

Demographic Forecasting and the Role of Priors

Federico Girosi The RAND Corporation Santa Monica, CA, USA

Reference All the material for this lecture can be found at http://gking.harvard.edu/files/smooth/

RAND

Plan of the Lecture

- Demographic forecasting is a machine learning problem
- Solving the problem in the Bayesian/ regularization framework
- A closer look at one dimensional priors
- A closer look at the smoothness parameter
- Examples/Demos

Forecasting Mortality and Disease Burden Has Important Applications

Pension planning

Allocation of public health resources

Planning manpower needs

Guidance for epidemiological studies

RAND

MIT 4/28/2008

Problem: forecasting very short time series

RAND

MIT 4/28/2008

The forecasting problem is set as a regression problem

$$\mu_{cat} \equiv \mathrm{E}[\log m_{cat}] = \beta_{ca}' x_{ca,t-T}$$

 m_{cat} : Mortality in country c, age a and time t

 β_{ca} : Regression coefficient

 $x_{ca,t-T}$: Lagged covariates

Typical Lagged Covariates $x_{ca,t-T}$: Lagged covariates

• GDP

Human capital

- Fat consumption
- Water quality
- Cigarette consumption

In most cases some "pooling" is necessary

Regressions cannot be estimated separately across age groups or countries.

17 separate regressions (one for each age group)

Those who have knowledge do not predict. Those who predict do not have knowledge

Lao Tzu, 6th century BC

The Standard Bayesian Approach Likelihood: $P(y | \beta) \propto exp \left(-\frac{1}{2\sigma^2} \sum_{cat} (\mu_{cat} - \beta' x_{cat})^2 \right)$

Prior $P(\beta) \propto \exp(-\lambda H[\beta])$

Posterior $P(\beta | y) \propto P(y | \beta)P(\beta)$

$$P(\beta \mid y) \propto \exp\left(-\left[\frac{1}{2\sigma^2} \sum_{cat} \left(\mu_{cat} - \beta' x_{cat}\right)^2 + \lambda H[\beta]\right]\right)$$

RAND

MIT 4/28/2008

A Way Out

• We do need some sort of prior on the β ...

- but we do not really have prior knowledge on β ...
- BUT we do have knowledge on µ!
- AND μ is related to β : $\mu = X \beta$

$$\mu_{cat} \equiv \mathbf{E}[\log m_{cat}] = \beta'_{ca} x_{ca,t-T}$$

Strategy to build a prior

 Define a non-parametric prior for µ, as a function of the cross-sectional index (age, for example)

$$P(\mu) \propto \exp(-\lambda H[\mu])$$

 Use the relationship between μ and β (μ = X β) to change variables and obtain a prior for β

 $P(\beta) \propto \exp(-\lambda H[X\beta])$

What type of prior knowledge?

 Mortality age profiles are smooth deformations of <u>well known</u> <u>shapes</u>

 Mortality varies smoothly <u>across</u> <u>countries</u>

 Mortality varies smoothly over time

A Good Prior on μ

 $\mathbf{H}[\mu] = \int dt da \left(\frac{\partial^n [\mu(a,t) - \overline{\mu}(a)]}{\partial a^n} \right)^2$

Discretizing age on a grid:

$$H[\mu] = \sum_{taa'} (\mu_{at} - \overline{\mu_{a}}) W_{aa'}^{(n)} (\mu_{a't} - \overline{\mu_{a'}})$$

RAND

MIT 4/28/2008

Only a Step Away from Prior on β ...

• The matrix *W* is fully determined by the order of the derivative n

 The "template" age profile µ can be made disappear by subtracting if from the data

Just need to substitute the specification μ = X β

And the Prior for β is:

 $\mathbf{P}(\boldsymbol{\beta}) \propto \exp\left(-\lambda \sum_{aa'} W_{aa'}^{(n)} \boldsymbol{\beta}_{a}^{'} \mathbf{C}_{aa'} \boldsymbol{\beta}_{a'}\right)$

But What Does the Prior Really Mean?

$P(\mu) \propto \exp(-\lambda H[\mu])$

 $H[\mu] = \int dt da \left(\frac{\partial^n [\mu(a,t) - \overline{\mu}(a)]}{\partial a^n} \right)^2$

But What Does the Prior Really Mean?

Discretizing over age and fixing one year in time µ is simply a vector of random variables

$$\mathbf{P}(\mu) \propto \exp\left(-\lambda \sum_{aa'} \mu_a W_{aa'}^{(n)} \mu_{a'}\right)$$

How do the samples from this prior look like?

Demos

• Samples from prior with zero mean

Samples from prior with non zero mean

And what is the role of λ ?

Two important, related identities

$$\mathbf{E}[\mathbf{H}[\mu]] = \frac{\mathrm{rank}(W^{(n)})}{\lambda}$$

$$\frac{1}{A}\sum_{a} \mathbf{E}[\mu_{a}^{2}] = \frac{\mathrm{tr}(W^{(n)})^{+}}{A\lambda}$$

The role of λ

λ determines the size of the smoothness functional

A determines the average standard deviation of the prior

Demos

Standard deviation of the prior

 Samples from prior with non zero mean: varying the smoothness parameter

Other Types of Priors

• Time trends over age

$$\mathbf{H}[\mu] = \int dt da \left(\frac{\partial^{n+m} \mu(a,t)}{\partial t^n \partial^m a} \right)^2$$

Dealing with Multiple Smoothness Parameters

Writing the priors is easy ...

Estimating the 3 smoothing parameters is very difficult

Cross validation is hard to do with very short time series

Some prior knowledge on the smoothing parameters is needed

Estimating the smoothness parameters

• Key observation: the smoothness parameters control ALL expected values of the prior

$$E[F_1(\mu)] = g_1(\lambda_1, \lambda_2, \lambda_3)$$
$$E[F_2(\mu)] = g_2(\lambda_1, \lambda_2, \lambda_3)$$
$$E[F_3(\mu)] = g_3(\lambda_1, \lambda_2, \lambda_3)$$

Estimating the smoothness parameters

 Sometimes we do have other forms of prior knowledge

How much the dependent variables changes from one cross section (or year) to the next

$$F_1(\mu) = \sum_{at} |\mu_{at} - \mu_{a+1,t}|$$

Estimating the smoothness parameters

- Expected values of any function of µ can be estimated empirically, by sampling the prior
- The following equations can be solved numerically:

$$\mathbf{E}[F_1(\mu)] = g_1(\lambda_1, \lambda_2, \lambda_3)$$

 $\mathbf{E}[F_2(\mu)] = g_2(\lambda_1, \lambda_2, \lambda_3)$

 $\mathbf{E}[F_3(\mu)] = g_3(\lambda_1, \lambda_2, \lambda_3)$

Demo: Deaths by Transportation Accidents in Chile

Transportation Accidents: no pooling

RAND

Pooling Over Countries: Transportation Accidents in Argentina

No Pooling

Pooling

- Regularization theory is a powerful framework that reaches beyond standard pattern recognition
- In some application it is important to pay attention to the precise nature of the prior
- Prior knowledge applies to the smoothness parameter too

Mortality age profiles are well known and consistent across countries and time

Back MIT 4/28/2008

"Similar" countries have similar mortality patterns

Before and After the Cure Respiratory Infections in Belize

RAND