point iterations)
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Summary
All multi-variate optimizations relate to posdef linear solves
Simple iterative methods require pre-conditioning to be
effective in high dimensions.
Line searching strategies are highly variable
Timing and storage of f ,∇f ,∇∇f are all critical in selecting
your method.
f ∇f concerns method

fast fast 2 quasi-N (zero-search)
fast fast 5 CG (zero-search)
fast slow 1,2,3 derivative-free methods
fast slow 2 quasi-N (min-search)
fast slow 3,4 CG (min-search)

fast/slow slow 2,4 quasi-N with Armijo
fast/slow slow 4,5 CG (linearized α)
1=time 2=space 3=accuracy
4=robust vs. nonlinearity 5=precondition

Don’t take this table too seriously. . .
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