Introduction to non-linear optimization

Ross A. Lippert
D. E. Shaw Research

February 25, 2008

R. A. Lippert Non-linear optimization



Optimization problems

problem: Let f : R" — (—o0, 0],
find Q]llgn{f(x)}

find X, s.t. f(x.) = m]iIQ {f(x)}
XER"

Quite general, but some cases, like f convex, are fairly solvable.
Today’s problem: How about f : R” — R, smooth?

find x,s.t. Vf(x,) =0

We have a reasonable shot at this if f is twice differentiable.

R. A. Lippert Non-linear optimization



Two pillars of smooth multivariate optimization

n—D optimization

linear solve/quadratic opt. 1D optimization

R. A. Lippert Non-linear optimization



The simplest example we can get

Quadratic optimization: f(x) = ¢ — x'b + s x'Ax.
@ very common (actually universal, more later)
Finding Vf(x) =0

Vix)=b—Ax = 0
x. = Ab

A has to be invertible (really, b in range of A).
Is this all we need?

R. A. Lippert Non-linear optimization



Max, min, saddle, or what?

Require A be positive definite, why?

&%

(SN
=\ (S
: ‘\Q““““‘““““" V714 5 NN
. \W\\“s“‘:ﬂﬂ’; //,/j}’;';::,:‘:.:‘ “‘s‘} ‘xs‘w

R. A. Lippert -linear optimization



Universality of linear algebra in optimization

f(x)=c—x'b+ %xtAx

Linear solve: x, = A~'h.
Even for non-linear problems: if optimal x, near our x

fx) ~ F(xX)+ (% —x) ' VAx) + % (X — X)' VVAX) (X — X) + - --
AX = X.—Xx~ —(VVFHx))" V(x)

Optimization < Linear solve

R. A. Lippert Non-linear optimization



Linear solve

x=A"b

But really we just want to solve
Ax=>b

Don't form A~ if you can avoid it.
(Don’t form A if you can avoid that!)
For a general A, there are three important special cases,

a 0 0
o diagonal: A=| 0 a 0 |thusx; = %/b,-
0 0 a3

@ orthogonal A'A = I, thus A~ = Aland x = A'b

a1 0 0
o triangular: A= | ax a»n 0 |,x= al” (b,- — Z/-<,-a,-jxj>
dz1 d3z2 dass

R. A. Lippert Non-linear optimization



Direct methods

A is symmetric positive definite.
Cholesky factorization:
A=LLY,

where L lower triangular. So x = L~! (L~"b) by

Lz = b, zizu(b,-ZL,-jzj)
1

j<i

L'x = z X"L1..<Z"ZL"/XJ')

i i>i

R. A. Lippert Non-linear optimization



Direct methods

A is symmetric positive definite.
Eigenvalue factorization:

A= QDQ',
where Q is orthogonal and D is diagonal. Then
x=Q(D7'(a')).

More expensive than Choesky
Direct methods are usually quite expensive (O(n®) work).

R. A. Lippert Non-linear optimization



Iterative method basics

What'’s an iterative method?

Definition (Informal definition)

An jterative method is an algorithm A which takes what you
have, x;, and gives you a new Xx;, 1 which is less bad such that
X1, X2, X3, . .. converges to some x, with badness= 0.

A notion of badness could come from
@ distance from x; to our problem solution
@ value of some objective function above its minimum
@ size of the gradient at x;

e.g. If x is supposed to satisfy Ax = b, we could take ||b — Ax]|]
to be the measure of badness.

R. A. Lippert Non-linear optimization



lterative method considerations

How expensive is one x; — X;, 1 step?

How quickly does the badness decrease per step?

A thousand and one years of experience yields two cases
@ B; x p' for some p € (0, 1) (linear)
@ B, x pl@) for p € (0,1),a > 1 (superlinear)

1 12

1

0.7 08
g 06 -
£ os £ 06
E o4 g

04

02 02

0 0
0 2 4 6 8 10 0 2 4 6 8 10

R. A. Lippert Non-linear optimization



Convergence

1 100000
! T
o1 1e-05
§ %’ le-10
£ 00 g
g’ ' g’ le-15
0.001 1e-20
le-25
le-04 le-30
0 2 4 6 8 10 0 2 4 6 8 10
iteration iteration
Now can you tell the difference?
100000
! —
le-05
g le-10
&
E le-15
le-20
le-25
le-30
0 2 4 6 8 10

iteration

When evaluating an iterative method against manufacturer’s
claims, be sure to do semilog plots.

R. A. Lippert -linear optimization



lterative methods

Motivation: directly optimize f(x) = ¢ — x'b+ 3 x'Ax.
gradient descent:

@ Search direction: r; = —Vf = b — Ax;
©@ Search step: xj 1 = X; + il

© Pick alpha: o = CIA minimizes f(x + ar;)

f(x; + ar)

1
c—x'b+ —x,-tAx,- + arl(Ax; — b) + ;a rlAr;

= f(x;) —arfn+ ;a rtAr;

(Cost of a step = 1 A-multiply.)

R. A. Lippert

Non-linear optimization



lterative methods

Optimize f(x) = ¢ — x'b+ Fx'Ax.
conjugate gradient descent:
@ Search direction: d; = r; + B;d;_1, with r; = b — Ax.

l‘

@ Pick g = Tg ensures d!_,Ad; = 0.

© Search step: xj 1 = X; + a;d;

@ Pick o; = d‘fAd minimizes f(x; + ad};)

t 14 t 1 2 4
f(Xj+Oédi) = C—Xib+ EXIAXi_O‘diri‘FEO‘ d,‘Ad,‘
(also means that rf, ;d; = 0)
Avoid extra A-multiply: using Adi_1 < ri_1 — r;
o (ia-n)'n o (na-n)'n _ (ni=ria)'n
pi= S (ia-n)tdoy T rfdiey T

R. A. Lippert Non-linear optimization



A cute result

conjugate gradient descent:
Q ri=b-Ax
@ Search direction: d; = r; + Bidi_y (8 s.t. diAd;_1 = 0)
© Search step: xj;1 = X; + ;d; (o minimizes).

Cute result (not that useful in practice)

Theorem (sub-optimality of CG)

(Assuming xo = Q) at the end of step k, the solution xi is the
optimal linear combination of b, Ab, A®b, . .. Ab for minimizing

c— blx + %XtAX.

(computer arithmetic errors make this less than perfect)
Very little extra effort. Much better convergence.

R. A. Lippert Non-linear optimization



Slow convergence: Conditioning

The eccentricity of the quadratic is a big factor in convergence

o8t
g —— ———
04f
o2f

ol
02

B ——

-0.6

-0.8

R. A. Lippert Non-linear optimization



Convergence and eccentricity

~ max eig(A)

~ min eig(A)
For gradient descent,

I~ 2
! K+ 1
For CG,
o~ [Y2 ]
1 \/E‘f—‘l

useless CG fact: in exact arithmetic ; = 0when i > n (Ais
nxn.

R. A. Lippert Non-linear optimization



The truth about descent methods

Very slow unless  can be controlled.
How do we control k?

Ax =b— (PAPYy = Pb, x=Ply

where P is a pre-conditioner you pick.
How to make x(PAP?) small?

o perfect answer, P = L' where L!L = A (Cholesky
factorization).

@ imperfect answer, P ~ L~
Variations on the theme of incomplete factorization:
o P~ = Dz where D = diag (@11, .-, ann)
@ more generally, incomplete Cholesky decomposition

@ some easy nearby solution or simple approximate A
(requiring domain knowledge)

R. A. Lippert Non-linear optimization



Class project?

One idea for a preconditioner is by a block diagonal matrix

Ly 0 O
P! = 0 L O
0 0 La

where Lf,-L,-,- = Aj a diagonal block of A.
In what sense does good clustering give good preconditioners?

End of solvers: there are a few other iterative solvers out there
| haven’t discussed.

R. A. Lippert Non-linear optimization



Second pillar: 1D optimization

1D optimization gives important insights into non-linearity.

min f(s), f continuous.

seR
A derivative-free option:
A bracket is (a,b,c) s.t. a< b < cand f(a) > f(b) < f(c) then
f(x) has a local min fora < x < b

Golden search based on picking a < b’ < b < ¢ and either
(a< b’ <b)or (b <b<c)isanew bracket...continue
Linearly convergent, e; « G', golden ratio G.

R. A. Lippert Non-linear optimization



1D optimization

Fundamentally limited accuracy of derivative-free argmin:

a b c

Derivative-based methods, f'(s) = 0, for accurate argmin
@ bracketed: (a, b) s.t. f'(a), f'(b) opposite sign
@ bisection (linearly convergent)
© modified regula falsi & Brent's method (superlinear)

@ unbracketed:

@ secant method (superlinear)
© Newton’s method (superlinear; requires another derivative)

R. A. Lippert Non-linear optimization



From quadratic to non-linear optimizations

What can happen when far from the optimum?
@ —Vf(x) always points in a direction of decrease
@ VVf{(x) may not be positive definite

For convex problems VVf is always positive semi-definite and
for strictly convex it is positive definite.
What do we want?

@ find a convex neighborhood of x, (be robust against
mistakes)

@ apply a quadratic approximation (do linear solve)
Fact: ¥ non-linear optimization algorithms, 3f which fools it.

R. A. Lippert Non-linear optimization



Naive Newton’s method

Newton’s method finding x s.t. Vf(x) =0

Ax; = —(VVI(x))" VF(x)
Xit1 = Xi+AX

Asymptotic convergence, e; = X; — X,
Vi) = VVf(x)e+ O(|lejl?)
VVIH(x) = VVI(x)+ O(leill)
i1 = &—(VVH) V= 0(el?)

“squares the error” at every step (exactly eliminates the linear
error).

R. A. Lippert Non-linear optimization



Naive Newton’s method

Sources of trouble

@ if VV£(x;) not posdef, Ax; = x;,1 — X; might be in an
increasing direction.

Q if VV£(x;) posdef, (Vf(x;))! Ax; < 0 so Ax; is a direction of
decrease (could overshoot)

© evenif fis convex, f(xj11) < f(x;) not assured.
(f(x) =1+ e +log(1 + e7*) starting from x = —2).

© if all goes well, superlinear convergence!

R. A. Lippert Non-linear optimization



1D example of Newton trouble

1D example of trouble: f(x) = x* — 2x2 + 12x
20 ‘ ‘ ‘ ‘ ‘

15
10

_20 Il Il Il Il Il Il
-2 -15 -1 -0.5 0 0.5 1 1.5

@ Has one local minimum
@ Is not convex (note the concavity near x=0)

R. A. Lippert Non-linear optimization



1D example of Newton trouble

derivative of trouble: f/(x) = 4x3 — 4x + 12
20 i i i i

15

10

-10

-15 i i i i i i
-2 -15 -1 -0.5 0 0.5 1 1.5

the negative f” region around x = 0 repels the iterates:
0—3—1.96154 — 1.14718 — 0.00658 — 3.00039 — 1.96182 —
1.14743 — 0.00726 — 3.00047 — 1.96188 — 1.14749 — - .-

R. A. Lippert Non-linear optimization



Non-linear Newton

Try to enforce f(xj11) < f(X;)
Axp = — (M4 VVIEx;) " V()
Xit1 = Xi+ajAx

Set A > 0 to keep Ax; in a direction of decrease (many
heuristics).

Pick aj > 0 such that f(x; + «;Ax;) < f(x;). If Ax; is a direction
of decrease, some «; exists.

@ 1D-minimization do 1D optimization problem,

min  f(x; + a;AX;

@ Armijo-search use this rule: aj = pu” some n
f(x; + sAX;) — F(x;) < vs(Ax;) VE(x;)

with p, u, v fixed (e.g. p=2,u=v = %)

R. A. Lippert Non-linear optimization



1D-minimization looks like less of a hack than Armijo. For
Newton, asymptotic convergence is not strongly affected, and
function evaluations can be expensive.

@ far from x, their only value is ensuring decrease
@ near x, the methods will return «;; ~ 1.

If you have a Newton step, accurate line-searching adds little
value.

R. A. Lippert Non-linear optimization



Practicality

Direct (non-iterative, non-structured) solves are expensive!
VVfinformation is often expensive!

R. A. Lippert Non-linear optimization



lterative methods

gradient descent:

@ Search direction: r; = —Vf(x;)

© Search step: X, 1 = x; + ajf;

@ Pick alpha: (depends on what's cheap)
HCAZIN

T

@ minimization f(x; + ar;) (danger: low quality)
@ zero-finding r'Vf(x; + ar) =0

@ linearized a; =

R. A. Lippert Non-linear optimization



lterative methods

conjugate gradient descent:
@ Search direction: d; = —r; + Bid;_y, with r; = —V£(x;).
@ Pick 3; without VV f

Q 5= (,’,7>)’,‘ (Polak-Ribiere)
@ canalso use 3 = ,”f (Fletcher-Reeves)
—1fi-1

© Search step: xj 1 = X; + «;d;

. t .
@ linearized o = d'(ziz_f)d’

© 1D minimization f(x; + «d}) (da ger: low quality)
@ zero-finding d/Vf(x; + ad;) =

R. A. Lippert Non-linear optimization



Don't forget the truth about iterative methods

To get good convergence you must precondition!
B~ (VVf(x,))™
Without pre-conditioner

@ Search direction: d; = —r; + pidj_y, with r; = — PV f(x;).

Q Pick 5, = Lﬁ)" (Polak-Ribiere)

© Search step: xj 1 = X; + a;d};
@ zero-finding d!Vf(x; + ad;) =0
with B = PP! change of metric
@ Search direction: d; = —r; + 3idi_1, with r; = —Vf(x;).
e PICkﬁ,— (ri—ri—1)'Bri_4

(ri—ri—1)r;
© Search step: xj 1 = X; + a;d}
Q zero-finding d!BVf(x; + ad;) =0

R. A. Lippert Non-linear optimization



What else?

Remember this cute property?

Theorem (sub-optimality of CG)

(Assuming xo = Q) at the end of step k, the solution xy is the
optimal linear combination of b, Ab, A®b, . .. Ab for minimizing

’
c— blx + Ex’Ax.

In a sense, CG learns about A from the history of b — Ax;.
Noting,

@ computer arithmetic errors ruin this nice property quickly
© non-linearity ruins this property quickly

R. A. Lippert Non-linear optimization



Quasi-Newton has much popularity/hype. What if we

approximate (VVf(x.))™' from the data we have

(VVf(X*))(X, — Xk_1) ~ Vf(X,) — Vf(Xk_1)
Xi =Xt~ (VVAX)) (V) = V(X))
over some fixed-finite history.
Data: y; = Vf(x;) — Vf(xk_1), Si = Xi — xk_1 with1 < < k
Problem: Find symmetric positive def Hy s.t.

Hyyi = si

Multiple solutions, but BFGS works best in most situations.

R. A. Lippert Non-linear optimization



BFGS update

The BFGS update minimizes miny ||[H=' — H,',||2 such that
Hyk = Sk.

Forming Hk not necessary, e.g. Hxv can be recursively
computed.

R. A. Lippert Non-linear optimization



Typically keep about 5 data points in the history.
initialize Set Hy =1, rp = —Vf(xp), do = ry goto 3
@ Compute ry = —V(Xk), Yk = k—1 — I
@ Compute dyx = Hyry
© Search step: xx1 = Xk + axdk (line-search)

Asymptotically identical to CG (with «; = d"t(zzf)d’ )

Armijo line searching has good theoretical properties. Typically
used.

Quasi-Newton ideas generalize beyond optimization (e.g.
fixed-point iterations)

R. A. Lippert Non-linear optimization



@ All multi-variate optimizations relate to posdef linear solves

@ Simple iterative methods require pre-conditioning to be
effective in high dimensions.

@ Line searching strategies are highly variable

@ Timing and storage of f, Vf, VVf are all critical in selecting
your method.

f Vf concerns method

fast fast 2,5 quasi-N (zero-search)

fast fast 5 CG (zero-search)

fast slow 1,2,3 derivative-free methods

fast slow 2,5 quasi-N (min-search)

fast slow 3,5 CG (min-search)
fast/slow slow 2,45 quasi-N with Armijo
fast/slow slow 4,5 CG (linearized «)
1=time 2=space 3=accuracy

4=robust vs. nonlinearity 5=precondition
Don't take this table too seriously. . .

R. A. Lippert Non-linear optimization



