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" Modeling human eye-movements

= Object recognition under clutter
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Feed-forward processing

*Modified from (Gross, 1998)
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Role of attention

Parallel processing (No attention) Serial processing (With attention)
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Biology of attention

Top-down
feature-based attention
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feature-based at

Attention as Bayesian inference
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*\We use a Bayesian framework to model
the interaction between the ventral
stream and LIP/FEF

eFeed forward connections within the
ventral stream are modeled as bottom-up
evidence. Feedback connections from N

T

V4

higher areas are modeled as top-down
priors.
B Feature-attention

*The posterior probability of location Bl Feed-foward
generates a task-based saliency map. Rao 2005: Lee & Mumford 2003




Model description
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Model properties: invariance
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Model properties:
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Model: spatial attention
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Model: feature-based attention
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* Applications

" Modeling human eye-movements



Car search Pedestrian search

= Dataset
= 100 CBCL street-scenes images having cars & pedestrians
= 20 images with neither objects
= Experiment
= 8 subjects where shown these 120 images in random order.
= Each image in the stimuli-set was presented twice
» The subjects were asked to count the number of cars/pedestrians
= For each of these block trials, the subject’'s eye movements were recorded using
an infra-red eye tracker.

(Psychophysics done by Cheston



"Count cars”

"Count pedestrians”

Feature-based cue

Contaxtual (gist) cue

¥ Saliency map using
combination of cues

Model saliency map
(thrasholded)

Human saliency map
(thresholded)
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Examples
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Detection rate

Quantitative evaluation: ROC

Car Task
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Quantitative evaluation: ROC

Integrating (local) feature-based + (global) context-based
cues accounts for 92% of inter-subject agreement!
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Chikkerur ,Tan Serre & Poggio (SFN ‘09,VSS ‘09)
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* Applications

= Object recognition under clutter



Effect of clutter on detection
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rediction

Scale and location p
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Questions?

Thank youl!
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