Introduction to non-linear optimization

Ross A. Lippert

D. E. Shaw Research

February 25, 2008

Optimization problems

problem: Let
$$f: \mathbb{R}^n \to (-\infty, \infty]$$
, find $\min_{x \in \mathbb{R}^n} \{f(x)\}$ find x_* s.t. $f(x_*) = \min_{x \in \mathbb{R}^n} \{f(x)\}$

Quite general, but some cases, like *f* convex, are fairly solvable.

Today's problem: How about $f : \mathbb{R}^n \to \mathbb{R}$, smooth?

find
$$x_*$$
 s.t. $\nabla f(x_*) = 0$

We have a reasonable shot at this if *f* is *twice differentiable*.

Two pillars of smooth multivariate optimization

The simplest example we can get

Quadratic optimization: $f(x) = c - x^t b + \frac{1}{2} x^t A x$.

very common (actually universal, more later)

Finding $\nabla f(x) = 0$

$$\nabla f(x) = b - Ax = 0$$
$$x_* = A^{-1}b$$

A has to be invertible (really, b in range of A). Is this all we need?

Max, min, saddle, or what?

Universality of linear algebra in optimization

$$f(x) = c - x^t b + \frac{1}{2} x^t A x$$

Linear solve: $x_* = A^{-1}b$.

Even for non-linear problems: if optimal x_* near our x

$$f(x_*) \sim f(x) + (x_* - x)^t \nabla f(x) + \frac{1}{2} (x_* - x)^t \nabla \nabla f(x) (x_* - x) + \cdots$$

$$\Delta x = x_* - x \sim -(\nabla \nabla f(x))^{-1} \nabla f(x)$$

Optimization ← Linear solve

Linear solve

$$x=A^{-1}b$$

But really we just want to solve

$$Ax = b$$

Don't form A^{-1} if you can avoid it. (Don't form A if you can avoid that!)

For a general A, there are three important special cases,

• diagonal:
$$A = \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix}$$
 thus $x_i = \frac{1}{a_i}b_i$

• orthogonal $A^tA = I$, thus $A^{-1} = A^t$ and $x = A^tb$

• triangular:
$$A = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, $x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j \right)$

Direct methods

A is symmetric positive definite.

Cholesky factorization:

$$A = LL^t$$
,

where *L* lower triangular. So $x = L^{-t}(L^{-1}b)$ by

$$Lz = b, \quad z_i = \frac{1}{L_{ii}} \left(b_i - \sum_{j < i} L_{ij} z_j \right)$$

$$L^t x = z, \quad x_i = \frac{1}{L_{ii}} \left(z_i - \sum_{j>i} L_{ij} x_j \right)$$

Direct methods

A is symmetric positive definite.

Eigenvalue factorization:

$$A = QDQ^t$$

where Q is orthogonal and D is diagonal. Then

$$x = Q\left(D^{-1}\left(Q^tb\right)\right).$$

More expensive than Choesky

Direct methods are usually quite expensive $(O(n^3)$ work).

Iterative method basics

What's an iterative method?

Definition (Informal definition)

An *iterative method* is an algorithm \mathcal{A} which takes what you have, x_i , and gives you a new x_{i+1} which is *less bad* such that x_1, x_2, x_3, \ldots converges to some x_* with badness= 0.

A notion of badness could come from

- \bullet distance from x_i to our problem solution
- value of some objective function above its minimum
- \odot size of the gradient at x_i

e.g. If x is supposed to satisfy Ax = b, we could take ||b - Ax|| to be the measure of badness.

Iterative method considerations

How expensive is one $x_i \rightarrow x_{i+1}$ step? How quickly does the badness decrease per step? A thousand and one years of experience yields two cases

1 $B_i \propto \rho^i$ for some $\rho \in (0,1)$ (linear)

②
$$B_i \propto \rho^{(\alpha^i)}$$
 for $\rho \in (0,1), \alpha > 1$ (superlinear)

Can you tell the difference?

Convergence

Now can you tell the difference?

When evaluating an iterative method against manufacturer's claims, be sure to do semilog plots.

Iterative methods

Motivation: directly optimize $f(x) = c - x^t b + \frac{1}{2} x^t A x$. gradient descent:

- **1** Search direction: $r_i = -\nabla f = b Ax_i$
- 2 Search step: $x_{i+1} = x_i + \alpha_i r_i$
- **3** Pick alpha: $\alpha_i = \frac{r_i^t r_i}{r_i^t A r_i}$ minimizes $f(x + \alpha r_i)$

$$f(x_i + \alpha r_i) = c - x_i^t b + \frac{1}{2} x_i^t A x_i + \alpha r_i^t (A x_i - b) + \frac{1}{2} \alpha^2 r_i^t A r_i$$
$$= f(x_i) - \alpha r_i^t r_i + \frac{1}{2} \alpha^2 r_i^t A r_i$$

(Cost of a step = 1 A-multiply.)

Iterative methods

Optimize $f(x) = c - x^t b + \frac{1}{2} x^t A x$.

conjugate gradient descent:

- **1** Search direction: $d_i = r_i + \beta_i d_{i-1}$, with $r_i = b Ax_i$.
- **3** Search step: $x_{i+1} = x_i + \alpha_i d_i$

$$f(x_i + \alpha d_i) = c - x_i^t b + \frac{1}{2} x_i^t A x_i - \alpha d_i^t r_i + \frac{1}{2} \alpha^2 d_i^t A d_i$$

(also means that $r_{i+1}^t d_i = 0$)

Avoid extra A-multiply: using $Ad_{i-1} \propto r_{i-1} - r_i$ $\beta_i = -\frac{(r_{i-1} - r_i)^t r_i}{(r_{i-1} - r_i)^t d_{i-1}} = -\frac{(r_{i-1} - r_i)^t r_i}{r_{i-1}^t d_{i-1}} = \frac{(r_i - r_{i-1})^t r_i}{r_{i-1}^t r_{i-1}}$

A cute result

conjugate gradient descent:

- Search direction: $d_i = r_i + \beta_i d_{i-1}$ (β s.t. $d_i A d_{i-1} = 0$)
- **3** Search step: $x_{i+1} = x_i + \alpha_i d_i$ (α minimizes).

Cute result (not that useful in practice)

Theorem (sub-optimality of CG)

(Assuming $x_0 = 0$) at the end of step k, the solution x_k is the optimal linear combination of b, Ab, A^2b , ... A^kb for minimizing

$$c-b^tx+\frac{1}{2}x^tAx.$$

(computer arithmetic errors make this less than perfect) Very little extra effort. Much better convergence.

Slow convergence: Conditioning

The eccentricity of the quadratic is a big factor in convergence

Convergence and eccentricity

$$\kappa = \frac{\max \ \text{eig}(A)}{\min \ \text{eig}(A)}$$

For gradient descent,

$$||r_i|| \sim \left|\frac{\kappa-1}{\kappa+1}\right|^i$$

For CG,

$$||r_i|| \sim \left| \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right|^i$$

useless CG fact: in exact arithmetic $r_i = 0$ when i > n (A is $n \times n$).

The truth about descent methods

Very slow unless κ can be controlled. How do we control κ ?

$$Ax = b \rightarrow (PAP^t)y = Pb, \quad x = P^ty$$

where *P* is a *pre-conditioner* you pick.

How to make $\kappa(PAP^t)$ small?

- perfect answer, $P = L^{-1}$ where $L^t L = A$ (Cholesky factorization).
- imperfect answer, $P \sim L^{-1}$

Variations on the theme of *incomplete factorization*:

- $P^{-1} = D^{\frac{1}{2}}$ where $D = \text{diag}(a_{11}, \dots, a_{nn})$
- more generally, incomplete Cholesky decomposition
- some easy nearby solution or simple approximate A (requiring domain knowledge)

Class project?

One idea for a preconditioner is by a block diagonal matrix

$$P^{-1} = \begin{pmatrix} L_{11} & 0 & 0 \\ 0 & L_{22} & 0 \\ 0 & 0 & L_{33} \end{pmatrix}$$

where $L_{ii}^t L_{ii} = A_{ii}$ a diagonal block of A. In what sense does good clustering give good preconditioners?

End of solvers: there are a few other iterative solvers out there I haven't discussed.

Second pillar: 1D optimization

1D optimization gives important insights into non-linearity.

$$\min_{s \in \mathbb{R}} f(s)$$
, f continuous.

A **derivative-free** option:

A bracket is (a, b, c) s.t. a < b < c and f(a) > f(b) < f(c) then f(x) has a local min for a < x < b

Golden search based on picking a < b' < b < c and either (a < b' < b) or (b' < b < c) is a new bracket... continue Linearly convergent, $e_i \propto G^i$, golden ratio G.

1D optimization

Fundamentally limited accuracy of derivative-free argmin:

Derivative-based methods, f'(s) = 0, for accurate argmin

- bracketed: (a, b) s.t. f'(a), f'(b) opposite sign
 - bisection (linearly convergent)
 - 2 modified regula falsi & Brent's method (superlinear)
- unbracketed:
 - secant method (superlinear)
 - Newton's method (superlinear; requires another derivative)

From quadratic to non-linear optimizations

What can happen when far from the optimum?

- $-\nabla f(x)$ always points in a direction of decrease
- $\nabla \nabla f(x)$ may not be positive definite

For *convex* problems $\nabla \nabla f$ is always positive semi-definite and for strictly convex it is positive definite.

What do we want?

- find a convex neighborhood of x_{*} (be robust against mistakes)
- apply a quadratic approximation (do linear solve)

Fact: \forall non-linear optimization algorithms, $\exists f$ which fools it.

Naïve Newton's method

Newton's method finding x s.t. $\nabla f(x) = 0$

$$\Delta x_i = -(\nabla \nabla f(x_i))^{-1} \nabla f(x_i)$$

$$x_{i+1} = x_i + \Delta x_i$$

Asymptotic convergence, $e_i = x_i - x_*$

$$\nabla f(x_i) = \nabla \nabla f(x_*) e_i + O(||e_i||^2)$$

$$\nabla \nabla f(x_i) = \nabla \nabla f(x_*) + O(||e_i||)$$

$$e_{i+1} = e_i - (\nabla \nabla f_i)^{-1} \nabla f_i = O(||e_i||^2)$$

"squares the error" at every step (exactly eliminates the linear error).

Naïve Newton's method

Sources of trouble

- if $\nabla \nabla f(x_i)$ not posdef, $\Delta x_i = x_{i+1} x_i$ might be in an increasing direction.
- ② if $\nabla \nabla f(x_i)$ posdef, $(\nabla f(x_i))^t \Delta x_i < 0$ so Δx_i is a direction of decrease (could overshoot)
- even if f is convex, $f(x_{i+1}) \le f(x_i)$ not assured. $(f(x) = 1 + e^x + \log(1 + e^{-x})$ starting from x = -2).
- if all goes well, superlinear convergence!

1D example of Newton trouble

- Has one local minimum
- Is not convex (note the concavity near x=0)

1D example of Newton trouble

the negative f'' region around x = 0 repels the iterates:

$$0 \to 3 \to 1.96154 \to 1.14718 \to 0.00658 \to 3.00039 \to 1.96182 \to 1.14743 \to 0.00726 \to 3.00047 \to 1.96188 \to 1.14749 \to \cdots$$

Non-linear Newton

Try to enforce $f(x_{i+1}) \leq f(x_i)$

$$\Delta x_i = -(\lambda I + \nabla \nabla f(x_i))^{-1} \nabla f(x_i)$$

$$x_{i+1} = x_i + \alpha_i \Delta x_i$$

Set $\lambda > 0$ to keep Δx_i in a direction of decrease (many heuristics).

Pick $\alpha_i > 0$ such that $f(x_i + \alpha_i \Delta x_i) \le f(x_i)$. If Δx_i is a direction of decrease, some α_i exists.

• 1D-minimization do 1D optimization problem,

$$\min_{\alpha_i \in (0,\beta]} f(x_i + \alpha_i \Delta x_i)$$

• **Armijo-search** use this rule: $\alpha_i = \rho \mu^n$ some n

$$f(x_i + s\Delta x_i) - f(x_i) \leq \nu s(\Delta x_i)^t \nabla f(x_i)$$

with
$$\rho, \mu, \nu$$
 fixed (e.g. $\rho = 2, \mu = \nu = \frac{1}{2}$).

Line searching

1D-minimization looks like less of a hack than Armijo. For Newton, asymptotic convergence is not strongly affected, and function evaluations can be expensive.

- far from x_* their only value is ensuring decrease
- near x_* the methods will return $\alpha_i \sim 1$.

If you have a Newton step, accurate line-searching adds little value.

Practicality

Direct (non-iterative, non-structured) solves are expensive! $\nabla \nabla f$ information is often expensive!

Iterative methods

gradient descent:

- **1** Search direction: $r_i = -\nabla f(x_i)$
- 2 Search step: $x_{i+1} = x_i + \alpha_i r_i$
- Pick alpha: (depends on what's cheap)

 - 2 minimization $f(x_i + \alpha r_i)$ (danger: low quality)
 - 3 zero-finding $r_i^t \nabla f(x_i + \alpha r_i) = 0$

Iterative methods

conjugate gradient descent:

- **1** Search direction: $d_i = -r_i + \beta_i d_{i-1}$, with $r_i = -\nabla f(x_i)$.
- ② Pick β_i without $\nabla \nabla f$
 - **1** $\beta_i = \frac{(r_i r_{i-1})^t r_{i-1}}{(r_i r_{i-1})^t r_i}$ (Polak-Ribiere)
 - ② can also use $\beta_i = \frac{r_i^t r_i}{r_{i-1}^t r_{i-1}}$ (Fletcher-Reeves)
- **3** Search step: $x_{i+1} = x_i + \alpha_i d_i$

 - 2 1D minimization $f(x_i + \alpha d_i)$ (danger: low quality)
 - 3 zero-finding $d_i^t \nabla f(x_i + \alpha d_i) = 0$

Don't forget the truth about iterative methods

To get good convergence you must precondition! $B \sim (\nabla \nabla f(x_*))^{-1}$

Without pre-conditioner

- **1** Search direction: $d_i = -r_i + \beta_i d_{i-1}$, with $r_i = -P^t \nabla f(x_i)$.
- Pick $\beta_i = \frac{(r_i r_{i-1})^t r_{i-1}}{(r_i r_{i-1})^t r_i}$ (Polak-Ribiere)
- **3** Search step: $x_{i+1} = x_i + \alpha_i d_i$
- \bigcirc zero-finding $d_i^t \nabla f(x_i + \alpha d_i) = 0$

with $B = PP^t$ change of metric

- **Search direction:** $d_i = -r_i + \beta_i d_{i-1}$, with $r_i = -\nabla f(x_i)$.
- **2** Pick $\beta_i = \frac{(r_i r_{i-1})^t B r_{i-1}}{(r_i r_{i-1})^t r_i}$
- **3** Search step: $x_{i+1} = x_i + \alpha_i d_i$
- **3** zero-finding $d_i^t B \nabla f(x_i + \alpha d_i) = 0$

What else?

Remember this cute property?

Theorem (sub-optimality of CG)

(Assuming $x_0 = 0$) at the end of step k, the solution x_k is the optimal linear combination of b, Ab, A^2b , ... A^kb for minimizing

$$c-b^tx+\frac{1}{2}x^tAx.$$

In a sense, CG *learns* about A from the history of $b - Ax_i$. Noting,

- computer arithmetic errors ruin this nice property quickly
- non-linearity ruins this property quickly

Quasi-Newton

Quasi-Newton has much popularity/hype. What if we approximate $(\nabla \nabla f(x_*))^{-1}$ from the data we have

$$(\nabla \nabla f(x_*))(x_i - x_{k-1}) \sim \nabla f(x_i) - \nabla f(x_{k-1})$$

$$x_i - x_{k-1} \sim (\nabla \nabla f(x_*))^{-1} (\nabla f(x_i) - \nabla f(x_{k-1}))$$

over some fixed-finite history.

Data: $y_i = \nabla f(x_i) - \nabla f(x_{k-1}), \ s_i = x_i - x_{k-1} \ \text{with } 1 \le i \le k$

Problem: Find symmetric positive def H_k s.t.

$$H_k y_i = s_i$$

Multiple solutions, but BFGS works best in most situations.

BFGS update

$$H_k = \left(I - \frac{s_k y_k^t}{y_k^t s_k}\right) H_{k-1} \left(I - \frac{y_k s_k^t}{y_k^t s_k}\right) + \frac{s_k s_k^t}{y_k^t s_k}$$

Lemma

The BFGS update minimizes $\min_{H} ||H^{-1} - H_{k-1}^{-1}||_F^2$ such that $Hy_k = s_k$.

Forming H_k not necessary, e.g. $H_k v$ can be recursively computed.

Quasi-Newton

Typically keep about 5 data points in the history.

initialize Set
$$H_0 = I$$
, $r_0 = -\nabla f(x_0)$, $d_0 = r_0$ goto 3

- **①** Compute $r_k = -\nabla f(x_k)$, $y_k = r_{k-1} r_k$
- 2 Compute $d_k = H_k r_k$
- **3** Search step: $x_{k+1} = x_k + \alpha_k d_k$ (line-search)

Asymptotically identical to CG (with $\alpha_i = \frac{d_i^t(\nabla \nabla f)d_i}{r_i^td_i}$)

Armijo line searching has good theoretical properties. Typically used.

Quasi-Newton ideas generalize beyond optimization (e.g. fixed-point iterations)

Summary

- All multi-variate optimizations relate to posdef linear solves
- Simple iterative methods require pre-conditioning to be effective in high dimensions.
- Line searching strategies are highly variable
- Timing and storage of f, ∇f , $\nabla \nabla f$ are all critical in selecting your method.

f	∇f	concerns	method
fast	fast	2,5	quasi-N (zero-search)
fast	fast	5	CG (zero-search)
fast	slow	1,2,3	derivative-free methods
fast	slow	2,5	quasi-N (min-search)
fast	slow	3,5	CG (min-search)
fast/slow	slow	2,4,5	quasi-N with Armijo
fast/slow	slow	4,5	CG (linearized α)
4 11		0	0

1=time 2=space 3=accuracy

4=robust vs. nonlinearity 5=precondition

Don't take this table too seriously...