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About this class

Theme We introduce the learning problem as the problem
of function approximation from sparse data. We
define the key ideas of loss functions, empirical
error and generalization error. We then introduce
the Empirical Risk Minimization approach and the
two key requirements on algorithms using it:
well-posedness and consistency. We then
describe a key algorithm — Tikhonov regularization
— that satisfies these requirements.
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About this class

Theme We introduce the learning problem as the problem
of function approximation from sparse data. We
define the key ideas of loss functions, empirical
error and generalization error. We then introduce
the Empirical Risk Minimization approach and the
two key requirements on algorithms using it:
well-posedness and consistency. We then
describe a key algorithm — Tikhonov regularization
— that satisfies these requirements.

Math Required Familiarity with basic ideas in probability theory.
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@ Learning as function approximation

@ Empirical Risk Minimization

@ Generalization and Well-posedness

@ Regularization

@ Appendix: Sample and Approximation Error
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Data Generated By A Probability Distribution

We assume that there are an “input” space X and an “otput”
space Y. We are given a training set S consisting n samples
drawn i.i.d. from the probability distribution p(z) on Z2 =X x Y:

(X17Y1)7-~7(Xn7,Vn)

thatis zy,..., 2z,
We will make frequent use of the conditional probability of y
given x, written p(y|x):

w(z) = p(x,y) = p(y|x) - p(x)

It is crucial to note that we view p(x, y) as fixed but unknown.
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Probabilistic setting

X
P(yIX)
”’ —— T —
.'/
P(x)
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Hypothesis Space

The hypothesis space H is the space of functions that we
allow our algorithm to provide. For many algorithms (such as
optimization algorithms) it the space the algorithm is allowed to
search. As we will see, it is often important to choose the
hypothesis space as a function of the amount of data available.
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Learning As Function Approximation From Samples:

Regression and Classification

The basic goal of supervised learning is to use the training set
S to “learn” a function fs that looks at a new x value xpey, and
predicts the associated value of y:

Yored = fs(Xnew)

If y is a real-valued random variable, we have regression.

If y takes values from an unordered finite set, we have pattern

classification. In two-class pattern classification problems, we

assign one class a y value of 1, and the other class a y value of
—1.
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Loss Functions

In order to measure goodness of our function, we need a loss
function V. In general, we let V(f,z) = V(f(x), y) denote the
price we pay when we see x and guess that the associated y

value is f(x) when it is actually y.
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Common Loss Functions For Regression

For regression, the most common loss function is square loss

or L2 loss:
V(f(x),y) = (f(x) — y)?

We could also use the absolute value, or L1 loss:
V(f(x),y) = If(x) — yI
Vapnik’s more general e-insensitive loss function is:

V(F(x),y) = (If(x) =y = )+
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Common Loss Functions For Classification

For binary classification, the most intuitive loss is the 0-1 loss:
V(f(x),y) = ©(=yf(x))

where ©(—yf(x)) is the step function. For tractability and other
reasons, we often use the hinge loss (implicitely introduced by
Vapnik) in binary classification:

V(f(x),y) = (1 =y - f(x))+
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The learning problem: summary so far

There is an unknown probability distribution on the product
space Z = X x Y, written p(z) = p(x, y). We assume that X is
a compact domain in Euclidean space and Y a bounded subset
of R. The training set S = {(X1, y1), ..., Xn, ¥n)} = {21, ...2n}

consists of n samples drawn i.i.d. from p.
'H is the hypothesis space, a space of functions f: X — Y.

A learning algorithm isamap L : Z" — H that looks at S and
selects from H a function fs : X — y such that fs(x) ~ y in a
predictive way.
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Expected error, empirical error

Given a function f, a loss function V, and a probability
distribution i over Z, the expected or true error of f is:

] = B, V[f, 2] = / V(f, 2)du(2)
V4

which is the expected loss on a new example drawn at random
from p.

We would like to make /[f] small, but in general we do not know
.

Given a function f, a loss function V, and a training set S
consisting of n data points, the empirical error of f is:

sl = 13" vit.2)
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A reminder: convergence in probability

Let {X,} be a sequence of bounded random variables. We say
that

nlim Xn = X in probability

Ve >0 lim P{|X, — X| >} = 0.

or
if for each n there exists a €, and a J,, such that

IED{|Xn—X’ Efn} §5n7

with e, and §,, going to zero for n — oc.
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Generalization

A very natural requirement for fs is distribution independent
generalization

Vi, nILmOO |Is[fs] — I[fs]| = O in probability

In other words, the training error for the solution must converge
to the expected error and thus be a “proxy” for it. Otherwise the
solution would not be “predictive”.

A desirable additional requirement is universal consistency

Ve >0 lim supPg {/[fs] > inf I[f] + 5} =0.
n—oo feH

Remark: For some of the results the requirement of uniform
convergence must be added in both definitions.
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A learning algorithm should be well-posed, eg stable

In addition to the key property of generalization, a “good”
learning algorithm should also be stable: fs should depend
continuously on the training set S. In particular, changing one
of the training points should affect less and less the solution as
n goes to infinity.
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General definition of Well-Posed and lll-Posed
problems

A problem is well-posed if its solution:
@ exists
@ is unique
@ depends continuously on the data (e.g. it is stable)

A problem is ill-posed if it is not well-posed. In the context of
this class, well-posedness is mainly used to mean stability of
the solution.

Tomaso Poggio The Learning Problem and Regularization



More on well-posed and ill-posed problems

Hadamard introduced the definition of ill-posedness. Ill-posed
problems are typically inverse problems.

As an example, assume g is a function in Y and v is a function
in X, with Y and X Hilbert spaces. Then given the linear,
continuous operator L, consider the equation

g=Lu.

The direct problem is is to compute g given u; the inverse
problem is to compute u given the data g. In the learning case
L is somewhat similar to a “sampling” operation and the inverse
problem becomes the problem of finding a function that takes
the values

f(X,') =Y, i = 1,..n
The inverse problem of finding v is well-posed when

@ the solution exists,
@ is unique and
@ is stable, that is depends continuously on the initial data g-
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ERM

Given a training set S and a function space H, empirical risk
minimization (Vapnik introduced the term) is the class of
algorithms that look at S and select fs as

fo = argmin Ig[f
s gfeggs[]
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Generalization and Well-posedness of Empirical Risk

Minimization

For ERM to represent a “good” class of learning algorithms, the
solution should

@ “generalize”

@ exist, be unique and — especially — be “stable”
(well-posedness).
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ERM and generalization: given a certain number of

samples...
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...suppose this is the “true” solution...
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... but suppose ERM gives this solution.
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Under which conditions the ERM solution converges
with increasing number of examples to the true

solution? In other words...what are the conditions for
generalization of ERM?
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ERM and stability: given 10 samples...
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...we can find the smoothest interpolating polynomial

(which degree?).
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But if we perturb the points slightly...
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...the solution changes a lot!
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If we restrict ourselves to degree two polynomials...
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...the solution varies only a small amount under a

small perturbation.
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ERM: conditions for well-posedness (stability) and

predictivity (generalization)

Since Tikhonoy, it is well-known that a generally ill-posed
problem such as ERM, can be guaranteed to be well-posed
and therefore stable by an appropriate choice of H. For
example, compactness of H guarantees stability.

Similarly, the classical conditions for consistency of ERM
consists or appropriately restricting H:
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ERM: conditions for well-posedness (stability) and

predictivity (generalization)

Definition
H is a (weak) uniform Glivenko-Cantelli (uGC) class
if

Ve >0 lim supPg {sup |1[f] — Is[f]]| > s} =0.
Ry feH
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ERM: conditions for well-posedness (stability) and

predictivity (generalization)

Theorem [Vapnik and Cervonenkis (71), Alon et al (97),
Dudley, Giné, and Zinn (91)]

A necessary and sufficient condition for generalization (and
consistency) of ERM is that H is uGC.

Thus, a proper choice of the hypothesis space H ensures
generalization of ERM (and consistency since for ERM
generalization is necessary and sulfficient for consistency and
viceversa). A proper choice guarantees also stability of ERM.
With the appropriate definition of stability, stability and
generalization are equivalent for ERM.
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Regularization

Regularization (originally introduced by Tikhonov independently
of the learning problem) ensures well-posedness and (because
of the above argument) generalization of ERM by constraining
the hypothesis space H. The direct way — minimize the
empirical error subject to f in a ball in an appropriate H —is
called Ivanov regularization. The indirect way is Tikhonov
regularization (which is not strictly ERM).
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lvanov and Tikhonov Regularization

ERM finds the function in (H, || - ||) which minimizes
1 n
7 21: V(f(xi), yi)
=

which in general — for arbitrary hypothesis space H — is ill-posed.
Ivanov regularizes by finding the function that minimizes

1 n
E Z V(f(Xi)vyf)
i=1
while satisfying
If[|? < A.

Tikhonov regularization minimizes over the hypothesis space H, for a
fixed positive parameter ~, the regularized functional

IS Vo). 0 + 1R "

i=1
where ||f||x is the norm in H — the Reproducing Kernel Hilbert Space
(RKHS), defined by the kernel K.



Tikhonov Regularization

As we will see in future classes

@ Tikhonov regularization ensures well-posedness eg
existence, uniqueness and especially stability (in a very
strong form) of the solution

@ Tikhonov regularization ensures generalization

@ Tikhonov regularization is closely related to — but different
from — lvanov regularization, eg ERM on a hypothesis
space H which is a ball in a RKHS.
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Next Class

@ In the next class we will introduce RKHS: they will be the
hypothesis spaces we will work with.

@ We will also derive the solution of Tikhonov regularization.
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Appendix: Target Space, Sample and Approximation

Error

In addition to the hypothesis space H, the space we allow our
algorithms to search, we define...

The target space 7 is a space of functions, chosen a priori in
any given problem, that is assumed to contain the “true”
function f that minimizes the risk. Often, 7 is chosen to be all
functions in L, or all differentiable functions. Notice that the
“true” function if it exists is defined by 1.(z), which contains all
the relevant information.
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Sample Error (also called Estimation Error)

Let f;; be the function in H with the smallest true risk.

We have defined the generalization error to be Ig[fs] — /[fs].

We define the sample error to be /[fs] — I[fy], the difference in true
risk between the best function in H and the function in H we actually
find. This is what we pay because our finite sample does not give us
enough information to choose to the “best” function in H. We’d like
this to be small. Consistency — defined earlier — is equivalent to the
sample error going to zero for n — co.

A main goal in classical learning theory (Vapnik, Smale, ...) is
“bounding” the generalization error. Another goal — for learning theory
and statistics — is bounding the sample error, that is determining
conditions under which we can state that /[fs] — /[fx] will be small
(with high probability).

As a simple rule, we expect that if H is “well-behaved”, then, as n
gets large the sample error will become small.
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Approximation Error

Let fy be the function in 7 with the smallest true risk.

We define the approximation error to be /[fy] — I[fy], the
difference in true risk between the best function in H and the
best function in 7. This is what we pay because H is smaller
than 7. Wed like this error to be small too. In much of the
following we can assume that /[fy] = 0.

We will focus less on the approximation error in 9.520, but we
will explore it.

As a simple rule, we expect that as H grows bigger, the
approximation error gets smaller. If 7 C ‘H — which is a situation
called the realizable setting —the approximation error is zero.
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Error

We define the error to be /[fs] — I[fy], the difference in true risk
between the function we actually find and the best function in
7. We'd really like this to be small. As we mentioned, often we
can assume that the error is simply /[fs].

The error is the sum of the sample error and the approximation
error:

Ilfs] = 1ol = (Ilfs] = 1[A]) + (N[Fx] — 1[])

If we can make both the approximation and the sample error
small, the error will be small. There is a tradeoff between the
approximation error and the sample error...
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The Approximation/Sample Tradeoff

It should already be intuitively clear that making H big makes
the approximation error small. This implies that we can (help)
make the error small by making H big.

On the other hand, we will show that making H small will make
the sample error small. In particular for ERM, if H is a uGC
class, the generalization error and the sample error will go to
zero as n — oo, but how quickly depends directly on the “size”
of H. This implies that we want to keep H as small as possible.
(Furthermore, 7 itself may or may not be a uGC class.)

Ideally, we would like to find the optimal tradeoff between these
conflicting requirements.
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