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Past lecture

Problem of visual recognition and visual cortex

Historical background

Neurons and areas in the visual system

Feedforward hierarchical models



Hierarchical 
anatomical 
organization

Felleman & van Essen 1991
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Object recognition in the 
visual cortex
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Ventral visual stream

source: Jim DiCarlo 

Object recognition in the 
visual cortex

Hierarchical architecture:
Latencies
Anatomy
Function 



Object recognition in the 
visual cortex

Hubel & Wiesel 1959, 1962, 1965, 1968

Nobel prize 1981

simple
cells

complex
cells



Object recognition in the 
visual cortex

Kobatake & Tanaka 1994

see also Oram & Perrett 1993; Sheinberg & Logothetis 1996; Gallant et al 1996;  Riesenhuber & Poggio 1999

gradual increase in complexity 
of preferred stimulus



Object recognition in the 
visual cortex

see also Oram & Perrett 1993; Sheinberg & Logothetis 1996; Gallant et al 1996;  Riesenhuber & Poggio 1999

Parallel increase in invariance 
properties (position and scale) 

of neurons
Kobatake & Tanaka 1994



Rapid recognition: monkey 
electrophysiology

Hung* Kreiman* Poggio & DiCarlo 2005

Robust invariant readout of 
category information from small 
population of neurons

Single spikes after response 
onset carry most of the 
information



Thorpe et al ‘96

Rapid recognition: 
human behavior



Computational 
considerations

Simple units Complex units

Template matching 
Gaussian-like tuning

~ “AND”

Riesenhuber & Poggio 1999 (building on Fukushima 1980 and Hubel & Wiesel 1962)

Invariance 
max-like operation

~”OR”
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(Riesenhuber & Poggio 1999 2000;                                      
Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005;          
Serre Oliva & Poggio 2007)

✦V1:
•Simple and complex cells tuning properties 

(Schiller et al 1976; Hubel & Wiesel 1965; 
Devalois et al 1982)

•MAX operation in subset of complex cells 
(Lampl et al 2004)

✦V4:
•Tuning for two-bar stimuli (Reynolds Chelazzi 

& Desimone 1999)

•MAX operation (Gawne et al 2002)

• Two-spot interaction (Freiwald et al 2005)

• Tuning for boundary conformation 
(Pasupathy & Connor 2001)

• Tuning for Cartesian and non-Cartesian 
gratings (Gallant et al 1996)

✦IT:
•Tuning and invariance properties (Logothetis 

et al 1995)

•Differential role of IT and PFC in 
categorization (Freedman et al 2001 2002 
2003)

•Read out data (Hung Kreiman Poggio & 
DiCarlo 2005)

•Average effect in IT (Zoccolan Cox & DiCarlo 
2005; Zoccolan Kouh Poggio & DiCarlo in 
press)

✦Human behavior:
•Rapid animal categorization (Serre Oliva 

Poggio 2007)
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Gabor filters

Parameters fit to V1 data (Serre & Riesenhuber 2004)

17 spatial frequencies (=scales)

4 orientations

Animal
vs.

non-animal

C1
S1

S2

S3
S2b
C2

classif.
units

S4

C2b

C3
S1 units



Animal
vs.

non-animal

C1
S1

S2

S3
S2b
C2

classif.
units

S4

C2b

C3
C1 units

Increase in tolerance to 
position (and in RF size)

Local max over 
pool of S1 cells

C1

S1



Animal
vs.

non-animal

C1
S1

S2

S3
S2b
C2

classif.
units

S4

C2b

C3
C1 units

Increase in tolerance to 
scale

C1 Local max over 
pool of S1 cells



Receptive field sizes
Model Cortex References

simple cells 0.2o − 1.1o ≈ 0.1o − 1.0o [Schiller et al., 1976e;
Hubel and Wiesel, 1965]

complex cells 0.4o − 1.6o ≈ 0.2o − 2.0o

Peak frequencies (cycles /deg)
Model Cortex References

simple cells range: 1.6 − 9.8 bulk ≈ 1.0 − 4.0 [DeValois et al., 1982a])
mean/med: 3.7/ 2.8 mean: ≈ 2.2

range: ≈ 0.5 − 8.0
complex cells range: 1.8 − 7.8 bulk ≈ 2.0 − 5.6

mean/med: 3.9/ 3.2 mean: 3.2
range ≈ 0.5 − 8.0

Frequency bandwidth at 50% amplitude (cycles / deg)
Model Cortex References

simple cells range: 1.1 − 1.8 bulk ≈ 1.0 − 1.5 [DeValois et al., 1982a]
med: ≈ 1.45 med: ≈ 1.45

range ≈ 0.4 − 2.6
complex cells range: 1.5 − 2.0 bulk ≈ 1.0 − 2.0

med: 1.6 med: 1.6
range ≈ 0.4 − 2.6

Frequency bandwidth at 71% amplitude (index)
Model Cortex References

simple cells range: 44 − 58 bulk ≈ 40 − 70 [Schiller et al., 1976d]
med: 55

complex cells range 40 − 50 bulk ≈ 40 − 60
med. 48

Orientation bandwidth at 50% amplitude (octaves)
Model Cortex References

simple cells range: 38o − 49o — [DeValois et al., 1982b]
med: 44o

complex cells range: 27o − 33o bulk ≈ 20o − 90o
med: 43o med: 44o

Orientation bandwidth at 71% amplitude (octaves)
Model Cortex References

simple cells range: 27o − 33o bulk ≈ 20o − 70o [Schiller et al., 1976c]
med: 30o

complex cells range: 27o − 33o bulk ≈ 20o − 90o
med: 31o

Serre & Riesenhuber 2004
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non-animal
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Features of moderate complexity (n~1,000 
types)

Combination of  V1-like complex units at 
different orientations

Synaptic weights w learned from natural 
images

5-10 subunits chosen at random from all 
possible afferents (~100-1,000)
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Nature Neuroscience - 10, 1313 - 1321 (2007) / Published online: 16 September 2007 | doi:10.1038/nn1975

Neurons in monkey visual area V2 encode combinations of orientations
Akiyuki Anzai, Xinmiao Peng & David C Van Essen
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Animal
vs.

non-animal
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Same selectivity as S2 units but increased 
tolerance to position and size of preferred 
stimulus

Local pooling over S2 units with same 
selectivity but slightly different positions and 
scales

S2 units in V2 and C2 in V4?



Beyond C2 units

Units increasingly complex and invariant
S3/C3 units:

Combination of  V4-like units with different 
selectivities
Dictionary of ~1,000 features = num. columns in IT 
(Fujita 1992)

S4 units:
View-tuned units (imprinted with part of the training 
set, e.g. animal and non-animal images but still 
unsupervised)
Tuning and invariance properties agrees with IT 
data (Logothetis Pauls & Poggio 1995)
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Idea 1: Built-in invariance to 2D transformations (rotation 
and scale)

Idea 2: Generic features shared between multiple 
categories

Overall reduce “sample complexity” and reduces number 
of training examples needed to learn a task .

So why hierarchies?



Task-specific = categorization circuits
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V1

V2

V4

PIT

AIT

PFC

features of increasing complexity 
and tolerance to position and scale

view-based object representation but 
tolerant position, scale and small rotations
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supervised learning from a handful of 
training examples ~ linear perceptron
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unsupervised developmental-like 
learning stage



Columns in the cortex



 Layers of the model are organized in columns

 Each model unit is equivalent to ~100 IF (~1 column of 
cortex)

 Each hypercolumn contains the same basic dictionary of 
features and is replicated at all positions and scales
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 Learning is sequential

 Start with layer S2/C2 then 
S2b/C2b and S3/C3 

 Pick one unit in layer Sk

 Select random set of inputs 
from retinotopically organized 
afferents 

Sk

Ck-1

w1

w2 w3



Sk

Ck-1

w1

w2 w3

x1
xk

xp

x j

x2 x3

y

w=x
Imprint with random patch of 

natural image



Sk

Ck-1
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w2 w3

x1
xk

xp

x j
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y = exp −
1

2σ2

n

j =1

(wj − x j )2[ ]
y



...

✦ We learn ~1,000 units this way and then move 
to the next layer
✦ Learning follows a long tradition of researchers 
who have argued that the visual system may be 
adapted to the statistics of the natural environment 
(Attneave 1954; Barlow 1961; Atick 1992; Ruderman 1994; Simoncelli & 
Olshausen 2001)

✦Here we assume the input image moves (shifting 
and looming) so that the selectivity of the imprinted 
units gets replicated at all positions and scales

.
..

.
. .

.



Learning invariances
w| T. Masquelier & S. Thorpe 

(CNRS, France)

see also (Foldiak 1991; Perrett et al 1984;  Wallis & Rolls, 
1997; Einhauser et al 2002; Wiskott & Sejnowski 2002; 
Spratling 2005)

✦ Simple cells learn 
correlation in space   
(at the same time)

✦ Complex cells learn 
correlation in time

movie courtesy of Wolfgang Einhauser



Learning invariances
w| T. Masquelier & S. Thorpe 

(CNRS, France)

see also (Foldiak 1991; Perrett et al 1984;  Wallis & Rolls, 
1997; Einhauser et al 2002; Wiskott & Sejnowski 2002; 
Spratling 2005)

✦ Simple cells learn 
correlation in space   
(at the same time)

✦ Complex cells learn 
correlation in time

movie courtesy of Wolfgang Einhauser

S1 units

C1 unit
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 Learning frequent image 
features during development

 Object categories share 
reusable features 

 Large redundant vocabulary for 
implicit geometry
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“critical” feature 
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(Tanaka, 1996)
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Learning a dictionary of shape-
components in visual cortex

“critical” feature 
columns in IT 

(Tanaka, 1996)

✦ Pre-attentive processing:
• “Loose collection of basic 
features” (Wolfe & Bennett 1997) 

• “Unbound features” (Treisman et al) 

✦ Computer vision:
• Component-based > holistic representation                    (Perona 

et al 1995, 1996, 2000; Heisele Serre & Poggio 2001, 2002)

• Features of intermediate complexity are optimal (Ullman, 2002) 

• Bag of features (Csurka et al 2004; Sivic et al 2005; Sudderth et al 2005) 



C2 vs. IT neurons

Model data: Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005 
Experimental data: Hung* Kreiman* Poggio & DiCarlo 2005
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Application to computer vision



Bio-motivated computer 
vision

Computer vision 
system based on the 

response properties of 
neurons in the ventral 
stream of the visual 

cortex

Serre Wolf & Poggio 2005; Wolf & Bileschi 2006; 
Serre et al 2007

Scene parsing and object recognition



Bio-motivated computer 
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Jhuang Serre Wolf & Poggio 2007

Action recognition in video sequences motion-sensitive MT-like units



Bio-motivated computer 
vision

Jhuang Serre Wolf & Poggio 2007

Action recognition in video sequences motion-sensitive MT-like units



Recognition accuracy

Dollar et al 
‘05

model chance

KTH Human 81.3% 91.6% 16.7%

Weiz. Human 86.7% 96.3% 11.1%

UCSD Mice 75.6% 79.0% 20.0%

★ Cross-validation: 2/3  training, 1/3 testing, 10 repeats Jhuang Serre Wolf & Poggio ICCV’07



Automatic recognition of 
rodent behavior

Serre Jhuang Garrote Poggio Steele in prep



Automatic recognition of 
rodent behavior

human 
agreement

72%

proposed 
system

71%

commercial 
system

56%

chance 12%

Performance

Serre Jhuang Garrote Poggio Steele in prep
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Database collected by Torralba & Oliva (2003)

Head Close-body Medium-body Far-body

Animals

Natural 

distractors

Artificial 

distractors
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Serre Oliva Poggio 2007



High performance (~90%) when

maximal amount of information present

in the absence of clutter

Performance decreases (~74%) with 
increasing amount of clutter

Limitation of feedforward model compatible 
with decrease in response in V4 (Reynolds 

Chelazzi & Desimone 1999) and IT in the presence of 
clutter (Zoccolan, Cox, DiCarlo, 2005; Zoccolan, Kouh, 
Poggio, DiCarlo, in sub; Rolls, Aggelopoulos, Zheng, 2003) 

“Clutter effect”
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Animal present
or not ?

30 ms ISI

20 ms

Image

Interval 
Image-Mask

Mask
1/f noise

80 ms

(Thorpe et al 1996; Van Rullen & Koch 2003; Bacon-Mace et al 2005)




Same effect for 
human observers!
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Model (82% correct)

Human observers (80% correct)

Serre Oliva Poggio 2007

(n=24)



Image-by-image correlation:

Heads:             ρ=0.71 

Close-body:     ρ=0.84  

Medium-body: ρ=0.71

Far-body:         ρ=0.60

Model predicts level of performance on rotated 
images (90 deg and inversion)

Further comparisons	

Serre Oliva Poggio 2007
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the preferred feature was cued (22). Neurons
responded better to their preferred feature
in the RF compared to nonpreferred features
(Fig. 3, A and B) (color, P G 0.01; shape, P G
0.001). In the key test, we found that responses
were enhanced if the distracter in the RF was
of the neuron’s preferred color and it was also
the same color (but, by design, not the same
shape) as the color-shape conjunction target
(Fig. 3A) (P 0 0.002). In other words, the
distracter shared in the bias for the target
stimulus if it shared one of its features, con-
sistent with the predictions of parallel search
models. The median enhancement was 8%,
with more than 86% of the neurons having a
larger response when the RF stimulus shared
a feature with the searched-for target (chi-
square, P G 0.005). There was also an en-
hancement of the response when the shape of
the distracter matched the shape of the color-
shape conjunction target, consistent with paral-
lel models, but this enhancement was smaller
and developed later than the color-related en-
hancement (Fig. 3, A and B). When the RF
distracter was of the preferred feature, shape-

related enhancement was not significant in
the same time interval as that used in the
feature search task, but it became significant
È150 ms after fixation onset (P 0 0.035).
This is consistent with the behavioral evi-
dence described above, that the monkey used
the color feature more than the shape feature
in guiding its search to the color-shape con-
junction target (fig. S2B). The LFP magni-
tude (Fig. 3, C and D) and power were not
modulated by stimulus or cue features in the
conjunction task.

There was also significant enhancement
of the spike-field coherence in the gamma
band when the RF distracter had the neu-
ron’s preferred feature and that feature was
in common with the target for either a color
(Fig. 3E) (P G 10j5) or shape (Fig. 3F) (P G
0.001) match. The enhancement in the latter
case was smaller, again consistent with the
monkey’s behavioral bias in favor of using
color information. The median enhancement
of coherence with a color match was 22%,
with 97% of spike-LFP pairs showing an in-
crease (chi-square, P G 10j5), and the median

enhancement with a shape match was 17%,
with 78% of spike-LFP pairs showing an in-
crease (P G 0.002). Thus, the top-down bias
in visual search is not limited to cases in
which the RF stimulus is the search target but
instead applies to any stimulus, even a dis-
tracter, that contains a feature relevant to the
search, consistent with parallel models. It is
also consistent with the results from the feature
search task, in which we found that enhance-
ment occurred for colors that were similar to
the target color. Both results potentially ex-
plain why search is often more difficult when
the distracters share features with the target,
as in some forms of conjunction search (8).

Serial selection during search. Finally,
although we have emphasized the evidence
for parallel mechanisms in search, the task
necessarily had a spatial attention (serial)
component to it, in that the animals made sev-
eral saccades to stimuli in the array while
searching for the targets. To test for spatial at-
tention effects on responses, we compared re-
sponses and spike-field synchronization to a
stimulus in the RF when either it was selected
for a saccade or the saccade was made to a
stimulus outside the RF (Fig. 4).

Selecting the RF stimulus for a saccade led
to an enhancement of the neuronal response
across the population (Fig. 5A) (population
median enhancement of 36%, P G 10j5,

RF stimulus is
target of saccade

RF stimulus is not
target of saccade 

SACCADE:

SACCADE:

RF

FIX

vs.

Test for serial (spatial) selection

Fig. 4. Illustration of the saccade enhancement
analysis. We compared neuronal measures when
the monkey made a saccade to an RF stimulus
versus a saccade away from the RF. In this dis-
play, fixating the purple cross, for example,
brings the green star into the neuron’s RF. We
would then compare neuronal responses when
the green star in the RF was the target of the
saccade, to those when the saccade target was
to a stimulus outside the RF, e.g., the orange A.
Activity was analyzed from the time the purple
cross was fixated to when the next saccade
was initiated.
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Fig. 3. (A to F) Feature-related enhancement of neuronal activity and synchronization during
conjunction search. Conventions are as given in Fig. 2.
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