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Plan for class 14-15-16-17

1 Class 14: HLM in the ventral stream of visual cortex
J Class 15 Models of the ventral an dorsal stream

] Class 16: Derived Kernels: a mathematical framework for
hierarchical learning machines

1 Class 17: Attention: a Bayesian extension of the model
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Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale

How then do the learning machines described in the theory compare with brains?

0 One of the most obvious differences is the ability of people and animals to

learn from very few examples. The algorithms we have described can learn an object recognition

task from a few thousand labeled images but a child, or even a monkey, can learn the same task from just a few
examples. Thus an important area for future theoretical and experimental work is learning from partially labeled
examples

O A comparison with real brains offers another, related, challenge to learning theory. The “learning algorithms” we
have described in this paper correspond to one-layer architectures. Are hierarchical architectures

with more layers justifiable in terms of learning theory? it seems that the learning theory of
the type we have outlined does not offer any general argument in favor of hierarchical learning machines for
regression or classification.

a Why hierarchies? There may be reasons of efficiency — computational speed and use of computational

resources. For instance, the lowest levels of the hierarchy may represent a dictionary of features that can be
shared across multiple classification tasks.

d There may also be the more fundamental issue of sample CompIeXIty. Learning theory shows that the
difficulty of a learning task depends on the size of the required hypothesis space. This complexity determines in
turn how many training examples are needed to achieve a given level of generalization error. Thus our ability of
learning from just a few examples, and its limitations, may be related to the hierarchical architecture of cortex.
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Classical learning theory and Kernel Machines
(Regularization in RKHS)

fel

1 :
mln-;lzl V(f(xi)_yi)'l'}\' HfHK

implies

f(x)= EjaiK(Xﬂxi)

Remark:

Kernel machines correspond to
shallow networks
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Winning against the curse of dimensionality:
new research directions in learning

Many processes - physical processes as well as human activities — generate
high-dimensional data: curse of dimensionality or poverty of stimulus.

There are, however, basic properties of the data generating process that may
allow to circumvent the problem of high dimensionality and make the analysis
possible:

smoothness - exploited by L2 regularization techniques

sparsity - exploited by L1 regularization techniques

data geometry - exploited by manifold learning techniques

hierarchical organization — suggested by the architecture of sensory cortex

. %Z V(f(x)—y)+A pen(f)

feH
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New Research Directions

Hierarchical Architectures

...............................................

Neural Wavelets/
Response/ Multiscale
Derived Representations
Kernels

Science & Applications
Neuroscience of Cortex
Vision
Language
Genomics
Key :
; Diffusion
O old methods ( ) : Maps
= Kernel
Y methods ,“..?;.’.';';"::.‘.,":L P W ;
\ y
Smoothness
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This class:

using a class of models to summarize/interpret
experimental results...with caveats:

* Models are cartoons of reality, eg Bohr's model of
the hydrogen atom

 All models are “wrong”

« Some models can be useful summaries of data and
some can be a good starting point for more
complete theories
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Problem of visual recognition, visual cortex
Historical background
Neurons and areas in the visual system

Feedforward hierarchical models
e Ventral stream model in more details (Jim Mutch)
e Dorsal stream model (Hueihan Jhuang)

N~

Wednesday, March 31, 2010



The Ventral Stream

unconstrained visual recognition is a difficult learning
problem
(e.g., “is there an animal in the image?”)
. y A A \ \
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Object Recognition and the Ventral Stream

.................................

Hypothesis: the hierarchy
architecture of the ventral stream in '—“
monkey visual cortex has a key role in e
object recognition...of course

subcortical pathways may also be

important (thalamus, in particular

pulvinar...). Desimone & Ungerleider 1989
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A model of the ventral stream, which is also a hierarchical algorithm...

Y

Prefrontal
Cortex

FRONTAL-
“WORKING MEMOR

Rostral STS
3
8
g

C2b

7a

S2b

| .
|73 Complex cells Simple cells |
ventral stream [ O |

‘what' pathway | = Main routes — TUNING

! - Bypass routes «++ MAX

dorsal stream
‘where' pathway

Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu Knoblich = .
Kreiman & Poggio 2005; Serre Oliva Poggio 2007 [SOftwa re available onli ne]
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1. Problem of visual recognition, visual cortex
2. Historical background

3. Neurons and areas in the visual system

4.

Feedforward hierarchical models
e Ventral stream model in more details (Jim Mutch)

e Dorsal stream model (Hueihan Jhuang)
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Some personal history:

First step in developing a model:
learning to recognize 3D objects in IT cortex

Examples of Visual Stimuli

Poggio & Edelman 1990
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An idea for a module for view-invariant
identification

Architecture that
accounts for
invariances to 3D
effects (>1 view
needed to learn!)

Prediction:
neurons become
view-tuned
through learning

Poggio & Edelman 1990
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Learning to Recognize 3D Objects in IT
Cortex

Examples of Visual Stimuli

After human psychophysics
(Buelthoff, Edelman, Tarr,
Sinha, to be added next
year...), which supports
models based on view-tuned
units...

... physiology!

Logothetis Pauls & Poggio 1995
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Recording Sites in Anterior IT

...neurons tuned to
faces are intermingled
nearby....

Logothetis, Pauls & Poggio 1995
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Neurons tuned to object views,
as predicted by model!
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A “View-Tuned” IT Cell

Target Views
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But also view-invariant object-specific neurons
(5 of them over 1000 recordings)
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View-tuned cells:

scale invariance (one training view only) motivates present model
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Hierarchy

« Gaussian centers (Gaussian Kernels) tuned to
complex multidimensional features as
composition of lower dimensional Gaussian

« What about tolerance to position and scale?

* Answer: hierarchy of invariance and tuning
operations
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Answer: the “HMAX” model

View-tuned cells

Complex composite cells (C2)

Composite feature cells (52)

Complex cells (C1)
4™ -

OODO SODO CODO -+ simplecels s1)

weaghted sum

Riesenhuber & Poggio 1999, 2000
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Problem of visual recognition, visual cortex
Historical background
Neurons and areas in the visual system
Feedforward hierarchical models
e Ventral stream model in more details (Jim Mutch)
e Dorsal stream model (Hueihan Jhuang)

N~
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Different shapes and sizes but common structure

SPINY NEURONS NON-SPINY NEURONS

GABA

Figure 12. Basic cell types in the monkey cerebral cortex. Left: spiny neurons that include pyramidal cells and stellate
cells (A). Spiny neurons utilize the neurotransmitter glutamate (Glu). Right: smooth cells that use the neurotransmitter
GABA. B, cell with local axon arcades; C, double bouguet cell; D, H, basket cells; E, chandelier cells; F, bitufted,
usually peptide-containing cell; G, neuroghiaform cell.

Salirce: httn'/ /wehvision med utah edii/
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Neural Circuits
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Membrane with excitatory and inhibitory

synapses
| | ! ‘ dv
% CE b gV —E)+g,(V—E)+g,(V =V,,)=0
2 2 4 S dt
Gy~ 0. - |
L
i |
a’V~ B _ g, ~ g
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0
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Object Recognition and the Ventral Stream

,} Dendrites

Nucleus

 Human Brain
— 1019-10" neurons (1 million flies ©)
— 10%4- 107% synapses

* Ventral stream in rhesus monkey

— 10° neurons
— 5106 neurons in AIT

* Neuron

— Fundamental space dimensions:

 fine dendrites : 0.1 p diameter; lipid bilayer membrane : 5 nm thick;
specific proteins : pumps, channels, receptors, enzymes

— Fundamental time length : 1 msec
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The Ventral Stream

,7 Dendrites

 Human Brain
—1019-10" neurons (~1 million flies ©)
— 1074~ 10%° synapses

* Ventral stream in rhesus monkey

— ~10° neurons in the ventral stream
(350 10%in each emisphere)

—~15 108 neurons in AIT (Anterior
InferoTemporal) cortex
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The Ventral Stream

v2 va

P ©|5¢

* ® [
O X & ©
5 X @ X

The ventral stream hierarchy: V1, V2,
V4, IT
A gradual increase in the
receptive field size, in the complexity of the
preferred stimulus, in tolerance to position
and scale changes

Kobatake & Tanaka, 1994
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V1: hierarchy of simple and complex cells

LGN-type Simple Complex

cells cells cells

(Hubel & Wiesel 1959)
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V1: hierarchy of simple and complex cells

LGN-type Simple Complex

cells cells cells

| | |
LGN

ZEL/[M‘ : 7 cells

simple cell

(Hubel & Wiesel 1959)
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V1: hierarchy of simple and complex cells

LGN-type Simple Complex

cells cells cells

T )
l LGN
 § T ‘; {}" cells
\Zgjémcal
simple cell

-/ (Hubel & Wiesel 1959)
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V1: hierarchy of simple and complex cells

LGN-type Simple Complex

cells cells cells

(Hubel & Wiesel 1959)
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Complex
cells

cells

cells
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V1: hierarchy of simple and complex cells
LGN-type Simple
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V1: hierarchy of simple and complex cells

LGN-type Simple Complex

cells cells cells
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cells

cells

cells
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V1: hierarchy of simple and complex cells
LGN-type Simple
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cells
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V1: hierarchy of simple and complex cells
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Complex
cells

cells

cells
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V1: hierarchy of simple and complex cells
LGN-type Simple
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V1: hierarchy of simple and complex cells

LGN-type Simple Complex
cells cells

cells
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V1: hierarchy of simple and complex cells
LGN-type Simple
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The Ventral Stream

v2 va
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The ventral stream hierarchy: V1, V2,
V4, IT
A gradual increase in the
receptive field size, in the complexity of the
preferred stimulus, in tolerance to position
and scale changes

Kobatake & Tanaka, 1994
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Gross Brain Anatomy

Primary motor arca Primary scnsory areas

‘ , Somatosensory area
/

Frontal lobe -

T~— W —— Visual arca ——
- 20
7/, ‘ ~ —— .'_.;
: MG =277 ™ Auditory area
/ o AN —

— ‘\ —

T'emporal lobe c e
R >
\‘-‘;3‘ =

A large percentage of the cortex devoted
to vision

Wednesday, March 31, 2010




The Visual System

MEDAL PREFRIONTAL

at PHONTAL

FRONT AL

PAC

OLFACTORY

[Van Essen & Anderson, 1990]
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The visual
system

e Qver 30 visual
areas

* Over 300 cortico-
cortical pathways

(Felleman & VanEssen 1991)
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(Thorpe and Fabre-Thorpe, 2001)
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The ventral stream

Source: Lennie, Maunsell, Movshon
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Problem of visual recognition, visual cortex
Historical background
Neurons and areas in the visual system
Feedforward hierarchical models
e Ventral stream model in more details (Jim Mutch)
e Dorsal stream model (Hueihan Jhuang)

N~
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From HMAX to the present model

How the new version of the model evolved from the original one

1. The two key operations: Operations for selectivity and invariance, originally computed in a simplified
and idealized form (i.e., a multivariate Gaussian and an exact max, see Section 2) have been
replaced by more plausible operations, normalized dot-product and softmax

2. S1 and C1 layers: In [Serre and Riesenhuber, 2004] we found that the S1 and C1 units in the original
model were too broadly tuned to orientation and spatial frequency and revised these units accordingly.
In particular at the S1 level, we replaced Gaussian derivatives with Gabor filters to better fit

parafoveal simple cells’ tuning properties. We also modified both S1 and C1 receptive field sizes.

3. S2 layers: They are now learned from natural images. S2 units are more complex than the old
ones (simple 2 °— 2 combinations of orientations). The introduction of learning, we believe, has b
een the key factor for the model to achieve a high-level of performance on natural

images, see [Serre et al., 2002].

4. C2 layers: Their receptive field sizes, as well as range of invariances to scale and position have been
decreased so that C2 units now better fit V4 data.

5. 83 and C3 layers: They were recently added and constitute the top-most layers of the model along
with the S2b and C2b units (see Section 2 and above). The tuning of the S3 units is also learned from
natural images.

6. S2b and C2b layers: We added those two layers to account for the bypass route (that3gojects directly
from V1/V2 to PIT, thus bypassing V4 [see Nakamura et al., 1993]).
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A hierarchical feedforward model of the ventral
stream based on neural data

Prefrontal
Cortex

FRONTAL-
“WORKING MEMORY"

F .
173 Complex cells () Simple cells |
dorsal stream ventral stream 25 :

|
‘where' pathway ! ‘what' pathway | == Main routes - TUNING

! - Bypass routes s+ MAX - - e

[software available online]
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Model of Visual Recognition (millions of units)

based on neuroscience of cortex

S2

oo(b oooo c1

0000 000« .. .... S1
:'. ‘\ ;Q
| —
|

w— TUNING

It is in the family of “Hubel-Wiesel”
models (Hubel & Wiesel, 1959;
Fukushima, 1980; Oram & Perrett,
1993, Wallis & Rolls, 1997;
Riesenhuber & Poggio, 1999; Thorpe,
2002; Ullman et al., 2002; Mel, 1997;
Wersing and Koerner, 2003; LeCun et
al 1998; Amit & Mascaro 2003; Deco &
Rolls 2006...)

As a biological model of object
recognition in the ventral stream — from
V1 to PFC -- it is perhaps the most
quantitative and faithful to known
neuroscience

A model which “copies” the
neuroscience. Millions of (model)
neurons.

Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu Knoblich Kreiman & Poggio
2005; Serre Oliva Poggio 2007
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Two key computations,
suggested by physiology

Unit Pooling
Simple > -
I ‘
[

Complex

P

Computation Operation

Selectivity / Gaussian-
template tuning /

matching  AND-like

Soft-max /

Invariance )
or-like
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» Gaussian-like tuning
operation (and-like)

»Simple units

S5

C2b

S3

S2b
Cc2

S2
o |
S1
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» Gaussian-like tuning
operation (and-like)

»Simple units
C2b

S2b

117 Complex cells (O Simple cells |
| == Main routes - TUNING |
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» Gaussian-like tuning
operation (and-like)

»Simple units

O -
‘‘‘‘‘‘‘‘

I:7% Complex cells () Simple celis |
| == Main routes - TUNING I
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Two operations (~OR, ~AND):
disjunctions of conjunctions

» Tuning operation (Gaussian-like,

AND-like) y = Pl
or

XeW

Y

»Simple units
» Max-like operation (OR-like)
y =max{xl, x2,...}
» Complex units
Each operation

~microcircuits of ~100
neurons

S5

S
Stage 3
S3
S C2
Stage 2 R
g S2
. OO C1
Stage 1 .

. Complex cells () Simple celis

l
|
| == Main routes — TUNING
| Bypass routes  =«+ MAX - ¢
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» Tuning operation (Gaussian-like,
AND-like) y = et

Two operations (~OR, ~AND):
disjunctions of conjunction )

or _
~ AW ‘j»‘ ll'l C3
»Simple units Stage 3 -

» Max-like operation (OR-like)

] P :' C2
y =max{xl,x2,...} Stage 2 ¥
. 2209 o900
» Complex units Stage 1 s
s
- \O.xi??l“.%‘.’ /
+_» Complex cells () Simple celis A Nt %
Each operation e e o8]
~microcircuits of ~100 >
neurons
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Two operations (~OR, ~AND):
disjunctions of conjunction

» Tuning operation (Gaussian-like,

AND-like) y= et
or
XoWw
y ~
| x|
»Simple units

» Max-like operation (OR-like)
y =max{xl, x2,...}
» Complex units
Each operation

~microcircuits of ~100
neurons

Stage 3

Stage 2

Stage 1

|Categ

/

2

\

\

Vo

\

\

X

\
\\

S5
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Gaussian tuning

Gaussian tuning in Gaussian tuning in IT
VI for orientation around 3D views

-
—
—

Sotke tave Wz

o
\

Hubel & Wiesel 1958 Logothetis Pauls & Poggio 1995
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Max-like operation

Max-like behavior in V4 Max-like behavior inV |
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see also Finn Prieber & Ferster 2007
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Plausible biophysical implementations

« Max and Gaussian-like tuning )
can be approximated with Y w2k
same canonical circuit using =l
: ey egs . Yy = —.
shunting inhibition. Tuning (eg n
“center” of the Gaussian) ket | Do
corresponds to synaptic =
weights. I
k=7 /\
sl

(Knoblich Koch Poggio in prep; Kouh & Poggio 2007; Knoblich Bouvrie Poggio 2007
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Basic circuit is closely related to other models

Operation

(Steady-State) Output

Canonical

Encrgy Model

Y —

13

Y

p A

- (
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o
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\
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" |
o
; v
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A
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\

)\

Can be implemented by
shunting inhibition (Grossberg
1973, Reichardt et al. 1983,
(1) Carandini and Heeger, 1994)
"~ and spike threshold variability
(Anderson et al. 2000, Miller
and Troyer, 2002)

Adelson and Bergen (see also
(2] Hassenstein and Reichardt,
1956)

Gaussian-like

i) Ofthe same form as model
of MT (Rust et al., Nature
Neuroscience, 2007

Max-like
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Biophysics: one circuit

A canonical microcircuit of spiking neurons?

Stage 2

Stage 1

A plausible biophysical implementation

for both Gaussian tuning (~AND) + max |7 Complex cells () Simple celis
(~OR): normalization circuits with divisive SRR R

inhibition (Kouh, Poggio, 2008; also RP, 1999; 1= Bypessroutes --- MAX

Heeger, Carandini, Simoncelli,...)
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Biophysics: one circuit

A canonical microcircuit of spiking neurons?

C2b

Stage 2

Stage 1

A plausible biophysical implementation

for both Gaussian tuning (~AND) + max |7 Complex cells () Simple celis
(~OR): normalization circuits with divisive SRR R

inhibition (Kouh, Poggio, 2008; also RP, 1999; 1= Bypessroutes --- MAX

Heeger, Carandini, Simoncelli,...)
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Biophysics: one circuit

A canonical microcircuit of spiking neurons?

g ~ Jl (N
@& Stage 2
Stage 1

A plausible biophysical implementation
for both Gaussian tuning (~AND) + max

(~OR): normalization circuits with divisive i
inhibition Bypass

— N — N

routes e+« MAX . v
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servised

Learning: supervised and unsu

C2b

S2b
€2
Q"'*‘ s2
S P c1
000 000 s1

1172 Complex cells () Simple cells
|

| == Main routes = TUNING
{ - Bypass routes «-« MAX
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Learning: supervised and unsuperyvised

« (Generic, overcomplete
dictionary of “templates” or
iImage components (from V1 to
IT) represented by tuning of
cells generated during i &6
unsupervised learning (from ‘ 2
~10,000 natural images) during oo

. C1
a developmental-like stage | - 2]
2000 ©00 S1
see also (Foldiak 1991; Perrett et al 1984; Wallis & Rolls, . \ : - .
1997; Lewicki and Olshausen, 1999; Einhauser et al -+ Complex cells O simple celis
2002; Wiskott & Sejnowski 2002; Spratling 2005) :— Main routes == TUNING

- Bypass routes -+ MAX

Wednesday, March 31, 2010




Generic, overcomplete
dictionary of “templates” or
iImage components (from V1 to
IT) represented by tuning of
cells generated during
unsupervised learning (from
~10,000 natural images) during
a developmental-like stage

see also (Foldiak 1991; Perrett et al 1984; Wallis & Rolls, \
1997; Lewicki and Olshausen, 1999; Einhauser et al
2002; Wiskott & Sejnowski 2002; Spratling 2005)
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Task-specific circuits (from IT to PFC)
- Supervised learning: ~ classifier

« (Generic, overcomplete
dictionary of “templates” or
iImage components (from V1 to
IT) represented by tuning of
cells generated during
unsupervised learning (from
~10,000 natural images) during
a developmental-like stage

see also (Foldiak 1991; Perrett et al 1984; Wallis & Rolls,
1997; Lewicki and Olshausen, 1999; Einhauser et al
2002; Wiskott & Sejnowski 2002; Spratling 2005)
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More on feedforward (CBCL) models

S and C layers and parameters
unsupervised, developmental learning

software, GPUs and optimization

Jim Mutch

50
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Max operation in cortex

Tolerance to eye movements

Tuning properties of view-
tuned units in IT

Role of IT and PFC in cate-
gorization tasks

Learned model C2 units
compatible with V4 data

“Face inversion” effect

The model predicted the existence of complex cells in V1 [Lampl
etal., 2004] and V4 [Gawne and Martin, 2002] performing a soft-
max pooling operation

From the softmax operation - originally introduced to explain
invariance to translation in IT - the model predicts stability of
complex cells responses relative to small eye motions

The model has been able to duplicate quantitatively the gener-
alization properties of IT neurons that remain highly selective
for particular objects, while being invariant to some transforma-
tions [Logothetis et al.,, 1995; Riesenhuber and Poggio, 1999b)
their tuning for pseudo-mirror views and generalization over
contrast reversal. Also, the model qualitatively accounts for
IT neurons responses to altered stimuli [Riesenhuber and Pog-
gio, 1999b], i.e., scrambling [Vogels, 1999], presence of distractors
within units receptive fields [Sato, 1989] and clutter [Missal et al,,
1997)

After training monkeys to categorize between “cats” and “dogs”,
we found that the ITC seems more involved in the analysis of
currently viewed shapes, whereas the PFC showed stronger cat-
egory signals, memory effects, and a greater tendency to encode
information in terms of its behavioral meaning [Freedman et al.,
2002] (see also subsection 4.4)

We have recently shown (see Subsection 4.2) that C2 units that
were passively learned from natural images seem consistent with
V4 data, including tuning for boundary conformations [Pasu-
pathy and Connor, 2001], two-spot interactions[Freiwald et al.,
2005), gratings [Gallant et al, 1996], as well as the biased-
competition model [Reynolds et al., 1999]

The model has helped [Riesenhuber et al., 2004] guide control
conditions in psychophysical experiments to show that an effect
that appeared to be incompatible with the model turned out to
be an artifact

Table 3: Some of the correct predictions by the model
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Feedforward Models:
comparison w/ neural data

V1.
« Simple and complex cells tuning (Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)
+ MAX-like operation in subset of complex cells (Lampl et al 2004)

o V4.

* Tuning for two-bar stimuli (Reynolds Chelazzi & Desimone 1999)
MAX-like operation (Gawne et al 2002)

Two-spot interaction (Freiwald et al 2005)

Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu, Kouh, Connor et al., 2007)

Tuning for Cartesian and non-Cartesian gratings (Gallant et al 1996)
IT:

« Tuning and invariance properties (Logothetis et al 1995, paperclip objects)
 Differential role of IT and PFC in categorization (Freedman et al 2001, 2002, 2003)

* R results (Hung Kreiman Pogqi DiCarlo 2
* Pseudo-average effect in IT (Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)
* Human:

» Rapid categorization (Serre Oliva Poggio 2007
» Face processing (fMRI + psychophysics) (Riesenhuber et al 2004; Jiang et al 2006)

(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)
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Comparison w/_neural data

evalois et al 19

%@ﬁﬁ?’é‘% SPT‘&%%?L‘?EJE&’W%EEP‘FSEQ?S

° E‘I’I_/:\n)q(p?ggngti%%ﬂ subset of complex cells

® Tuning for two-bar stimuli (Reynolds Chelazzi &
Desimone 1999

MAX operation (Gawne et al 2002)
Two-spot interaction (Freiwald et al 2005)

Euonrllrrl] Ifoiﬂoteﬁgndary conformation (Pasupathy &

° I&gwa%goertgﬁ%e%%n and non-Cartesian gratings

° ;—PTH%?M invariance properties (Logothetis et
Persncal o1 5547 3yl coeaormain

5889)0m data (Hung Kreiman Poggio & DiCarlo

Gt efin Koul Pogaie & TERNIG i bress)

o A o : .
588% animal categorization (Serre Oliva Poggio

Riesenhuber & Poggio 1999 2000;
Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005
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Agreement of model w| IT Readout data

Perceived / reported object

==Pp-Neuronal pattern

J( Real-time

accuracy
=P Predicted

object percept: ﬁ-‘:ﬁ‘

140190 ms »

. MC
120-160ms ..
v
5 »
100-130ms ., - (U
40-80 ms
» 20-50 ms J ’
LGN 80-80ms o
\ 4
N V4 50-70 ms
. T “ .
Hotina 6 » 70_90"‘ Mermeadiate visu
20-40 ms ’ ALY foems foature
-
80-100 ms
2l 'y ¥
06 Py
] »
hou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Scierce;-Now4,2005... . 160-220 ms
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The end station of the ventral stream
in visual cortex is IT

¢ command

Categorical judgments, 140-190 ¢
decision making

120-160 m:

Simple visual forms,
edges, comers

S~
e To spinal cord

;o finger muscle e 160-220 ms

180-260 ms
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IT Readout

/7 objects,
8 classes

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, 2005
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Reading-out the neural code in AIT

L]

HE e E R |
77cbjects, I BN AN E BB B |
8classes T O M@ DO B S B |

EEEEEEEE |

[T TTITTTINNON]

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005
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Recording at each recording site during passive viewing

time — 100 ms|100 ms

« 77 visual objects
* 10 presentation repetitions per object
- presentation order randomized and counter-balanced
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Example of One IT Cell
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Agreement of model wj| IT Readout data
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] )
m_jE_jm_|
mE {m |
n_|@ {m |
B e {m ]
B_j@_{m_ |
E jm |8
= |m ] nL B im |\ |
EE jo e m {E
E |m = mlm ]
B B =
e ]m

8»

~N
(S / SJUNO2) asuodsal Jun-NyNW [BUOIN3N

!L-La
mm ]
m | IwLom
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ung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science,
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Training a classifier on neuronal

activity.
— —p
——
INPUT = ey QU TPUT
—
— —p

From a set of data (vectors of activity of n neurons (x) and object label (y)

{(xlaJﬁ)a(xza)b)a---a(xwye)}

Find (by training) a classifier eg a function f such that £ (x) = p

is a good predictor of object label y for a future neuronal activity x
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Decoding the Neural Code ...
pooulation resnonse (usina a classifier)

- cat/dog

Population activity human face

| || || |neuron1

RN - toys
ol
N .
food

o

N monkey face

[ I | .
HINIE - white box contours
I | Il

| Ll I

Lelarmlingnculon N . hand/body

from (Xx,y)

pairs . vehicles
X

Categorization VS {1 ,...,8}
8 groups
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Hung*, Kreiman, Poggio, DiCarlo. Science 2005
From neuronal

population activity... ...a classifier can decode and guess what the
monkey was seeing...

l / Categorization

- Toy
« Body

 Human Face

Vehicle

nuiEmnn T

« Monkey Face

 Vehicle
 Food

« Box

« Cat/Dog

Video speed: 1 frame/sec
Actual presentation rate: 5 objects/sec

80% accuracy in read-out from ~200 neurons
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A result (C. Hung,
et al., 2005 ):
very rapid
read-out of object
information rapid
(80-100 ms from
onset of stimulus)

Information
represented by
population of
neurons over very
short times
(over 12 5ms bin)

Very strong constraint
on neural code

(not firing rate).
Consistent with our IF
circuits for max and
tuning

Classification Performance

Single 12.5 ms time windows
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It turns out that the model agrees with |IT data: we can decode
from model units as well as from IT

14 10IT 1 = Model
) _ i
€ 0.8 - 0.8 -
£ 0. .
£
5 _ |
& 0.6 - 0.6 -
-
o . .
8
e 0.4 - 0.4
(¥
(¥p]
L) - .
O
0.7 - 0.2 4
0 -4 : i . .0 4 : i . .
1 4 16 64 256 1 4 16 64 2756
Number of Siles Number of Sites

Serre, Kouh, Cadieu, Knoblich, Kreiman, Poggio. MIT Al Memo 2005
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So...experimentally we can decode the brain’s
code and
read-out from neural activity what the monkey is
seeing

We can also read-out with similar results
from the model !!!
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Agreement of model w| IT Readout data

Reading out category and identity invariant to position and scale

Hung Kreiman Poggio DiCarlo 2005

0.8 1
(=]
Q
Lee] [t [ || o] -
T g 0.6 1
S
Bl E [ E
= sue a 0.4 +
5
= NE QD 3
— mee 2
= 2 0.2 1
—_ o
= HER.. O :
p— T Q
e 0 -
-\ B
= e Position:
— (] = @ ... W ,
TRAIN(
= 2L
T P
o
T
Identifat i
77 pictures TEST |

Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005
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Amrmanmaned ~f Madal Wl IT Readout data

LI o IT mm Model
A B
1417 1 = Model
¢ 081 1L
g | @ o .. 1
& 084 2
g 0.6 1
5 £ 0
o Q
& 0 ]
- —
§ a 0.4 -
= c
& 0.4 S
v, o
v
Q
S < 0.2 1
07 v
)
Q
o 4 L.
0 ) o
1 4 16 64 256 1 4 16 64 25 Size: 3.4°
Number of Sites Number of Sites Position: center

TRAIN
|

TEST

Reading out category and identity “invariant” to
position and scale

Hung, et al. 2005; Serre et al., 2005
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Reading Out Scale and Position Information:
comparing the model to Hung et al.

) o

Model Physiology
% 08l 0.8 1
£ 2 - |
5 -
t 0.6} J.6
a
5
=04 0.4 -
f—f --------------------- - -
502 0.2
an B8 B8 memm
- ‘ 2 — 0 Y T
scale location categonzation v - -
«  70/30 train/test (20 splits) . -
64 randomly selected C3/C2b features 3';
— to match 64 recording sites -
+ Scale: 77.2 £1.25% vs. ~63% (physiology)
* Location: 64.9 + 1.44% vs. ~65% (physiology)

« Categorization: 71.6 £ 0.91% vs. ~77% (physiology)

Tan, Serre, Poggio, 2008
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Hierarchical feedforward models of the
ventral stream

Interval

Image-Mask

Mask
1 /f noise
& oA
30 ms IS TR AN
Rapid Categorization: \ Animal
mask should force visual « /‘Nimal present
cortex to operate in N ornot?

feedforward mode

Thorpe et al 1996; Van Rullen & Koch 2003; Bacon-Mace et al 2005
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Hierarchical feedforward models of the

_—

o7 - ventral stream

Rapid Categorization
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Hierarchical feedforward models of the
SN ventral stream

Rapid Categorization

ot

e g’ . Sl
! Complex cets () Sample cots *\"
— S — TUNING
MAX - v \
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Hierarchical feedforward models of the
ventral stream

Feedforward Models:
“predict” rapid categorization
(82% model vs. 80% humans)

2.67
L 2.41 y
Z
©Q
=
o -
- - Human-observers

1.4

] | | |

Head Close- Medium- Far-
body body body

‘} > l.’s.
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Hierarchical feedforward models of the
ventral stream Wk L

Feedforward Models:
“predict” rapid categorization
(82% model vs. 80% humans)

2.67

N
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!

—
i

—  Odel
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Performance (d')

1.4

| | | |
| I I i

Head Close- Medium- Far-
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Hierarchical feedforward models of the
ventral stream Wk L

Feedforward Models:
“predict” rapid categorization
(82% model vs. 80% humans)

2.67

N
-
;
!

—
i

—  Odel
v« Human-observers

Performance (d')

1.4

| | | |
| I I i

Head Close- Medium- Far-
body body body

AR |

-
-N
- ]
:
:
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Hierarchical feedforward models of the

T ventral stream
=B « Image-by-image correlation:
e — Heads: p=0.71

— Close-body: p=0.84
— Medium-body: p=0.71
— Far-body: 0=0.60

Mod: 100% Hum: 96%
! >
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Read-out of object category in clutter
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Read-out of object category in clutter

A. Sample of the objects pasted in complex backgrounds. Here we show a single object
(a car) out of the 77 objects that were used in this experiment. Here we show the object
overlayed onto two different complex background scenes (city landscape, top and house
exterior, bottom) out of the 98 different background scenes that we used in this
experiment. We did not attempt to generate a "meaningful” image, objects (including their
surrounding gray background) were merely overlayed onto the background scenes. We
used four different relative sizes of the object and background images. The center of
each object was randomly positioned in the image. B, C. Classification performance (B.
categorization, C. identification) as a function of the number of C2 units used to train the
classifier. The classifier was trained using 20 % of the 98 backgrounds and the
performance was tested with the same objects presented under different backgrounds.
Object position within the image was randomized (both for the training and

testing images). The different colors correspond to different relative sizes for the object
with respect to the background. D, E. Classification performance (D. categorization, E.
identification) using 256 units as a function of the relative size of object to background.
The horizontal dashed lines indicate chance performance obtained by randomly shuffling
the object labels during training.

75
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Read-out of object category and identity in
images containing multiple objects

A B

(g
o

| — Categonzation

— -
v v
s — |dentification -
§E 09 §3
< T y
gg 0.6 &'g
c c o
8% g2
e o>
,gg 0.44 & 5‘
" 3 .
3 0.2 v

e e S S . N S S, N A S N

0
1 4 16 64 56
Number of units
E F

bt
°

o
=

2
~

Average binary clssifier performance
o
o0

ot
w

Average binary chissifier performance

0.5

1 4 16 64 256 | 4 16 &4 256
Number of units Number of units

Wednesday, March 31, 2010




Read-out of object category and identity in
images containing multiple objects

Classification performance for reading out object category (red)or object identity (blue) in
the presence of two objects (A, C, E) or three objects (B, D, F). A, B Examples of the
images used in training (top) and testing (bottom).

Here, we show images containing single objects to train the classifier (top). However,
performance was not significantly different when we used images containing multiple
objects to train the classifier (see text and Appendix A.9 for details).

C, D Classification performance as a function of the number of C2 units used to train the
classifier. Here we used a multi-class classifier approach; the output of the classifier for
each test point was a single possible category (or object identity) and a we considered
the prediction to be a hit if this prediction matched any of the objects present in the
image. The dashed lines show chance performance levels and the error bars correspond
to one standard deviation from 20 random choices of which units were used to train the
classifier. We exhaustively evaluated every possible object pair or triplet. E, F Average
performance for each of the binary classifiers as a function of the number of C2 units
used for training. The number of binary classifiers was 8 for categorization (red) and 77
for identification (blue). The error bars show one standard deviation over 20 random

choices of C2 units. -
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Hierarchical feedforward models of the
ventral stream

Feedforward Models:
perform well compared to
engineered computer vision systems (in 2006)

Bileschi, Wolf, Serre, Poggio, 2007
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Hierarchical feedforward models of the

—

ventral stream

Feedforward Models:
perform well compared to
engineered computer vision systems (in 2006)

Bileschi, Wolf, Serre, Poggio, 2007
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Hierarchical feedforward models of the
> ventral stream

Feedforward Models:
perform well compared to
engineered computer vision systems (in 2006)

QU038 Deteciat Yerit 0

(1 11] ..% 0000 5!
s
. ~ N il
i L Complex cells () Smple colls ‘IR
— VA rOULS —TUNING 1 L
“A - v

Bypass routes e X

Bileschi, Wolf, Serre, Poggio, 2007
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Bio-motivated computer

VISION

Scene parsing and object recognition

Serre Wolf & PogQgio-2005; Wolf & Bileschi- 2006; Serre et
al-2007

Wednesday, March 31, 2010

Speed improvement since 2006

image size multi-thread GPU (cuda)
04x64 4.5X 14x
128x128 3.5X 14x
256x256 1.5x 17x
512x512 2.5X 25X

From- ~1 min down to ~1 sec !!



Remarks

* The stage that includes (V4-PIT)-AlIT-PFC
represents a learning network of the Gaussian
RBF type that is known (from learning theory) to
generalize well

* In the model the stage between IT and "PFC” is
a linear classifier — like the one used in the read-
out experiments

« The inputs to IT are a large dictionary of
selective and invariant features
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Readings on the work with
many relevant references

A detailed description of much of the work is in the
“‘supermemo” at

http://cbcl.mit.edu/projects/cbcl/publications/ai-
publications/2005/AIM-2005-036.pdf

Other recent publications and references
can be found at
http://cbcl.mit.edu/publications/index-pubs.html
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http://cbcl.mit.edu/projects/cbcl/publications/ai-publications/2005/AIM-2005-036.pdf
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http://cbcl.mit.edu/projects/cbcl/publications/ai-publications/2005/AIM-2005-036.pdf
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Model extension to the dorsal stream:
Recognition of actions

dorsal
stream

Parallel Pathways
in Visual Cortex

dorsal stream

Thomas Serre, Hueihan Jhuang &

Tomaso Poggio collaboration with
David Sheinberg at Brown University
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Quantitative automatic phenotyping
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Quantitative automatic phenotyping

= Behavioral analyses of mouse behavior needed to:
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Quantitative automatic phenotyping

= Behavioral analyses of mouse behavior needed to:

x Assess functional roles of genes
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Quantitative automatic phenotyping

x  Behavioral analyses of mouse behavior needed to:
x Assess functional roles of genes

= Validate models of mental diseases
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Quantitative automatic phenotyping

= Behavioral analyses of mouse behavior needed to:

x Assess functional roles of genes
= Validate models of mental diseases

x Help assess efficacy of drugs
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x  Automated quant system to help:
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Quantitative automatic phenotyping

= Behavioral analyses of mouse behavior needed to:

x Assess functional roles of genes
= Validate models of mental diseases
x Help assess efficacy of drugs

x  Automated quant system to help:

= [imit subjectivity of human intervention
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Quantitative automatic phenotyping

= Behavioral analyses of mouse behavior needed to:

x Assess functional roles of genes
= Validate models of mental diseases
x Help assess efficacy of drugs

x  Automated quant system to help:

= [imit subjectivity of human intervention

x  24/7 home-cage analysis of behavior
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Quantitative automatic phenotyping

= Behavioral analyses of mouse behavior needed to:

x Assess functional roles of genes
= Validate models of mental diseases
x Help assess efficacy of drugs

x  Automated quant system to help:

= [imit subjectivity of human intervention

x  24/7 home-cage analysis of behavior

= 24/7 monitoring of animal well-being
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More on models of the dorsal stream:
action recognition and applications

Hueihan Jhuang

84
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Hierarchical feedforward models of visual cortex

may be wrong
A ...but present a challenge
for “classical” learning theory:

VI 8OO
*0 an unusual, hierarchical architecture
with unsupervised and supervised learning
working well.

e e - But...ironically, we do not understand why
1 these models work well
(see LeCun, Poggio, Hinton...)

...SO,
we need theories -- not just models!
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Theory of Hierarchical Learning Machines (HLM)

GOAL.:
Hierarchical architectures to preprocess images/signals
in order to reduce the sampling complexity of a classifier trained
with labeled examples.
The hierarchical architecture is synthesized from a large number
of unsupervised examples.

Joint work with Steve Smale, Jake Bouvrie, Andrea Caponnetto,

Lorenzo Rosasco
Mathematics of the Neural Response, J. Foundations of Comp. Mathematics, 2009
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a mathematical framework for
hierarchical learning machines

HLMs:

Lorenzo Rosasco + Andre Wibisono: Class 16

87
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Extension to attention: dealing with clutter

26 :
)
Y 24 L
s
g
< 18 Model
& w Human-observers
1.4
— —— . 4
Head Close: Medium Far
body body body
0 -
Ref 1 2 3 4 5 6
Ref + Flanker (up 10 six pairs)
Zoccolan Kouh Poggio DiCarlo 2007 Serre Oliva Poggio 2007

see also Broadbent 1952 1954; Treisman 1960; Treisman & Gelade 1980; Duncan & Desimone 1995; Wolfe, 1997; Tsotsos and many others
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Extension to attention: dealing with clutter

261
)
3 24
§
E 1.8 — Model
o= Human-observers
14
s ' ' '

Head Close- Medium-  Far-
body body body

a » - v_a
"I -

Zoccolan Kouh Poggio DiCarlo 2007 Serre Oliva Poggio 2007

a9
S

0 v v —
Ref1 2 3 4 5 6
Ref + Flanker (up 1o six pairs)

Parallel processing (No attention)

see also Broadbent 1952 1954; Treisman 1960; Treisman & Gelade 1980; Duncan & Desimone 1995; Wolfe, 1997; Tsotsos and many others
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Extension to attention: dealing with clutter

Ref + Flanker (up 10 six pairs)
Zoccolan Kouh Poggio DiCarlo 2007

Parallel processing (No attention)

Serial processing (With attention)

Performance (d')

267
24
181 e Model
o= Human-observers
14
. . ~+ +
Head Close- Medium-  Far-

body body

body

Q‘ — TS e
D T

Serre Oliva Poggio

2007

LIP/ FE‘FD
B

®
o

PFC
T
V4

vz

see also Broadbent 1952 1954; Treisman 1960; Treisman & Gelade 1980; Duncan & Desimone 1995; Wolfe, 1997; Tsotsos and many others
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Extending feedforward models with an
additional attention module

Sharat Chikkerur: Class 17

89
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Limitations of present feedforward hierarchical models

* Most existing models of visual cortex do not account
-- for cortical backprojections

-- for the emerging detailed connectivity among cortical
areas or patches (e.g. “network of face patches....)

-- for subcortical pathways and noncortical brain regions
e.g. pulvinar...)

 More data from physiology and fMRI are needed
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A Turing Test for Vision

 Vision is more than categorization or identification:
it is image understanding/inference/parsing

« Qur visual system can “answer” almost any kind of question
about an image or video (a Turing test for vision...)
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