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ReferenceReference
All the material for this lecture can be found
at http://gking.harvard.edu/files/smooth/
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Plan of the LecturePlan of the Lecture

•
 

Demographic forecasting is a machine 
learning problem

•
 

Solving the problem in the Bayesian/ 
regularization framework

•
 

A closer look at one dimensional priors

•
 

A closer look at the smoothness parameter

•
 

Examples/Demos
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Forecasting Mortality and Disease Burden Forecasting Mortality and Disease Burden 
Has Important ApplicationsHas Important Applications

Pension planning

Guidance for epidemiological
studies

Allocation of public
health resources

Planning manpower needs
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Problem: forecasting very short time seriesProblem: forecasting very short time series



MIT 4/28/2008

The forecasting problem is set as a The forecasting problem is set as a 
regression problemregression problem

Ttcacacatcat xm −′=≡ ,][logE βμ

catm : Mortality in country c, age a and time t

caβ : Regression coefficient

: Lagged covariates
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Typical Lagged CovariatesTypical Lagged Covariates
: Lagged covariates

•
 

GDP

•
 

Human capital

•
 

Fat consumption

•
 

Water quality

•
 

Cigarette consumption
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In most cases some In most cases some ““poolingpooling””
 

is necessaryis necessary

Regressions cannotRegressions cannot
be estimated separatelybe estimated separately
across age groups or across age groups or 
countries.countries.

17 separate regressions
(one for each age group)
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Those who have knowledge do not 
predict. Those who predict do not 
have knowledge

Lao Tzu, 6th
 

century BC
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The Standard Bayesian ApproachThe Standard Bayesian Approach
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A Way OutA Way Out

•
 

We do need some sort of prior on the β
 

...

•
 

but we do not really have prior knowledge 
on β

 
...

•
 

BUT we do have knowledge on μ!

•
 

AND μ
 

is related to β: μ
 

= X β

Ttcacacatcat xm −′=≡ ,][log βμ E
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Strategy to build a priorStrategy to build a prior

])[Hexp()(P μλμ −∝

•
 

Define a non-parametric prior for μ, as a function 
of the cross-sectional index (age, for example)

])[Hexp()(P βλβ X−∝

•
 

Use the relationship between μ
 

and β
 

(μ
 

= X β) to 
change variables and obtain a prior for β
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What type of prior knowledge?What type of prior knowledge?

•Mortality age profiles are smooth 
deformations of well known 
shapes

•Mortality varies smoothly across 
countries

•Mortality varies smoothly over 
time
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A Good Prior  on A Good Prior  on μμ
2
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Discretizing
 

age on a grid:
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Only a Step Away from Prior on Only a Step Away from Prior on ββ
 

……

•The matrix W is fully determined 
by the order of the derivative n

•The “template”
 

age profile μ
 

can 
be made disappear by subtracting 
if from the data

•Just need to substitute the 
specification μ

 
= X β

_



MIT 4/28/2008

And the Prior for And the Prior for ββ
 

is:is:
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But What Does the Prior Really Mean?But What Does the Prior Really Mean?
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But What Does the Prior Really Mean?But What Does the Prior Really Mean?

Discretizing
 

over age and fixing one year in time 
μ

 
is simply a vector of random variables
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How do the samples from this prior look like?
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DemosDemos

•
 

Samples from prior with zero mean

•
 

Samples from prior with non zero mean
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And what is the role of And what is the role of λλ??
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The role of The role of λλ

•λ
 

determines the size of the 
smoothness functional

•λ
 

determines the average standard 
deviation of the prior
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DemosDemos

•
 

Standard deviation of the prior

•
 

Samples from prior with non zero mean: 
varying the smoothness parameter
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Other Types of PriorsOther Types of Priors

2
),(][H ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
= n

n

t
tadtda μμ

2
),(][H ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
=

+

at
tadtda mn

mn μμ

•
 

Time

•
 

Time trends over age
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Dealing with Multiple Smoothness ParametersDealing with Multiple Smoothness Parameters

•• Writing the priors is easy Writing the priors is easy ……

•• Estimating the 3 smoothing parameters is very    Estimating the 3 smoothing parameters is very    
difficult difficult 

Cross validation is hard to do with very short Cross validation is hard to do with very short 
time seriestime series

•• Some prior knowledge on the smoothing Some prior knowledge on the smoothing 
parameters is neededparameters is needed
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Estimating the smoothness parametersEstimating the smoothness parameters

),,()]([E 32111 λλλμ gF =

),,()]([E 32122 λλλμ gF =

•
 

Key observation: the smoothness parameters 
control ALL expected values of the prior

),,()]([E 32133 λλλμ gF =
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Estimating the smoothness parametersEstimating the smoothness parameters
•

 
Sometimes we do have other forms of prior 
knowledge

How much the dependent variables changes 
from one cross section (or year) to the next
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Estimating the smoothness parametersEstimating the smoothness parameters

),,()]([E 32111 λλλμ gF =

),,()]([E 32122 λλλμ gF =

•
 

Expected values of any function of μ
 

can be 
estimated empirically, by sampling the prior

•
 

The following equations can be solved numerically:

),,()]([E 32133 λλλμ gF =
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Demo: Deaths by Transportation Accidents in Demo: Deaths by Transportation Accidents in 
ChileChile
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Transportation Accidents: Transportation Accidents: 
no poolingno pooling
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Pooling Over Countries:Pooling Over Countries:
 Transportation Accidents in ArgentinaTransportation Accidents in Argentina

No Pooling Pooling
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Summary Summary 

•
 

Regularization theory is a powerful 
framework that reaches beyond standard 
pattern recognition

•
 

In some application it is important to pay 
attention to the precise nature of the prior

•
 

Prior knowledge applies to the 
smoothness parameter too
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Mortality age profiles are well known andMortality age profiles are well known and
 consistent across countries and timeconsistent across countries and time

Back
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““SimilarSimilar””
 

countries have similar mortality countries have similar mortality 
patternspatterns

Italy

France

Chile Spain

Greece

Cyprus
Israel

Back
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Before and After the CureBefore and After the Cure
 Respiratory Infections in BelizeRespiratory Infections in Belize

Back
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