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Not a Bayesian
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What makes someone Bayesian

Is it Bayes rule ?

Prob(parameters|data) =
Lik(data|paramaters) · π(parameters)

Prob(data)
.
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What makes someone Bayesian

Is it Bayes rule ?

Prob(parameters|data) =
Lik(data|paramaters) · π(parameters)

Prob(data)
.

NO!!!!!!!!!!!!!!!!!!!!!! Necessary but no where near sufficient.
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Why I am a Bayesian

Bayesian statistics is about embracing and formally modelling
uncertainty.
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A simple example

I draw points x1, ..., xn from iid from a normal distribution and I
want to know the mean and I know σ = 1.
My likelihood and prior are

Lik(x1, ..., xn|µ) =
n
∏

i=1

1√
2π

exp(−|xi − µ|2/2)

π(µ) =
1√
2π

exp(−|µ − 5|2/2).

The posterior can be computed closed form and it is a product of
normals

p(µ|x1, ..., xn) =
Lik(x1, ..., xn|µ)π(µ)

∫∞
−∞ Lik(x1, ..., xn|µ)π(µ)dµ

.
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Regression

data = {Li = (xi , yi )}n
i=1 with Li

iid∼ ρ(X ,Y ).

X ∈ X ⊂ IR
p and Y ⊂ IR and p � n.

A natural idea
f (x) = EY [Y |x ].
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An excellent estimator

f̂ (x) = arg min
f∈bs

[error on data + smoothness of function]
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An excellent estimator

f̂ (x) = arg min
f∈bs

[error on data + smoothness of function]

error on data = L(f , data) = (f (x) − y)2

smoothness of function = ‖f ‖2
K =

∫

|f ′(x)|2dx

big function space = reproducing kernel Hilbert space = HK

Rev. Dr. Sayan Mukherjee Finding religion: kernels and the Bayesian persuasion



Kernel models and penalized loss
Bayesian kernel model

Priors on measures
Estimation and inference

Results on data
Open problems

An excellent estimator

f̂ (x) = arg min
f∈HK

[

L(f , data) + λ‖f ‖2
K

]

The kernel: K : X × X → IR e.g. K (u, v) = e (−‖u−v‖2).

The RKHS

HK =

{

f

∣

∣

∣
f (x) =

∑̀

i=1

αiK (x , xi ), xi ∈ X , αi ∈ R, ` ∈ N

}

.
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Representer theorem

f̂ (x) = arg min
f∈HK

[

L(f , data) + λ‖f ‖2
K

]

f̂ (x) =
n
∑

i=1

aiK (x , xi ).

Great when p � n.
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Very popular and useful

1 Support vector machines

f̂ (x) = arg min
f ∈HK

[

n
∑

i=1

|1 − yi · f (xi)|+ + λ‖f ‖2
K

]

,

2 Regularized Kernel regression

f̂ (x) = arg min
f∈HK

[

n
∑

i=1

|yi − f (xi )|2 + λ‖f ‖2
K

]

,

3 Regularized logistic regression

f̂ (x) = arg min
f∈HK

[

n
∑

i=1

ln
(

1 + e−yi ·f (xi )
)

+ λ‖f ‖2
K

]

.
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Bayesian interpretation of RBF

yi = f (xi) + ε, ε
iid∼ No(0, σ2).

Lik(data|f ) ∝
n
∏

i=1

exp(−(yi − f (xi ))
2/2σ2) π(f ) ∝ exp(−‖f ‖2

K ).

Prob(f |data) ∝ Lik(data|f ) · π(f ).
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Bayesian interpretation of RBF

yi = f (xi) + ε, ε
iid∼ No(0, σ2).

Lik(data|f ) ∝
n
∏

i=1

exp(−(yi − f (xi ))
2/2σ2) π(f ) ∝ exp(−‖f ‖2

K ).

Prob(f |data) ∝ Lik(data|f ) · π(f ).

Maximum a posteriori (MAP) estimator

f̂ = arg max
f∈HK

Prob(f |data).

I want the full posterior.
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Priors via spectral expansion

HK =

{

f

∣

∣

∣
f (x) =

∞
∑

i=1

aiφi(x) with

∞
∑

i=1

a2
i /λi < ∞

}

,

φi (x) and λi ≥ 0 are eigenfunctions and eigenvalues of K :

λiφi (x) =

∫

X
K (x , u)φi (u)dγ(u).
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Priors via spectral expansion

HK =

{

f

∣

∣

∣
f (x) =

∞
∑

i=1

aiφi(x) with

∞
∑

i=1

a2
i /λi < ∞

}

,

φi (x) and λi ≥ 0 are eigenfunctions and eigenvalues of K :

λiφi (x) =

∫

X
K (x , u)φi (u)dγ(u).

Specify a prior on HK via a prior on A

A =
{

(

ak

)∞

k=1

∣

∣

∣

∑

k

a2
k/λk < ∞

}

.
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Priors via spectral expansion

HK =

{

f

∣

∣

∣
f (x) =

∞
∑

i=1

aiφi(x) with

∞
∑

i=1

a2
i /λi < ∞

}

,

φi (x) and λi ≥ 0 are eigenfunctions and eigenvalues of K :

λiφi (x) =

∫

X
K (x , u)φi (u)dγ(u).

Specify a prior on HK via a prior on A

A =
{

(

ak

)∞

k=1

∣

∣

∣

∑

k

a2
k/λk < ∞

}

.

Hard to sample and relies on computation of eigenvalues and
eigenvectors.
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Priors via duality

The duality between Gaussian processes and RKHS implies the
following construction

f (·) ∼ GP(µf ,K ),

where K is given by the kernel.
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Priors via duality

The duality between Gaussian processes and RKHS implies the
following construction

f (·) ∼ GP(µf ,K ),

where K is given by the kernel.

f (·) /∈ HK almost surely.
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Integral operators

Integral operator L
K

: Γ → G

G =

{

f

∣

∣

∣
f (x) := L

K
[γ](x) =

∫

X
K (x , u) dγ(u), γ ∈ Γ

}

,

with Γ ⊆ B(X ).
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Integral operators

Integral operator L
K

: Γ → G

G =

{

f

∣

∣

∣
f (x) := L

K
[γ](x) =

∫

X
K (x , u) dγ(u), γ ∈ Γ

}

,

with Γ ⊆ B(X ).

A prior on Γ implies a prior on G.
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Equivalence with RKHS

For what Γ is HK = span(G) ?

What is L−1
K

(HK ) =??. This is hard to characterize.
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Equivalence with RKHS

For what Γ is HK = span(G) ?

What is L−1
K

(HK ) =??. This is hard to characterize.

The candidates for Γ will be

1 square integrable functions

2 integrable functions

3 discrete measures

4 the union or integrable functions and discrete measures.
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Square integrable functions are too small

Proposition

For every γ ∈ L2(X ), LK [γ] ∈ HK . Consequently,

L2(X ) ⊂ L−1
K (HK ).
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Square integrable functions are too small

Proposition

For every γ ∈ L2(X ), LK [γ] ∈ HK . Consequently,

L2(X ) ⊂ L−1
K (HK ).

Corollary

If Λ = {k : λk > 0} is a finite set, then LK (L2(X )) = HK

otherwise LK (L2(X )) $ HK . The latter occurs when the kernel K

is strictly positive definite, the RKHS is infinite-dimensional.
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Signed measures are (almost) just right

Measures: The class of functions L1(X ) are signed measures.

Proposition

For every γ ∈ L1(X ), LK [γ] ∈ HK . Consequently,

L1(X ) ⊂ L−1
K (HK ).
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Signed measures are (almost) just right

Measures: The class of functions L1(X ) are signed measures.

Proposition

For every γ ∈ L1(X ), LK [γ] ∈ HK . Consequently,

L1(X ) ⊂ L−1
K (HK ).

Discrete measures:

MD =

{

µ =

n
∑

i=1

ciδxi
:

n
∑

i=1

|ci | < ∞, xi ∈ X , n ∈ N

}

.

Proposition

Given the set of finite discrete measures, MD ⊂ L−1
K (HK ).
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Signed measures are (almost) just right

Nonsingular measures: M = L1(X ) ∪MD

Proposition

LK (M) is dense in HK with respect to the RKHS norm.
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Signed measures are (almost) just right

Nonsingular measures: M = L1(X ) ∪MD

Proposition

LK (M) is dense in HK with respect to the RKHS norm.

Proposition

B(X ) $ L−1
K (HK (X )).
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The implication

Take home message – need priors on signed measures.

A function theoretic foundation for random signed measures such
as Gaussian, Dirichlet and Lévy process priors.
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Bayesian kernel model

yi = f (xi) + ε, ε
iid∼ No(0, σ2).

f (x) =

∫

X
K (x , u)Z (du)

where Z (du) ∈ M(X ) is a signed measure on X .
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Bayesian kernel model

yi = f (xi) + ε, ε
iid∼ No(0, σ2).

f (x) =

∫

X
K (x , u)Z (du)

where Z (du) ∈ M(X ) is a signed measure on X .

π(Z |data) ∝ L(data|Z ) π(Z ),

this implies a posterior on f .
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Lévy processes
Gaussian processes
Bayesian representer theorem

Lévy processes

A stochastic process Z := {Zu ∈ R : u ∈ X} is called a Lévy
process if it satisfies the following conditions:

1 Z0 = 0 almost surely.

2 For any choice of m ≥ 1 and 0 ≤ u0 < u1 < ... < um, the
random variables Zu0 ,Zu1 − Zu0 , ...,Zum − Zum−1 are
independent. (Independent increments property)

3 The distribution of Zs+u − Zs is independent of Zs (Temporal
homogeneity or stationary increments property).

4 Z has càdlàg paths almost surely.
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Lévy processes

Theorem (Lévy-Khintchine)

If Z is a Lévy process, then the characteristic function of Zu : u ≥ 0 has the following form:

E[e
iλZu ] = exp

(

u

"

iλa −
1

2
σ

2
λ

2
+

Z

R\{0}
[e

iλw
− 1 − iλw1{w :|w|<1}(w)]ν(dw)

#)

,

where a ∈ IR, σ2 ≥ 0 and ν is a nonnegative measure on IR with
R

R
(1 ∧ |w|2)ν(dw) < ∞.
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Lévy processes
Gaussian processes
Bayesian representer theorem

Lévy processes

drift term a

variance of Brownian motion σ2

ν(dw) the jump process or Lévy measure.

exp
{

u
[

iλa − 1
2σ2λ2

]}

exp
{

u
∫

R\{0}

[

e iλw − 1 − iλw1{w :|w |<1}(w)
]

ν(dw)
}
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Two approaches to Gaussian processes

Two modelling approaches

1 prior directly on the space of functions by sampling from
paths of the Gaussian process defined by K ;

2 Gaussian process prior on Z (du) implies on prior on function
space via integral operator.
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Prior on random measure

A Gaussian process prior on Z (du) is a signed measure so
span(G) ⊂ HK.
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Direct prior elicitation

Theorem (Kallianpur)

If {Zu, u ∈ X} is a Gaussian process with covariance K and mean

m ∈ HK and HK is infinite dimensional, then

P(Z• ∈ HK ) = 0.

The sample paths are almost surely outside HK .
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A bigger RKHS

Theorem (Lukíc and Beder)

Given two kernel functions R and K, R dominates K (R � K) if HK ⊆ HR . Let R � K. Then

‖g‖R ≤ ‖g‖K , ∀g ∈ HK .

There exists a unique linear operator L : HR → HR whose range is contained in HK such that

〈f , g〉R = 〈Lf , g〉K , ∀f ∈ HR , ∀g ∈ HK .

In particular
LRu = Ku , ∀u ∈ X .

As an operator into HR , L is bounded, symmetric, and positive.
Conversely, let L : HR → HR be a positive, continuous, self-adjoint operator then

K(s, t) = 〈LRs , Rt〉R , s, t ∈ X

defines a reproducing kernel on X such that K ≤ R.
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A bigger RKHS

If L is nucular (an operator that is compact with finite trace
independent of basis choice) then we have nucular dominance
R��K .
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A bigger RKHS

If L is nucular (an operator that is compact with finite trace
independent of basis choice) then we have nucular dominance
R��K .

Theorem (Lukić and Beder)

Let K and R be two reproducing kernels. Assume that the RKHS

HR is separable.

A necessary and sufficient condition for the existence of a Gaussian

process with covariance K and mean m ∈ HR and with trajectories

in HR with probability 1 is that R��K.
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A bigger RKHS

If L is nucular (an operator that is compact with finite trace
independent of basis choice) then we have nucular dominance
R��K .

Theorem (Lukić and Beder)

Let K and R be two reproducing kernels. Assume that the RKHS

HR is separable.

A necessary and sufficient condition for the existence of a Gaussian

process with covariance K and mean m ∈ HR and with trajectories

in HR with probability 1 is that R��K.

Characterize HR by L−1
K (HK ).
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Dirichlet distribution

Multinomial distribution

g(x1, ..., xk |n, p1, ..., pk ) =
n!

x1! · · · xn!
p

x1
1 · · · pxk

k ,

k
∑

i=1

xi = n, xi ≥ 0.
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Dirichlet distribution

Multinomial distribution

g(x1, ..., xk |n, p1, ..., pk ) =
n!

x1! · · · xn!
p

x1
1 · · · pxk

k ,

k
∑

i=1

xi = n, xi ≥ 0.

Dirichlet distribution

f (p1, . . . , pk |α1, . . . , αk ) =
1

B(α)

k
∏

i=1

x
αi−1
i ,

k
∑

i=1

pi = 1, pi ≥ 0,

B(α) =

∏k
i=1 Γ(αi )

Γ(
∑k

i=1 αi)
.
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Conjugacy

If Prob(θ|data) and π(θ) belong to the same family they are
conjugate.
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Conjugacy

If Prob(θ|data) and π(θ) belong to the same family they are
conjugate.

Let x = {x1, ..., xk} and p = {p1, ..., pk}

p ∼ Dir(α)

x |p ∼ Mult(p)

p|x ∼ Dir(p + α).
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Dirichlet process prior

Given distribution function F and a specified distribution F0 with
the same support on a space X .
Dirichlet process DP(α,F0) implies that for any partition of the
space B1, ...,BK

F (B1), ...,F (Bk ) ∼ Dir(α(F0(B1)), ..., α(F0(Bk))).
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Dirichlet process prior

f (x) =

∫

X
K (x , u)Z (du) =

∫

X
K (x , u)w(u)F (du)

F (du) is a distribution and w(u) a coefficient function.
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Lévy processes
Gaussian processes
Bayesian representer theorem

Dirichlet process prior

f (x) =

∫

X
K (x , u)Z (du) =

∫

X
K (x , u)w(u)F (du)

F (du) is a distribution and w(u) a coefficient function.

Model F using a Dirichlet process prior: DP(α,F0)
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Bayesian representer theorem

Given Xn = (x1, ..., xn)
iid∼ F

F | Xn ∼ DP(α + n,Fn), Fn = (αF0 +

n
∑

i=1

δxi
)/(α + n).

E[f | Xn] = an

∫

K (x , u)w(u) dF0(u)+n−1(1−an)

n
∑

i=1

w(xi )K (x , xi ),

an = α/(α + n).
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Bayesian representer theorem

Taking limα → 0 to represent a non-informative prior:

Theorem (Bayesian representor theorem)

f̂n(x) =

n
∑

i=1

wi K (x , xi ),

wi = w(xi )/n.
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Likelihood

yi = f (xi ) + εi = w0 +

n
∑

j=1

wjK (xi , xj) + εi , i = 1, ..., n

where εi∼No(0, σ2).

Y ∼ No(w0ι + Kw , σ2I ).

where ι = (1, ..., 1)′.
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Prior specification

Factor: K = F∆F ′ with ∆ := diag(λ2
1, ..., λ

2
n) and w = F∆−1β.
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Prior specification

Factor: K = F∆F ′ with ∆ := diag(λ2
1, ..., λ

2
n) and w = F∆−1β.

π(w0, σ
2) ∝ 1/σ2

τ−1
i ∼ Ga(aτ/2, bτ/2)

T := diag(τ1, ..., τn)

β ∼ No(0,T )

w |K ,T ∼ No(0,F∆−1T∆−1F ′).
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Prior specification

Factor: K = F∆F ′ with ∆ := diag(λ2
1, ..., λ

2
n) and w = F∆−1β.

π(w0, σ
2) ∝ 1/σ2

τ−1
i ∼ Ga(aτ/2, bτ/2)

T := diag(τ1, ..., τn)

β ∼ No(0,T )

w |K ,T ∼ No(0,F∆−1T∆−1F ′).

Standard Gibbs sampler simulates p(w ,w0, σ
2|data).
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Sampling from posterior

Objective: sample from p(w ,w0, σ
2|data).
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Sampling from posterior

Objective: sample from p(w ,w0, σ
2|data).

Given for {w (i),w
(i)
0 , pi (w ,w0)}T

i=1 we have T functions can
compute Bayes average and variance pointwise

f̄ (x) =

T
∑

i=1

pi(w ,w0)



w
(j)
0 +

n
∑

j=1

K (x , xj )w
(i)
j





var[f (x)] =

T
∑

i=1

pi(w ,w0)
[

f̄ (x) − fi (x)
]2

.
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Markov chain Monte Carlo

It may be difficult to sample from p(w ,w0, σ
2|data), for example

high dimensions. Also the normalizing constant Z is unavailable

p(w ,w0, σ
2|data) =

Lik(data|w ,w0, σ
2) · π(w ,w0, σ

2)

Z

Z =

∫

Lik(data|w ,w0, σ
2) · π(w ,w0, σ

2)dw0 dw dσ.
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Markov chain Monte Carlo

Say we want to sample p(θ|data) but its hard.
Say we have a Markov chain (aperiodic, irreducible, detailed
balance)

q(θ∗|θ) = Prob(θ∗|θ)

Prob(θ)q(θ∗|θ) = Prob(θ∗)q(θ|θ∗).
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Markov chain Monte Carlo

Metropolis-Hastings

1 Given θ(t) sample θ∗ from q(θ∗|θ(t))

2 Accept, θ(t+1) = θ∗ with probability

A = min

[

1,
p(θ∗)q(θ(t)|θ∗)
p(θ(t))q(θ∗|θ(t))

]

otherwise θ(t+1) = θ(t).
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Gibbs sampling

Given d -dimensional θ with known conditional

p(θj |θ−j) = p(θj |θ1, ...θj−1, θj+1, ..., θd ).
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Gibbs sampling

Given d -dimensional θ with known conditional

p(θj |θ−j) = p(θj |θ1, ...θj−1, θj+1, ..., θd ).

Proposal distribution

q(θ∗|θ(t)) = p(θ∗j |θ
(t)
−j ).
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Gibbs sampling

Acceptance probability

A = min

[

1,
p(θ∗)q(θ(t)|θ∗)
p(θ(t))q(θ∗|θ(t))

]

= min



1,
p(θ∗)p(θ

(t)
j |θ(t)

−j )

p(θ(t))q(θ∗j |θ∗−j)





= min



1,
p(θ∗−j)

p(θ
(t)
−j )



 .
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Gibbs sampling example

We want to sample from x = 1, 2, 3, ...., n and y ∈ [0, 1]

p(x , y |n, α, β) =
n!

(n − x)!x!
y x+α−1 (1 − y)n−x+β−1.
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Gibbs sampling example

We want to sample from x = 1, 2, 3, ...., n and y ∈ [0, 1]

p(x , y |n, α, β) =
n!

(n − x)!x!
y x+α−1 (1 − y)n−x+β−1.

Conditionals

x |y ∼ Bin(n, y) =
n!

(n − x)!
y x (1 − y)(n−x)

y |x ∼ Be(x + α, n − x + β) ∝ y x+α (1 − y)n−x+β
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Gibbs sampling example

1 given yt
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Gibbs sampling example

1 given yt

2 draw xt+1 ∼ Bin(n, yt)
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Gibbs sampling example

1 given yt

2 draw xt+1 ∼ Bin(n, yt)

3 draw yt+1 ∼ Be(xt+1 + α, n − xt+1 + β)
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Gibbs sampling example

1 given yt

2 draw xt+1 ∼ Bin(n, yt)

3 draw yt+1 ∼ Be(xt+1 + α, n − xt+1 + β)

4 return to (2).

Rev. Dr. Sayan Mukherjee Finding religion: kernels and the Bayesian persuasion



Kernel models and penalized loss
Bayesian kernel model

Priors on measures
Estimation and inference

Results on data
Open problems

Likelihood and prior specification
Variable selection
Semi-supervised learning

Kernel model extension

Kν(x , u) = K (
√

ν ⊗ x ,
√

ν ⊗ u)

with ν = {ν1, ..., νp} with νk ∈ [0,∞) as a scale parameter.

kν(x , u) =

p
∑

k=1

νk xk uk ,

kν(x , u) =

(

1 +

p
∑

k=1

νk xk uk

)d

,

kν(x , u) = exp

(

−
p
∑

k=1

νk(xk − uk)2

)

.
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Prior specification

νk ∼ (1 − γ)δ0 + γ Ga(aν , aνs), (k = 1, . . . , p),

s ∼ Exp(as), γ ∼ Be(aγ , bγ)
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Prior specification

νk ∼ (1 − γ)δ0 + γ Ga(aν , aνs), (k = 1, . . . , p),

s ∼ Exp(as), γ ∼ Be(aγ , bγ)

Standard Gibbs sampler does not work: Metropolis-Hastings.
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Problem setup

Labelled data : (Y p,X p) = {(yp
i , xp

i ); i = 1 : np} iid∼ ρ(Y ,X |φ, θ).

Unlabelled data: X m = {xm
i , i = (1) : (nm)} iid∼ ρ(X |θ).
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Problem setup

Labelled data : (Y p,X p) = {(yp
i , xp

i ); i = 1 : np} iid∼ ρ(Y ,X |φ, θ).

Unlabelled data: X m = {xm
i , i = (1) : (nm)} iid∼ ρ(X |θ).

How can the unlabelled data help our a predictive model ?

data = {Y ,X ,Xm}

p(φ, θ|data) ∝ π(φ, θ)p(Y |X , φ)p(X |θ)p(X m|θ).

Need very strong dependence between θ and φ.
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Bayesian kernel model

Result of DP prior

f̂n(x) =

np+nm
∑

i=1

wi K (x , xi ).
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Bayesian kernel model

Result of DP prior

f̂n(x) =

np+nm
∑

i=1

wi K (x , xi ).

Same as in Belkin and Niyogi but without

min
f ∈HK

[

L(f , data) + λ1‖f ‖2
K + λ2‖f ‖2

I

]

.
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Bayesian kernel model

Result of DP prior

f̂n(x) =

np+nm
∑

i=1

wi K (x , xi ).

1 θ = F (·) so that p(x |θ)dx = dF (x) - the parameter is the full
distribution function itself;

2 p(y |x , φ) depends intimately on θ = F ; in fact, θ ⊆ φ in this
case and dependence of θ and φ is central to the model.
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Bayesian kernel model

Result of DP prior

f̂n(x) =

np+nm
∑

i=1

wi K (x , xi ).

1 θ = F (·) so that p(x |θ)dx = dF (x) - the parameter is the full
distribution function itself;

2 p(y |x , φ) depends intimately on θ = F ; in fact, θ ⊆ φ in this
case and dependence of θ and φ is central to the model.
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Simulated data – semi-supervised

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2  −1.5 −1  −0.5 0   0.5 1   1.5 2   

−2  

−1.5

−1  

−0.5

0   

0.5 

1   

1.5 

2   

Rev. Dr. Sayan Mukherjee Finding religion: kernels and the Bayesian persuasion



Kernel models and penalized loss
Bayesian kernel model

Priors on measures
Estimation and inference

Results on data
Open problems

Simulated data – semi-supervised

−2  −1.5 −1  −0.5 0   0.5 1   1.5 2   

−2  

−1.5

−1  

−0.5

0   

0.5 

1   

1.5 

2   

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Rev. Dr. Sayan Mukherjee Finding religion: kernels and the Bayesian persuasion



Kernel models and penalized loss
Bayesian kernel model

Priors on measures
Estimation and inference

Results on data
Open problems

Simulated data – semi-supervised

−2  −1.5 −1  −0.5 0   0.5 1   1.5 2   

−2  

−1.5

−1  

−0.5

0   

0.5 

1   

1.5 

2   

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Rev. Dr. Sayan Mukherjee Finding religion: kernels and the Bayesian persuasion



Kernel models and penalized loss
Bayesian kernel model

Priors on measures
Estimation and inference

Results on data
Open problems

Cancer classification – semi-supervised
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Simulated data – feature selection
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MNIST digits – feature selection
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MNIST digits – feature selection
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Discussion

Lots of work left:

Further refinement of integral operators and priors in terms of
Sobolev spaces.
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Discussion

Lots of work left:

Further refinement of integral operators and priors in terms of
Sobolev spaces.

Semi-supervised setting: relation of kernel model and priors
with Laplace-Beltrami and graph Laplacian operators.

Semi-supervised setting: Duality between diffusion processes
on manifolds and Markov chains.

Bayesian variable selection: Efficient sampling and search in
high-dimensional space.

Numeric stability and statistical robustness.
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Summary

Its extra work but it pays to be Bayes :)
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