Introduction to non-linear optimization

Ross A. Lippert

D. E. Shaw Research

March 2, 2007

R. A. Lippert Non-linear optimization

-20

Optimization problems

problem: Let
$$f : \mathbb{R}^n \to (-\infty, \infty]$$
,

find
$$\min_{x \in \mathbb{R}^n} \{f(x)\}$$

find x_* s.t. $f(x_*) = \min_{x \in \mathbb{R}^n} \{f(x)\}$

Quite general, but some cases, like *f* convex, are fairly solvable. **Today's problem:** How about $f : \mathbb{R}^n \to \mathbb{R}$, differentiable?

find
$$x_*$$
 s.t. $\nabla f(x_*) = 0$

We have a reasonable shot at this, especially if *f* is *twice differentiable*.

く 伺 と く ヨ と く ヨ と …

3

Two pillars of multi-variate optimization

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

-20

Quadratic optimization: $f(x) = \frac{1}{2}x^tAx - x^tb + c$.

- very common (actually universal)
- Taylor expansion $f(x + \Delta x) = f(x) + (\Delta x)^t \nabla f(x) + \frac{1}{2} (\Delta x)^t \nabla \nabla f(x) \Delta x + \cdots$ Finding $\nabla f(x) = 0$

$$\nabla f(x) = Ax - b = 0$$
$$x_* = A^{-1}b$$

Does this mean A has to be invertible? Is this all we need?

Max, min, saddle, or what?

Universality of linear algebra in optimization

$$f(x) = \frac{1}{2}x^tAx - x^tb + c$$

Linear solve: $x_* = A^{-1}b$. Even for non-linear problems: if optimal x_* near our x

$$f(x_{*}) \sim f(x) + (x_{*} - x)^{t} \nabla f(x) + \frac{1}{2} (x_{*} - x)^{t} \nabla \nabla f(x) (x_{*} - x) + \cdots$$

$$\Delta x = x_{*} - x \sim - (\nabla \nabla f(x))^{-1} \nabla f(x)$$

 $Optimization \leftrightarrow Linear \ solve$

・ 戸 ト ・ ヨ ト ・ ヨ ト

3

$$x = A^{-1}b$$

But really we just want to solve

$$Ax = b$$

No need to form A^{-1} if we can avoid it!

For a general A, there are three important special cases,

• diagonal:
$$A = \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix}$$
 thus $x_i = \frac{1}{a_i} b_i$

• orthogonal $A^t A = I$, thus $A^{-1} = A^t$ and $x = A^t b$

• triangular:
$$A = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, $x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j \right)$

伺 ト イヨ ト イヨト

3

A is symmetric positive definite. Cholesky factorization:

$$A=LL^t,$$

where *L* lower triangular. So $LL^t x = b$ by

$$Lz = b, \quad z_i = \frac{1}{L_{ii}} \left(b_i - \sum_{j < i} L_{ij} z_j \right)$$
$$L^t x = z, \quad x_i = \frac{1}{L_{ii}} \left(z_i - \sum_{j > i} L_{ij} x_j \right)$$

◆ロ ▶ ◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ■ ● ● ● ●

A is symmetric positive definite.

QR factorization:

$$A = QR$$
,

where *Q* is orthogonal and *R* is upper triangular. Then $x = R^{-1}Q^t b$ (second subproduct by back-substitution). Slightly more expensive than Cholesky Eigenvalue factorization:

$$A = QDQ^t,$$

where *Q* is orthogonal and *D* is diagonal. Then $x = QD^{-1}Q^{t}b$ (each subproduct is easy to form). **Much more expensive than QR** Direct methods can be very expensive.

< 同 > < 回 > < 回 > -

What's an iterative method?

Definition (Informal definition)

An *iterative method* is an algorithm \mathcal{A} which takes what you have, x_i , and gives you a new x_{i+1} which is *less bad* such that x_1, x_2, x_3, \ldots converges to some x_* with badness= 0.

A notion of badness could come from

- distance from x_i to our problem solution
- value of some objective function above its minimum

e.g. If *x* is supposed to satisfy Ax = b, we could take ||b - Ax|| to be the measure of badness.

How expensive is one $x_i \rightarrow x_{i+1}$ step? How guickly does the badness decrease per step? A thousand and one years of experience yields two cases • $B_i \propto \rho^i$ for some $\rho \in (0, 1)$ (linear) 2 $B_i \propto \rho^{(\alpha^i)}$ for $\rho \in (0, 1), \alpha > 1$ (superlinear) 07 0.8 0.6 magnitude enitud 0.5 0.6 0.4 0.4 02 0.2 01 10 Can you tell the difference?

Convergence

When evaluating an iterative method against manufacturer's claims, be sure to do semilog plots.

・ロット (雪) (日) (日) 日

For spd systems, sometimes cheaper to directly optimize $f(x) = \frac{1}{2}x^tAx - x^tb$. gradient descent:

- Search direction: $r_i = -\nabla f = b Ax_i$
- Search step: $x_{i+1} = x_i + \alpha_i r_i$
- Pick alpha: $\alpha_i = \frac{r_i^t r_i}{r_i^t A r_i}$ minimizes $f(x + \alpha r_i)$

$$f(x_i + \alpha r_i) = \frac{1}{2} x_i^t A x_i - x_i^t b + \frac{1}{2} \alpha^2 r_i^t A r_i + \alpha r_i^t (A x_i - b)$$

= $\frac{1}{2} x_i^t A x_i - x_i^t b + \frac{1}{2} \alpha^2 r_i^t A r_i - \alpha r_i^t r_i$

◆□▶ ◆□▶ ◆回▶ ◆回▶ ◆□ ◆ ④◆

Iterative methods

Optimize
$$f(x) = \frac{1}{2}x^tAx - x^tb$$
.
conjugate gradient descent:

Search direction: $d_i = r_i + \beta_i d_{i-1}$, with $r_i = b - Ax_i$.

2 Pick
$$\beta_i = -\frac{d_{i-1}^t A r_i}{d_{i-1}^t A d_{i-1}}$$
, ensures $d_{i-1}^t A d_i = 0$.

Search step:
$$x_{i+1} = x_i + \alpha_i d_i$$

• Pick
$$\alpha_i = \frac{d_i^t r_i}{d_i^t A d_i}$$
: minimizes $f(x_i + \alpha d_i)$

$$f(x_i + \alpha d_i) = \frac{1}{2} x_i^t A x_i - x_i^t b + \frac{1}{2} \alpha^2 d_i^t A d_i - \alpha d_i^t r_i$$

(also means that $r_{i+1}^t d_i = 0$) Avoid extra A-multiply: using $Ad_{i-1} \propto r_{i-1} - r_i$ $\beta_i = -\frac{(r_{i-1}-r_i)^t r_i}{(r_{i-1}-r_i)^t d_{i-1}} = -\frac{(r_{i-1}-r_i)^t r_i}{r_{i-1}^t d_{i-1}} = \frac{(r_i-r_{i-1})^t r_i}{r_{i-1}^t r_{i-1}}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

conjugate gradient descent:

$$r_i = b - Ax_i$$

- Search direction: $d_i = r_i + \beta_i d_{i-1}$ (β s.t. $d_i A d_{i-1} = 0$)
- Search step: $x_{i+1} = x_i + \alpha_i d_i$ (α minimizes).

Cute result

Theorem (sub-optimality of CG)

(Assuming $x_0 = 0$) at the end of step k, the solution x_k is the optimal linear combination of b, Ab, A^2b , ..., A^kb for minimizing

$$\frac{1}{2}x^tAx - b^tx.$$

(computer arithmetic errors make this less than perfect) Very little extra effort. Much better convergence.

・ 伺 ト ・ ヨ ト ・ ヨ ト

Slow convergence: Conditioning

The eccentricity of the quadratic is a big factor in convergence

< 🗇 > <

문어 문

.⊒ . ► . .

$$\kappa = \frac{\max \text{ eig}(A)}{\min \text{ eig}(A)}$$

For gradient descent,

$$|r_i|| \sim \left|\frac{\kappa-1}{\kappa+1}\right|^i$$

For CG,

$$||r_i|| \sim \left|\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right|^i$$

useless CG fact: in exact arithmetic $r_i = 0$ when i > n (A is $n \times n$).

◆ロ ▶ ◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ■ ● ● ● ●

The truth about descent methods

Very slow unless κ can be controlled. How do we control κ ?

$$Ax = b \rightarrow (PAP^t)y = Pb, \quad x = P^ty$$

where *P* is a *pre-conditioner* you pick. How to make $\kappa(PAP^t)$ small?

- perfect answer, $P = L^{-1}$ where $L^t L = A$ (Cholesky factorization).
- imperfect answer, $P \sim L^{-1}$

Variations on the theme of *incomplete factorization*:

•
$$P^{-1} = D^{\frac{1}{2}}$$
 where $D = \text{diag}(a_{11}, ..., a_{nn})$

- more generally, incomplete Cholesky decomposition
- some easy nearby solution or simple approximate A (requiring domain knowledge)

One idea for a preconditioner is by a *block diagonal* matrix

$$P^{-1} = \begin{pmatrix} L_{11} & 0 & 0 \\ 0 & L_{22} & 0 \\ 0 & 0 & L_{33} \end{pmatrix}$$

where $L_{ii}^t L_{ii} = A_{ii}$ a diagonal block of *A*. In what sense does good clustering give good preconditioners?

End of solvers: there are a few other iterative solvers out there I haven't discussed. They are not generally good.

1D optimization presents some important insights.

 $\min_{s \in \mathbb{R}} f(s)$, *f* continuous.

A derivative-free option:

A bracket is (a, b, c) s.t. a < b < c and f(a) > f(b) < f(c) then f(x) has a local min for a < x < b

Golden search based on picking a < b' < b < c and either (a < b' < b) or (b' < b < c) is a new bracket... continue Linearly convergent, $e_i \propto G^i$, golden ratio *G*.

1D optimization

Fundamentally limited accuracy of the argmin:

Derivative-based methods: f'(s) = 0 (accurate argmin)

- bracketed: (*a*, *b*) s.t. *f*'(*a*), *f*'(*b*) opposite sign
 - bisection (linearly convergent)
 - 2 modified regula falsi & Brent's method (superlinear)
- unbracketed:
 - secant method (superlinear)
 - Newton's method (superlinear; requires another derivative)

Unless f'' is very easy, bracketed methods are best.

What can happen when far from the optimum?

- $-\nabla f(x)$ always points in a direction of decrease
- $\nabla \nabla f(x)$ may not be positive definite

Actually for *convex* problems $\nabla \nabla f$ is always positive semi-definite and for strictly convex it is positive definite. What do we want?

- eventually find a convex neighborhood of x_{*} (be robust against mistakes)
- apply a quadratic approximation (do linear solve)

Fact: \forall non-linear optimization algorithms, $\exists f$ which fools it.

・ロン・(部)・・ヨン・ヨン 三連

(Actually Newton's method finding *x* s.t. $\nabla f(x) = 0$)

$$\Delta x_i = -(\nabla \nabla f(x_i))^{-1} \nabla f(x_i)$$

$$x_{i+1} = x_i + \Delta x_i$$

- if $\nabla \nabla f(x_i)$ posdef, $(\nabla f(x_i))^t (x_{i+1} x_i) < 0$ so Δx_i is a direction of decrease (could overshoot)
- (2) if $\nabla \nabla f(x_i)$ not posdef, Δx_i might be in an *increasing direction*.
- **③** if *f* is convex, $f(x_{i+1}) ≤ f(x_i)$, so problems go away.

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▼ の Q @

1D example of trouble

- Has one local minimum
- Is not convex (note the concavity near x=0)

3

1D example of trouble

Non-linear Newton

Try to enforce $f(x_{i+1}) \leq f(x_i)$

$$\Delta x_i = -(\nabla \nabla f(x_i))^{-1} \nabla f(x_i)$$

$$x_{i+1} = x_i + \alpha_i \Delta x_i$$

pick $\alpha_i > 0$ such that $f(x_i + \alpha_i \Delta x_i) \le f(x_i)$. If Δx_i is a direction of decrease, some α_i exists.

• 1D-minimization do 1D optimization problem,

$$\min_{\alpha_i\in(0,\beta]}f(x_i+\alpha_i\Delta x_i)$$

• Armijo-search use this rule: $\alpha_i = \rho \mu^n$ some *n*

$$f(x_i + s\Delta x_i) - f(x_i) \le
u s (\Delta x_i)^t \nabla f(x_i)$$

with ρ, μ, ν fixed (e.g. $\rho = 2, \mu = \nu = \frac{1}{2}$).

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

1D optimization: Let $f : \mathbb{R} \to \mathbb{R}$, continuous.

$$\begin{array}{ll} \text{find} & x_* \text{ s.t. } f(x_* - \epsilon) \geq f(x_*) \leq f(x_* + \epsilon) \\ \text{or} \\ \text{find} & x_* \text{ s.t. } f'(x_* - \epsilon) = 0 \quad (\text{requires differentiability}) \end{array}$$

We can do this without differentiability — important case exposes many issues.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1D-minimization looks like less of a hack than Armijo. For Newton, asymptotic convergence is not strongly affected, and function evaluations can be expensive.

- far from *x*_{*} their only value is ensuring decrease
- near x_* the methods will return $\alpha_i \sim 1$.

Asymptotic convergence, $e_i = x_i - x_*$

$$\begin{aligned} \nabla f(x_i) &= \nabla \nabla f(x_*) \boldsymbol{e}_i + O(||\boldsymbol{e}_i||^2) \\ \nabla \nabla f(x_i) &= \nabla \nabla f(x_*) + O(||\boldsymbol{e}_i||) \\ \boldsymbol{e}_{i+1} &= \boldsymbol{e}_i - (\nabla \nabla f_i)^{-1} \nabla f_i = O(||\boldsymbol{e}_i||^2) \end{aligned}$$

"squares the error" at every step (exactly eliminates the linear error).

- 人間 ト イヨ ト - (目)

Direct (non-iterative, non-structured) solves are expensive! $\nabla \nabla f$ information is often expensive!

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

-20

gradient descent:

- Search direction: $r_i = -\nabla f(x_i)$
- Search step: $x_{i+1} = x_i + \alpha_i r_i$
- Pick alpha: (depends on what's cheap)
 - 1 linearized $\alpha_i = \frac{r_i^t (\nabla \nabla f) r_i}{r_i^t r_i}$
 - 2 1D minimization $f(x_i + \alpha r_i)$ (danger: low quality)
 - **3** zero-finding $r_i^t \nabla f(x_i + \alpha r_i) = 0$

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

conjugate gradient descent:

Search direction: d_i = -r_i + β_id_{i-1}, with r_i = -∇f(x_i).
Pick β_i without ∇∇f
β_i = (r_i-r_{i-1})^tr_{i-1}/r_i (Polak-Ribiere)
can also use β_i = r^t_ir_i/r^t_{i-1}r_{i-1} (Fletcher-Reeves)
Search step: x_{i+1} = x_i + α_id_i
linearized α_i = d^t(∇∇f)d_i/r^t_id_i
1D minimization f(x_i + αd_i) (danger: low quality)
zero-finding d^t_i∇f(x_i + αd_i) = 0

Don't forget the truth about iterative methods

To get good convergence you must precondition! $B \sim (\nabla \nabla f(x_*))^{-1}$

For $B = PP^t$

Search direction: $d_i = -r_i + \beta_i d_{i-1}$, with $r_i = -P^t \nabla f(x_i)$.

2 Pick
$$\beta_i = \frac{(r_i - r_{i-1})^t r_{i-1}}{(r_i - r_{i-1})^t r_i}$$
 (Polak-Ribiere)

3 Search step:
$$x_{i+1} = x_i + \alpha_i d_i$$

3 zero-finding
$$d_i^t \nabla f(x_i + \alpha d_i) = 0$$

change of metric

Search direction: $d_i = -r_i + \beta_i d_{i-1}$, with $r_i = -\nabla f(x_i)$.

2 Pick
$$\beta_i = \frac{(r_i - r_{i-1})^t B r_{i-1}}{(r_i - r_{i-1})^t r_i}$$

Search step:
$$x_{i+1} = x_i + \alpha_i d_i$$

• zero-finding $d_i^t B \nabla f(x_i + \alpha d_i) = 0$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Theorem (sub-optimality of CG)

(Assuming $x_0 = 0$) at the end of step k, the solution x_k is the optimal linear combination of b, Ab, A^2b , ... A^kb for minimizing

$$\frac{1}{2}x^tAx - b^tx.$$

In other words, CG *learns* about A from the outputs of $b - Ax_i$. In principle

- computer arithmetic errors ruin this nice property quickly
- Inon-linearity ruins this property quickly

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

What if we learned $(\nabla \nabla f(x_*))^{-1}$ from the data

$$\nabla f(x_i) - \nabla f(x_{k-1}) \sim (\nabla \nabla f(x_*))(x_i - x_{k-1})$$

over some fix-finite history. **Data:** $y_i = \nabla f(x_i) - \nabla f(x_{k-1})$, $s_i = x_i - x_{k-1}$ with $1 \le i \le k$ **Problem:** Find symmetric positive def H_k s.t.

$$H_k y_i = s_i$$

Multiple solutions, but BFGS works best in most situations.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

BFGS update

$$H_{k} = \left(I - \frac{s_{k}y_{k}^{t}}{y_{k}^{t}s_{k}}\right)H_{k-1}\left(I - \frac{y_{k}s_{k}^{t}}{y_{k}^{t}s_{k}}\right) + \frac{s_{k}s_{k}^{t}}{y_{k}^{t}s_{k}}$$

Lemma

The BFGS update minimizes $\min_{H} ||H^{-1} - H_{k-1}^{-1}||_{F}^{2}$ such that $Hy_{k} = s_{k}$.

Forming H_k not necessary, e.g. $H_k v$ can be recursively computed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Typically keep about 5 data points in the history.

initialize Set $H_0 = I$, $r_0 = -\nabla f(x_0)$, $d_0 = r_0$ goto 3

- **O** Compute $r_k = -\nabla f(x_k), y_k = r_{k-1} r_k$
- 2 Compute $d_k = H_k r_k$
- Search step: $x_{k+1} = x_k + \alpha_k d_k$ (line-search)

Can also precondition this, though in practice, it is less critical than in CG or GD.

Armijo line searching has good theoretical properties. Typically used.

Quasi-Newton ideas generalize to many situations (e.g. fixed-point iterations)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ◇ ◇ ◇

Summary

- All multi-variate optimizations relate to posdef linear solves
- Simple iterative methods **require** pre-conditioning to be effective in high dimensions.
- Line searching strategies are highly variable
- Timing and storage of *f*, ∇*f*, ∇∇*f* are all critical in selecting your method.

f	∇f	concerns	method
fast	fast	2	quasi-N (zero-search)
fast	fast	5	CG (zero-search)
fast	slow	1,2,3	derivative-free methods
fast	slow	2	quasi-N (min-search)
fast	slow	3,4	CG (min-search)
fast/slow	slow	2,4	quasi-N with Armijo
fast/slow	slow	4,5	CG (linearized α)
1=time		, ,	2=space 3=accuracy
4=robust vs. nonlinearity 5=precondition			
Don't take this table too seriously.			
R. A. Lippert Non-linear optimization			