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Tikhonov Regularization

We are considering algorithms of the form

min
f∈H

n∑
i=1

vi(Yi) +
λ

2
||f ||2K . (1)

Different loss functions lead to different learning problems.
Last class, we discussed regularized least squares, by
choosing

vi(yi) =
1
2
(Yi − yi)

2.

Support vector machines are another Tikhonov
regularization algorithm . . .
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SVM Motivation: Problems with RLS

RLS uses the square loss, which some might say does not
“make sense” for classification. SVM uses the hinge loss
(defined soon), which does “makes sense.”
Nonlinear RLS does not scale easily to large data sets.
The SVM can have better scaling properties.
The SVM has a (in my opinion weak) geometric motivation:
the idea of margin.
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A loss function for classification

The most natural loss for classification is probably the 0-1
loss: We pay zero if our prediction has the correct sign,
and one otherwise (remember that functions in an RKHS
make real-valued predictions).
Unfortunately, the 0-1 loss is not convex. Therefore, we
have little hope of being able to optimize this loss function
in practice. (Note that the representer theorem does hold
for the 0-1 loss.)
A solution: the hinge loss, a convex loss that upper bounds
the zero-one loss:

v(y) = max(1− yY , 0)

= (1− yY )+.
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The hinge loss
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Value-based SVM

Substituting the loss function into the definition of Tikhonov
regularization, we get an optimization problem

min
y∈Rn

∑
i

(1− yiYi)+ + λy tK−1y .

This is (basically) an SVM. So what?
How will you solve this problem (find the minimizing y )?
The hinge loss is not differentiable, so you cannot take the
derivative and set it to zero.
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Coefficient-based SVM

Remember that the representer theorem says the answer
has the form

f (·) =
∑

i

cik(Xi , ·).

Using the transformation y = Kc (or c = K−1y ), we can
rewrite the SVM as

min
c∈Rn

∑
i

(1− (Kc)i)+ + λctKc.

Again: so what?
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The SVM: So What?

The SVM has many interesting and desirable properties.
These properties are not immediately apparent from the
optimization problems we have just written.
Optimization theory and geometry lead us to algorithms for
solving the problem and insights in the nature of the
solution.
We will see that SVMs have a nice sparsity property: many
(frequently most) of the ci ’s turn out to be zero.
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Nondifferentiable Functions and Constraints

We can rewrite a piecewise differentiable convex linear
function as a sum of differentiable functions over
constrained variables.
Case in point: instead of minimizing

(1− yY )+,

I can minimize
ξ

subject to the constraints that

ξ ≥ 1− yY and ξ ≥ 0.

Two different ways of looking at the same thing.
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The Hinge Loss, Constrained Form

If I want to take a Lagrangian, I need to rewrite the loss
function in terms of constraints. These constraints are also
called slack variables.
This rewriting is orthogonal to the issue of whether I think
about y or c.
In terms of y , we rewrite

min
y∈Rn

∑
i

(1− yiYi)+ + λy tK−1y .

as

min
y∈Rn,ξ∈Rn

∑
i ξi + λy tK−1y

subject to : ξ ≥ (1− yY )

ξ ≥ 0
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In terms of c

In terms of the c, the constrained version of the problem is

min
c∈Rn,ξ∈Rn

∑
i ξi + λctKc

subject to : ξ ≥ (1− YKc)

ξ ≥ 0

Note how we get rid of the (1− Kc)+ by requiring that the ξ
are nonnegative.
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Solving an SVM, I

Written in terms of c or y (and ξ), we have a problem
where we’re trying to minimize a convex quadratic function
subject to linear constraints.
In optimization theory, this is called a convex quadratic
program.
Algorithm I: Find or buy software that solves convex
quadratic programs.
This will work. However, this software generally needs to
work with the matrix K . It will be slower than solving an
RLS problem of the same size.
As we will see, the SVM has special structure which leads
to good algorithms.
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The geometric approach

The “traditional” approach to explaining the SVM is via
separating hyperplanes and margin.
Imagine the positive and negative examples are separable
by a linear function (i.e.a hyperplane).
Define the margin as the distance from the hyperplane to
the nearest example.
Intuitively, larger margin will generalize better.
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Large and Small Margin Hyperplanes

(a) (b)
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Classification With Hyperplanes

Denote the hyperplane by w .
f (x) = w tx .
A separating hyperplane satisfies yi(w txi) > 0 for the
entire training set.
We are considering homogeneous hyperplanes (i.e.,
hyperplanes that pass through the origin.)
Geometrically, when we draw the hyperplane, we are
drawing the set {x : w tx = 0}, and the vector w is normal
to this set.
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Maximizing Margin, I

Given a separating hyperplane w , let xc be a training point
closest to w , and define xw to be the unique point in
{x : w tx = 0} that is closest to x . (Both xc and xw depend
on w .)
Finding a maximum margin hyperplane is equivalent to
finding a w that maximizes ||xc − xw ||.
For some k (assume k > 0 for convenience),

w txc = k
w txw = 0

=⇒ w t(xc − xw ) = k
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Maximizing Margin, II

Noting that the vector xc − xw is parallel to the normal vector w ,

k = w t(xc − xw ) = ||w || ||xc − xw ||

=⇒ ||xc − xw || = k
||w ||

R. Rifkin Fenchel Duality I



Maximizing Margin, III

k is a “nuisance” parameter; WLOG, we fix it to 1. (Scaling
a hyperparameter by a positive constant changes k and
||w ||, but not xc or xw .)
With k fixed, maximizing ||x − xw || is equivalent to
maximizing 1

||w || , or minimizing ||w ||, or minimizing ||w ||2.

The margin is now the distance between {x : w tx = 0} and
{x : w tx = 1.}
Fixing k is fixing the scale of the function.
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The linear homogeneous separable SVM

Phrased as an optimization problem, we have

min
w∈Rn

||w ||2

subject to : yiw txi − 1 ≥ 0 i = 1, . . . , n

Note that ||w ||2 is the RKHS norm of a linear function.
We are minimizing the RKHS norm, subject to a “hard”
loss.
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From hard loss to hinge loss.

We can introduce slacks ξi :

min
w∈Rn,ξ∈Rn

||w ||2 +
∑

i ξi

subject to : ξi ≥ 1− yiw txi i = 1, . . . , n
ξi ≥ 0 i = 1, . . . , n

What happened to our beautiful geometric argument?
What is the margin if we don’t separate the data?
Because we are nearly always interested classification
problems that are not separable, I think it makes more
sense to start with the RKHS and the hinge loss, rather
than the concept of margin.
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Fenchel Duality, Main Theorem (Reminder)

Theorem
Given convex functions f and g, under minor technical
conditions,

inf
y ,z
{f (y) + g(y) + f ∗(z) + g∗(−z)} = 0,

at least one minimizer exists, and all minimizers y , z satisfy the
complementarity equations:

f (y)− y tz + f ∗(z) = 0
g(y) + y tz + g∗(−z) = 0.
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Regularization Optimality Condition

We are looking for y and z satisfying

R(y)− y tz + R∗(z) = 0.

For Tikhonov regularization,

R(y) = λy tK−1y .

R∗(z) = λ−1z tKz.

The optimality condition for the regularizer is:

1
2
λy tK−1y − y tz +

1
2
λ−1z tKz = 0

1
2
(y − λ−1Kz)t(λK−1y − z) = 0

y = λ−1Kz ⇐⇒ z = λK−1y .
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Regularization Optimality Condition

For Tikhonov regularization, the optimal y and z satisfy

y = λ−1Kz,

independent of the loss function.
Modified regularizers will lead to modified optimality
conditions, again independent of the loss. Key future
example: unregularized bias terms.
The z ’s are closely related to the expansion coefficients via
c = λ−1z.
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Loss Optimality Conditions

For a pointwise loss function

V (y) =
∑

i

vi(yi),

the conjugate of the sum is the sum of the conjugates:

V ∗(z) = sup
y

{
y tz −

∑
i

vi(yi)

}
=

∑
i

sup
yi

{yizi − vi(yi)}

=
∑

i

v∗
i (zi).

Therefore, for each data point, we get a constraint

vi(yi) + yizi + v∗
i (−zi).

The exact form of the constraint is dictated by the loss.
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The Hinge Loss Conjugate

We need to derive v∗(−z) for the hinge loss
v(y) = (1− yY )+.
We could use the graphical method (maybe on board).
Note that Y ∈ {−1, 1}, so yY = y/Y .
Alternate approach, a composition of functions...
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The max(y , 0) nonlinearity.

Suppose f (y) = max(y , 0) = (y)+

f ∗(z) = supy{yz − (y)+}
Clearly, if z < 0 or z > 1, f ∗(z) =∞
Clearly, if z ∈ [0, 1], f ∗(z) = 0
Conclusion: f ∗(z) = δ[0,1](z)
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The 1− yY term.

g(y) = f (1− yY )

g∗(z) = supy{yz − f (1− yY )}
Substitute ŷ = 1− yY ⇐⇒ y = Y − ŷY
g∗(z) = supŷ{(Y − ŷY )z − f (ŷ)} = Yz + f ∗(−Yz)
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Putting it together

f (y) = (y)+ ⇐⇒ f ∗(z) = δ[0,1](z)

g(y) = f (1− yY )⇐⇒ g∗(z) = Yz + f ∗(−Yz)

v(y) = (1− yY )+

v∗(z) = Yz + f ∗(Yz) = Yz + δ[0,1](−Yz)

v∗(−z) = δ[0,1]

( z
Y

)
− z

Y
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The hinge loss optimality condition

v(y) + yz + v∗(−z) = 0

(1− yY )+ + yz + δ[0,1]

( z
Y

)
− z

Y
= 0

(1− yY )+ − z
(

1
Y
− y

)
+ δ[0,1]

( z
Y

)
= 0

(1− yY )+ −
z
Y

(1− yY ) + δ[0,1]

( z
Y

)
= 0
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The complete SVM optimality conditions

Training an SVM means (conceptually) finding y , z satisfying

y = λ−1Kz

(1− yY )+ =
z
Y

(1− yY )

z
Y
∈ [0, 1]n.
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Analyzing the Loss Optimality Condition

Remember, the loss function optimality condition is:

(1− yiYi)+ −
zi

Yi
(1− yiYi) + δ[0,1]

(
zi

Yi

)
= 0

Suppose that at optimality, (1− yiYi) < 0. We pay no loss
at the i th point.
Clearly, zi

Yi
(1− yiYi) must be zero as well.

But that means that zi = 0, and also that ci = 0 in the
functional expansion.
Similarly, if (1− yiYi) > 0, then zi

Yi
= 1.

If 1− yiYi = 0, we cannot say anything about zi .
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What are support vectors?

We see that points that are “well-classified” (1− yiyI < 0)
have zi = ci = 0. These points to do not contribute to the
functional expansion.
The other points do contribute. They are called support
vectors.
If we are lucky, the number of support vectors will be small
relative to the size of the training set.
It is precisely this fact that makes the SVM architecture
especially useful.
Other key point: non-support vectors can be added,
removed, or moved without changing the solution
(assuming they always satisfy (1− yiYi < 0)).
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Support Vectors: Graphical Interpretation
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The primal and dual problems

min
y

R(y) +
∑

i

vi(yi)

min
y

λ

2
y tK−1y +

∑
i

(1− yiYi)+

min
z

R∗(z) +
∑

i

v∗
i (−zi)

min
z

λ−1

2
z tKz +

∑
i

(
− zi

Yi
+ δ[0,1]

zi

Yi

)
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A simple SVM algorithm

We will develop a poor-man’s but conceptually reasonable
algorithm for solving

min
z

λ−1

2
z tKz +

∑
i

(
− zi

Yi
+ δ[0,1]

zi

Yi

)
We work with the z ’s rather than the y ’s because we don’t
want to deal with K−1.
Consider optimizing one of the zi , and holding the others
fixed.
We are now trying to minimize

λ−1

1
2

Kiiz2
i +

∑
j 6=i

(Kijzj)zi

− 1
Yi

,

subject to the constraint zi
Yi
∈ [0, 1].

This problem is easy to solve directly.
Algorithm: Keep doing this until we’re done.
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A simple SVM algorithm, analyzed

We start with the all-zero solution z = 0.
Note that solving a subproblem for point i involves the
kernel products between i and those j such that zj 6= 0.
If we have two points j and k such that neither zj nor zk
ever become nonzero during the course of the algorithm,
we never need to compute Kjk .
Real SVM algorithms are basically (almost) this idea,
combined with schemes for caching kernel products.
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An unregularized bias

The representer theorem says the answer has the form

f (·) =
∑

i

cik(Xi , ·).

Suppose we decide to look for a function of the form

f (·) =
∑

i

cik(Xi , ·) + b,

and we do not regularize b.
The modified problem is

min
c∈Rn,ξ∈Rn,b∈R

∑
i ξi + λctKc

ξ ≥ (1− Kc + b)

ξ ≥ 0.

Why would we do such a thing?
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An unregularized bias, thoughts

“Why should my hyperplane have to go through the origin?
I don’t know that a priori.”
An unregularized bias says constant functions are not
penalized.
We are saying “Find me a function in the RKHS, plus some
constant function.”
Alternate strategy: add a dimension of all 1’s to the data, in
feature space (e.g., k(xi , xj)← k(xi , xj) + 1)
The alternate strategy allows arbitrary hyperplanes, but
penalizes the bias term.
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Unregularized bias, pros and cons

Pro: Some people think it feels better.
Cons: The math gets more complicated.
Suggestion: if you have a regularized bias, do it implicitly.
Don’t bother writing b2 everywhere, that’s a waste of ink.
Suggestion: have a regularized bias.
If you insist on an unregularized bias, Fenchel duality is a
good way to talk about it . . .
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Fenchel Bias, I

Instead of y = Kc, we have y = Kc + b.
Suppose we have regularizer R (with conjugate R∗(y)).
Adding an unregularized bias is really saying “I can shift all
my values by some constant, and I consider that just as
smooth.”
The new regularizer is

R′(y) = inf
b

R(y − 1nb)
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The conjugate of a biased regularizer

R′(y) = inf
b

R(y − 1nb)

R′∗(z) = sup
y
{y tz − inf

b
R(y − 1nb)}

= sup
y ,b
{y tz − R(y − 1nb)}

= sup
ŷ ,b
{(ŷ + 1nb)tz − R(ŷ)}

= sup
b
{(1t

nz)b + sup
ŷ
{ŷ tz − R(ŷ)}}

= δ{0}(1t
nz) + R∗(z).
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The conjugate of a biased regularizer, thoughts

R′(y) = inf
b

R(y − 1nb)

R′∗(z) = δ{0}(1t
nz) + R∗(z).

In the primal, we say “allow a constant shift of the values.”
In the dual, we say

∑
i zi = 0.

That’s it!!!!!
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The conjugate of a biased regularizer, more thoughts

We don’t need to rederive the whole dual from the
beginning.
This result is general across regularizers and loss
functions.
This is an example of infimal convolution, see the Fenchel
paper for details.
For algorithms, the constraint

∑
i zi = 0 means they modify

two z ’s at a time rather than one.
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Good Large-Scale SVM Solvers

SVMLight: http://svmlight.joachims.org
SVMTorch: http://www.torch.ch
LIBSVM:
http://wws.csie.ntu.edu.tw/˜cjlin/libsvm
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Musings on SVMs and RLS

If we can solve one RLS problem, we can find a good λ
(that minimizes LOO error.)
There exists work on finding the “regularization path” of the
SVM (Hastie et al. 04). The claim is they can find a good λ
in the same time as it takes to solve one problem. The
experiments do not convince me (and they do not do LOO
error.)
For large nonlinear problems, I cannot solve one RLS
problem at all.
The SVM is sparse. It is only a constant factor sparse, so it
won’t scale forever, but solving O(100,000) point nonlinear
SVM problems is (somewhat) common.
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The elephant in the room.

There are many good methods to help us choose λ.
However, choosing k is usually the hard part.
Note that λ is about choosing how much smoothness to
insist on in an RKHS, but choosing k is about deciding
which RKHS to use.
If we only have a small number of parameters, we can grid
search.
But what about kernels like

k(xi , xj) = exp

(
−
∑

d

γd(xid − xjd)2

)
,

a generalization of the Gaussian where we have a
lengthscale for each dimension?
There are some recent attempts to deal with this, but
nothing is too satisfactory in my opinion.
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