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Reference
All the material for this lecture can be found

at http://gking.harvard.edu/files/smooth/
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Plan of the Lecture

e Demographic forecasting is a machine
learning problem

e Solving the problem in the Bayesian/
regularization framework

e A closer look at one dimensional priors
e A closer look at the smoothness parameter

e Examples/Demos
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Forecasting Mortality and Disease Burden
Has Important Applications

Pension planning Allocation of public

health resources

Planning manpower needs

Guidance for epidemiological
studies
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Problem: forecasting very short time series

Coverage of WHO mortality data base (all causes)

B 9% of world countries
m % of world population

# Observations
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The forecasting problem is set as a
regression problem

/ucat = E[lOg mcat] ﬂca ca,t—T

M., : Mortality in country c, age a and time t

f.. : Regression coefficient

X, - Lagged covariates
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Typical Lagged Covariates

X7 - Lagged covariates

e GDP

e Human capital

e Fat consumption
o Water quality

e Cigarette consumption
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In most cases some “pooling” is necessary

Respiratory Disease, Infectious(m) Belize

Regressions cannot

be estimated separately
across age groups or
countries.

17 separate regressions
(one for each age group)
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Those who have knowledge do not
predict. Those who predict do not
have knowledge

Lao Tzu, 6" century BC




The Standard Bayesian Approach

Likelihood: P(y|,8)ocexp(— = Z(,ucat_ﬂlxcat)zj

2
20 cat

Prior P(f) oc exp(=AH[£])

Posterior P(ﬂl y) oC P(y ‘ ,B)P(,B)

P(B|Y)oc exp[— . Z(:ucat _/lecat )2 + AH[A]

2
L 20" ‘=
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A Way Out

e We do need some sort of prior on the 8 ...

e but we do not really have prior knowledge
onf ...

e BUT we do have knowledge on u!

eAND pisrelatedtof3: uy=Xp

:ucat = E[IOg mcat] ﬁca ca,t—T
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Strategy to build a prior

e Define a non-parametric prior for y, as a function
of the cross-sectional index (age, for example)

P(1e) oc exp(—AH][ x])

e Use the relationship between yand 8 (=X B) to
change variables and obtain a prior for 3

P(f) o exp(=AH[X/])
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What type of prior knowledge?

eMortality age profiles are smooth
deformations of well known

shapes

eMortality varies smoothly across
countries

eMortality varies smoothly over
time
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A Good Prior on u

O"[u(at) - u(@)]
. a

H[ u] = jdtda

Discretizing age on a grid:

H[/u] o Z (/uat _ /u_a)Wa(an') (/ua't _ Z)

taa'
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Only a Step Away from Prioron f3 ...

eThe matrix W s fully determined
by the order of the derivative n

*The “template” age profile p can
be made disappear by subtracting
if from the data

eJust need to substitute the
specification y =X 3
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And the Prior for B is:

P(f) o exp

B EZW (n)ﬁacaa

\
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But What Does the Prior Really Mean?

P(u) oc

H[ 1] = j dtda

exp(=AH[u])

(6" u(a,t) - u(a)]

\ oa’ )




But What Does the Prior Really Mean?

Discretizing over age and fixing one year in time
M is simply a vector of random variables

( A
P(,Ll) - exp\_ ﬁz :uaWa(an'):ua'/

How do the samples from this prior look like?
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Demos

e Samples from prior with zero mean

e Samples from prior with non zero mean
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And what is the role of A?

Two important, related identities

rank (W ™)
A

E[H[4]] =

Al 4

PR ”((VAV\:)W




The role of A

oA determines the size of the
smoothness functional

oA determines the average standard
deviation of the prior




Demos

e Standard deviation of the prior

e Samples from prior with non zero mean:
varying the smoothness parameter
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Other Types of Priors

e Time H[ 1] = Idtda

e Time trends over age

H[ 1] = j dtda

(0" u(a,t)

/an+mlu(a, t) \

\ ot"oMa y




Dealing with Multiple Smoothness Parameters

® Writing the priors is easy ...

® Estimating the 3 smoothing parameters is very
difficult

»Cross validation is hard to do with very short
time series

® Some prior knowledge on the smoothing
parameters is needed
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Estimating the smoothness parameters

o Key observation: the smoothness parameters
control ALL expected values of the prior

E[F ()] =0,(4,4,,45)
E[F, (1)]=0,(4,4,,4;)

E[F; (1)) = 95(4, 45, 45)




Estimating the smoothness parameters

e Sometimes we do have other forms of prior
knowledge

»How much the dependent variables changes
from one cross section (or year) to the next

Fl (zu) - Z‘ Har — Hay |
at
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Estimating the smoothness parameters

o Expected values of any function of gy can be
estimated empirically, by sampling the prior

e The following equations can be solved numerically:

E[F ()] = 9, (4, 4,, 45)

E[F, (k)] =90,(4,4,,4;)

E[F; ()] =095(4,4,,4;)
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Demo: Deaths by Transportation Accidents in
Chile
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Transportation Accidents:
no pooling

(m) Chile (m) Argentina
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Pooling Over Countries:
Transportation Accidents in Argentina

No Pooling Pooling

(m) Argentina (m) Argentina
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Summary

o Regularization theory is a powerful
framework that reaches beyond standard
pattern recognition

e In some application it is important to pay
attention to the precise nature of the prior

e Prior knowledge applies to the
smoothness parameter too
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Mortality age profiles are well known and
consistent across countries and time

All Causes (f) Other Infectious Diseases (m)
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“Similar” countries have similar mortality
paftterns

France Greece

Cyprus
ita —— ™~ Israel
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Before and After the Cure
Respiratory Infections in Belize

(m) Belize (m) Belize
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