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About this class

Goal: to introduce a mathematical counterpart to the visual cortex
model described in the previous two lectures.

Describe a recursive definition of a similarity kernel.

Describe theoretical analyses.

S. Smale, L. Rosasco, J. Bouvrie, A. Caponnetto, and T. Poggio.

“Mathematics of the Neural Response”, Foundations of Computational

Mathematics (2010) 10: 67–91

and
J. Bouvrie, T. Poggio, L. Rosasco, S. Smale. A. Wibisono. “Properties of

Hierarchical Learning Machines”, in preparation.
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Biologically Inspired Hierarhical Learning Machines

Human-Machine Comparison: Chomsky’s poverty of the
stimulus argument: biological organisms can learn complex
concepts and tasks from extraordinarily small empirical
samples.

Hierarchical organization is the key? circuits found in the
human brain facilitate robust learning from few examples via
the discovery of invariances, while promoting circuit
modularity and reuse of redundant sub-circuits, leading also to
greater energy and space efficiency.
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Why Hierarchical Learning Machines?

When and why is a hierarchical architecture preferred?

1 Invariance versus selectivity.

2 Computational properties.

3 Adaptive tuning.

4 Sample complexity.

For tasks that can be decomposed into a hierarchy of parts, how
can we show that a supervised classifier trained using a hierarchical
feature map will generalize better than an off-the-shelf
non-hierarchical alternative?
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Hierarchica Learning: Empirical Motivation
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9-class digits problem, nearest neighbor classifier, Euclidean distance vs. 3-layer

derived distance (u = 12, v = 20, 500 templates/layer, 3-pixel image

translations).
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Towards a Theory

We will borrow concepts and
operations underlying the
visual cortex model.
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Defining a model

The ingredients needed to define the derived kernel consist of:

A finite architecture of nested domains. We’ll call them
patches.

A suitable family of function spaces defined on each patch.

A set of transformations defined on patches.

A set of templates which connect the mathematical model to
a real world setting.
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An Architecture of Patches

We first consider an architecture composed of three layers of
patches: u, v and Sq in R2, with u ⊂ v ⊂ Sq,

Figure: Nested patch domains.A. Wibisono, L. Rosasco Derived Kernel and the Neural Response



Images as Functions

We consider a function space on Sq, denoted by

Im(Sq) = {f : Sq → [0, 1]},

as well as the function spaces Im(u), Im(v) defined on subpatches
u, v, respectively.

Functions can be interpreted as grey scale images when working
with a vision problem for example.
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Transformations

Next, we assume a set Hu of
transformations that are maps
from the smallest patch to the
next larger patch

h : u→ v.

Similarly Hv with h : v → Sq.

The sets of transformations are assumed to be finite.

These transformations act on the domain of a function (image).
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Examples

Examples of transformations are primarily translations, but also
scalings and rotations...

Translations and Scalings

we have transformations of the form h = hβhα with

hα(x) = αx, and hβ(x′) = x′ + β,

where α ∈ R and β ∈ R2 is such that hβhα(u) ⊂ v.
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Interpretation

In the vision interpretation, a translation h can be thought of as
moving the image over the “receptive field” v

Figure: A transformation “restricts” an image to a specific patch.
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Templates

Template sets are finite,
Tu ⊂ Im(u) and Tv ⊂ Im(v)

they are image patches
sampled from some set of
unlabeled images.

link the mathematical
development to real world
problems.

The space of images can be endowed with a “mother” probability
measure ρ. Templates can be seen as images frequently
encountered in the early stages of life.
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Reproducing Kernel

Given a set X, a function K : X ×X → R is a reproducing kernel
if it is a symmetric and positive definite kernel, i.e.

n∑
i,j=1

αiαjK(xi, xj) ≥ 0,

for any n ∈ N, x1, . . . , xn ∈ X and α1, . . . , αn ∈ R.
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Dot Products and Feature map

Consider a feature
map:

Φ : X → F

Inner product kernels are an instance of reproducing kernels:

K(x, x′) = 〈Φ(x),Φ(x′)〉

is a reproducing kernel.
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Normalization

We assume K(x, x) 6= 0 for all x ∈ X and let

K̂(x, x′) =
K(x, x′)√

K(x, x)K(x′, x′)
.

Clearly K̂ is a reproducing kernel and K̂(x, x) ≡ 1 for all x ∈ X.

Allows interpretation of and comparison between different
instances.

Is nice for correspondence with a distance.
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On the normalization

To make sense of the normalization we rule out the functions such
that K(f, f) is zero.

This assumption is quite natural in the context of images:

If K(f, f) is zero, the responses of f is identically zero at all
possible templates by definition:

“one can’t see the contents of the image”.
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Derived Kernel and Neural Response

Construction

We’ll give a bottom-up description of a three layer architecture
before giving the general recursive definition.
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Initial Kernel

Consider a normalized non-negative valued reproducing kernel on
Im(u)× Im(u) denoted by K̂u(f, g).

example

Consider the inner product of square integrable functions on u

Ku(f, g) =
∫
u
f(x)g(x)dx.
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DEFINITION: Neural Response

We define the neural response of f at t:

Nv(f)(t) = max
h∈H

K̂u(f ◦ h, t),

where f ∈ Im(v), t ∈ Tu and H = Hu.

NOTE: f is not the whole image here.
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Neural Response (cont.)

By denoting with D = |Tu| the cardinality of the template set Tu,
we can interpret the neural response as a vector in RD,

f ∈ Im(v) 7−→ (Nv(f)(t1), Nv(f)(t2), . . . , Nv(f)(tD)).

This is just the collection of best responses of each template

within the sub-patch f ∈ Im(v) .

If Ku is the Euclidean dot-product, and Hu is all translations:
compare to normalized cross-correlation.
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Derived Kernel

The derived kernel is just the corresponding inner product in
L2(Tu) = R|Tu| between neural responses, normalized by 1

|Tu|

The derived kernel on Im(v)× Im(v) is defined as

Kv(f, g) = 〈Nv(f), Nv(g)〉L2(Tu),

and can be normalized to obtain the kernel K̂v.

This is the correlation in the pattern of similarities to templates.
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Second Layer

We now repeat the process:

second layer neural response

NSq(f)(t) = max
h∈H

K̂v(f ◦ h, t),

where f ∈ Im(Sq), t ∈ Tv and H = Hv.

derived kernel on Im(Sq)× Im(Sq)

KSq(f, g) = 〈NSq(f), NSq(g)〉L2(Tv),

where 〈·, ·〉L2(Tv) is the L2 inner product.

As before, we normalize KSq to obtain the final derived kernel K̂Sq.
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Recursive Definition

For a general n layer architecture v1 ⊂ v2 ⊂ · · · ⊂ vn = Sq, let
Kn = Kvn and Hn = Hvn , Tn = Tvn .

Definition

Given a non-negative valued, normalized, reproducing kernel K̂1,
the m-layer derived kernel K̂m, m = 2, . . . , n, is obtained by
normalizing

Km(f, g) = 〈Nm(f), Nm(g)〉L2(Tm−1)

where

Nm(f)(t) = max
h∈H

K̂m−1(f ◦ h, t), t ∈ Tm−1

with H = Hm−1.
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Neural Response

The normalized neural response provides a representation for any
function f ∈ Im(Sq).

f ∈ Im(Sq)︸ ︷︷ ︸
input

7−→ N̂Sq(f) ∈ L2(T ) = R|T |︸ ︷︷ ︸
output

,

with T = Tn−1.

The normalization for N is that implied by the normalization of K:

N̂(f) =
N(f)

‖N(f)‖L2(T )

where ‖x‖L2(T ) =
√
〈x, x〉L2(T ) =

√
1
|T |〈x, x〉R|T | .
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Derived Distance

The derived kernel naturally defines a derived distance d on the
space of images.

d2(f, g) = ‖N̂(f)− N̂(g)‖2 = 2
(
1− K̂(f, g)

)
(since K̂(f, f) = 1 for all f)
Clearly, as the kernel “similarity” approaches its maximum value of
1, the distance goes to 0.
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Neural Response vs. Simple and Complex Cells

The two key steps in the definition of neural response correspond
to simple and complex cells in the visual cortex (and the CBCL
model):

S: inner products with the templates.

C: max over the set of translations.

A. Wibisono, L. Rosasco Derived Kernel and the Neural Response



Simple Cells at the First Layer

Given an initial kernel Ku, let

NS1(f ◦ h)(t) = Ku(f ◦ h, t)

with f ∈ Im(v), h ∈ Hu and t ∈ Tu.

NS1(f ◦ h)(t) corresponds to the response of an S1 cell with
template t and receptive field h ◦ u.

The operations underlying the definition of S1 can be thought of
as “normalized convolutions”.
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Complex Cells at the First Layer

The neural response is given by

NC1(f)(t) = max
h∈H
{NS1(f ◦ h)(t)}

with f ∈ Im(v), H = Hu and t ∈ Tu so that NC1 : Im(v)→ R|Tu|.

NC1(f)(t) corresponds to the response of a C1 cell with template
t and receptive field corresponding to v.
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Tuning Functions

One can consider more general tuning functions, in fact any
reproducing kernel K : `2 × `2 → R,

K(x, x′) = 〈Φ(x),Φ(x′)〉F

Gaussian Tuning

G(f, g) = e−γd
2(f,g),

where we used the (derived) distance.
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Pooling Functions

One can consider more general pooling functions,

Ψ: R∗ =
⋃
n∈N

Rn → R.

Name Expression

Average Ψ(α(h)) =
1
|H|

∑
h∈H

α(h)

`1 Ψ(α(h)) =
∑
h∈H
|α(h)|

Max Ψ(α(h)) = max
h∈H

α(h)

`∞ Ψ(α(h)) = max
h∈H
|α(h)|
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Templates

At some layer m, given Πm = (Nm(t1), . . . , Nm(tD)) we can
consider more sophisticated templates learning schemes.

Sparse Coding

Non-negative matrix factorization

Kernel PCA

Diffusion Wavelets

Laplacian Eigen-Maps

Many methods can be written as:

‖Π− PB‖2 + λpen(B,P )
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General Definition

Definition (Neural Response & Derived Kernel)

Let N1 : Im(v1)→ `2 be a feature map and T1 be a set of
templates associated to Φ ◦N1.
Then

Nm(f)(τ) = Ψ
(〈Φ(Nm−1(f ◦ h)), τ〉),

with f ∈ Im(vm), τ ∈ Tm−1, H = Hm−1 and Tm−1 is a set of
templates associated to Φ ◦Nm−1. Moreover,

Km(f, g) = K
(
Nm(f), Nm(g)

)
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Special Cases

CBCL Model. Max pooling, Gaussian tuning (or normalized
dot product). Templates are sampled patches.

Convolutional Neural Nets. Pooling

Ψ = `1 ◦ σ,

where `1 is the sum of the absolute values and σ is a sigmoid
function. Tuning function, is typically a (normalized) inner
product.

Neural Nets. Take v1 = v2 = · · · = vn. Sigmoid Pooling
functions. Tuning given by inner product.
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Theoretical Analysis

Formulating the model in careful, mathematical terms was the first
step towards a comprehensive theory.
Now we can start looking at invariance, discrimination, and other
properties that emerge from our definitions:

1 Range compression

Loss of dynamic range

2 Invariance of the neural response

Global invariance from local invariance

3 Analysis in the one dimensional case

Characterization of equivalence classes of the derived kernel
Less exhaustive architecture is less discriminative
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Range Compression: Empirical Observation
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Figure: Sample distribution of K̂m(f, g) in m-layer architecture, for
1 ≤ m ≤ 4. Note different scales at each plot.

Loss of dynamic range at each layer.

Creates problem with performance if architecture has ≥ 4
layers (with single precision) or ≥ 5 layers (with double
precision).

E.g. accuracy in 8-class MNIST dataset, single precision:
86% (3 layers) → 14% (4 layers).
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Range Compression: Empirical Observation
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Normalized inner product, single precision
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Linear stretching, single precision
Gaussian stretching, single precision
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Range Compression: Theoretical Result

Theorem

Consider the architecture with max pooling and normalized inner
product kernel. If at layer m ≥ 1 we have

K̂m(f, g) ≥ a for all f, g ∈ Im(vm),

then at layer m+ 1,

K̂m+1(f, g) ≥ 2a
1 + a2

for all f, g ∈ Im(vm+1).

Convergence of derived kernel and neural response as m→∞.

Much higher rate of convergence in practice.

Holds for more general architecture (e.g. average pooling
function, `1-norm, `p-norm).

Also holds when normalization occurs in the pooling.
E.g. inner product kernel and `1 ◦ σ pooling function.
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Range Compression: Corrections
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Introduce tunable parameter at each layer to “stretch” the

range of the derived kernel: K̂m
stretch−−−−→ K̃m.

Recover performance in higher layers (e.g. 14%→ 72%).
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Range Compression: Corrections
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Theoretical Analysis

1 Range compression

Loss of dynamic range

2 Invariance of the neural response

Global invariance from local invariance

3 Analysis in the one dimensional case

Characterization of equivalence classes of the derived kernel
Less exhaustive architecture is less discriminative
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Invariance of the Neural Response

We can consider invariance of the (normalized) neural
response with respect to some set of domain transformations
R = {r | r : v → v}.
(For example, in the case of vision, R can be the set of
reflections or rotations.)

We say that N̂m is invariant to R if

N̂m(f) = N̂m(f ◦ r)

for every f ∈ Im(vm) and r ∈ R, or equivalently,

K̂m(f ◦ r, f) = 1.

A. Wibisono, L. Rosasco Derived Kernel and the Neural Response



Invariance of the Neural Response

Assumption

For all r ∈ R and h ∈ H, there exists a unique h′ ∈ H such that

r ◦ h = h′ ◦ r,
and there exists a unique h′′ ∈ H such that

h ◦ r = r ◦ h′′.

Theorem

If the initial kernel satisfies K̂1(f, f ◦ r) = 1 for all r ∈ R and
f ∈ Im(v1), then at each layer m ≤ n, we have

K̂m(f, f ◦ r) = 1

for all r ∈ R, f ∈ Im(vm).

Global invariance from local invariance!
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One Dimensional Strings

An n-string is a function f : {1, . . . , k} → S, where S is a set
of finite alphabets, i.e. f = a1 . . . ak ∈ Sk.

Patches are of the form vm = {1, . . . , |vm|}, |vm| < |vm+1|.
Function spaces are all possible strings, Im(vm) = S|vm|.

Hm is the set of all possible translations h : vm → vm+1.

Use max pooling function and normalized inner product
kernel, with all possible templates.

Consider the initial kernel

K̂1(f, g) =
#{i | f(i) = g(i)}

|v1| .

Note that K̂1(f, g) = 1 iff f = g.
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One Dimensional Strings: Invariance

Given f = a1 . . . ak, the reversal of f is f ◦ r = ak . . . a1.

K̂n is reversal invariant if K̂n(f, f ◦ r) = 1 for all f ∈ Im(vn).

Theorem

Suppose |S| ≥ 2. Then K̂n is reversal invariant if and only if
|v1| = 1.

Proof (sketch):

1 Local → global invariance.

2 Consider f = abb . . . b and g = bb . . . ba, with a 6= b.
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One Dimensional Strings: Discrimination

In a truly exhaustive architecture:

Theorem

Suppose |vm| = m for 1 ≤ m ≤ n. Then K̂n(f, g) = 1 if and only
if:

1 f = g,

2 f is the reversal of g, or

3 f and g are the “checkerboard” pattern:
f = abab . . . , g = baba . . . .

What if we start with larger initial patch size?
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One Dimensional Strings: Discrimination

Theorem

Suppose n ≥ 2, |v1| ≥ 2, and |vm+1| − |vm| = 1 for
1 ≤ m ≤ n− 1. Then K̂n(f, g) = 1 if and only if:

1 f = g, or

2 f and g are the “checkerboard” pattern:
f = abab . . . , g = baba . . . .

What if we allow “jumps” in patch sizes?
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One Dimensional Strings: Discrimination

Theorem

Suppose n ≥ 2, |v1| ≥ 3, and

max
1≤m≤n−1

(|vm+1| − |vm|
)

= 2.

Then K̂n(f, g) = 1 if and only if:

1 f = g,

2 f = abab . . . and g = baba . . . ,

3 f = abcabc . . . and g = bcabca . . . , or

4 f = abcabc . . . and g = cabcab . . . .

Less exhaustive architecture ⇒ more invariance!
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Summary

We provided a compact mathematical description of a
hierarchical model, based on recent feedforward models of the
visual cortex.

Preliminary theoretical and empirical analysis of the model.

Theory is just at the beginning and many questions remain.
For example:

Further invariance and discrimination analysis?
Can we show that more layers are better?
How can we learn the templates better?
Is the max operation really crucial (e.g. in terms of the
performance)? Can it be replaced by some other operation
(e.g. average)?
How to choose the parameters (number of layers, patch sizes,
number of templates)?
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