A Bayesian Model of Visual Attention

Sharat Chikkerur, Thomas Serre, Cheston Tan & Tomaso Poggio Center for Biological and Computational Learning, MIT

Outline

- Introduction
 - Limitations of feed-forward processing
 - Role of attention
- A computational model of attention
- Applications
 - Modeling human eye-movements
 - Object recognition under clutter

Outline

- Introduction
 - Limitations of feed-forward processing
 - Role of attention
- A computational model of attention
- Applications
 - Modeling human eye-movements
 - Object recognition under clutter

Feed-forward processing

Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007

Role of attention

Parallel processing (No attention)

Serial processing (With attention)

Zoccolan Kouh Poggio DiCarlo 2007

Performance (d') 8.1 Human-observers 1.4 Head Closebody

Far-

Medium-

Reynolds Chelazzi &

Serre Oliva Poggio 2007

Desimone 1999

Biology of attention

Attention as Bayesian inference

- •We use a Bayesian framework to model the interaction between the ventral stream and LIP/FEF
- •Feed **forward connections** within the ventral stream are modeled as **bottom-up** evidence. **Feedback** connections from higher areas are modeled as **top-down** priors.
- •The posterior probability of location generates a task-based saliency map.

Rao 2005; Lee & Mumford 2003

Model description

Model properties: invariance

Model properties: crowding

Model: spatial attention

•What is at location X?

Model: feature-based attention

•Where is object X?

Outline

- Introduction
 - Limitations of feed-forward processing
 - Role of attention
- A computational model of attention
- Applications
 - Modeling human eye-movements
 - Object recognition under clutter

Matching human eye-movements

Car search

Pedestrian search

Dataset

- 100 CBCL street-scenes images having cars & pedestrians
- 20 images with neither objects

Experiment

- 8 subjects where shown these 120 images in random order.
- Each image in the stimuli-set was presented twice
- The subjects were asked to count the number of cars/pedestrians
- For each of these block trials, the subject's eye movements were recorded using an infra-red eye tracker.

" " - - ' instantiation

Examples

Car Search

Car Search

Car Search

Pedestrian Search

Pedestrian Search

Pedestrian Search

Examples

Car Search

Car Search

Car Search

Pedestrian Search

Pedestrian Search

Pedestrian Search

Quantitative evaluation: ROC

Quantitative evaluation: ROC

Integrating (local) feature-based + (global) context-based cues accounts for **92%** of inter-subject agreement!

Outline

- Introduction
 - Limitations of feed-forward processing
 - Role of attention
- A computational model of attention
- Applications
 - Modeling human eye-movements
 - Object recognition under clutter

Effect of clutter on detection

recognition without attention

Head Close-body Medium-body Far-body

recognition under attention

Scale and location prediction

attention

Questions?

Thank you!