What and where: A Bayesian inference theory of attention

Sharat Chikkerur, Thomas Serre, Cheston Tan & Tomaso Poggio CBCL, McGovern Institute for Brain Research, MIT

Outline

- Preliminaries
 - Perception & Bayesian inference
- Background & motivation
- Theory
 - Attention as inference
 - Bayesian model
- Computational model
 - Model properties
- Applications on real-world images
 - Predicting human eye movements
 - Improving object recognition

inference

- Mumford and Lee, "Hierarchical Bayesian Inference in the Visual Cortex", JOSA, 20(7), 2003
- Recurrent feed-forward/feedback loops integrate bottom up information with top down priors
- Bottom-up signals : Data dependent
- Top-down signals : Task dependent
- Top down signals provide context information and help to disambiguate bottom-up signals

Bottom up vs. top-down

Hegde J. and Felleman J., Reappraising the functional implications of the primate visual anatomical hierarchy, Neuroscientist, 13(5), 2007

Bottom up vs. top-down

Mathematical framework

Bayesian generative models

- Statistical learning view:
 - Y = f(X), X-data, Y-class

- Generative model view:
 - X-random, Y-random
 - $X \sim P(X|Y)$, $P(Y|X) \propto P(X|Y)P(Y)$

down

Recall,
$$P(A,B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

$$P(A) = \sum_{B} P(A,B)$$

For the given network,

$$P(x_{IT}, x_{V}, x_{0}) = P(x_{0} | x_{V})P(x_{V} | x_{IT})P(x_{IT})$$

$$P(x_{V}, x_{0} | x_{IT}) = P(x_{0} | x_{V}, x_{IT}) P(x_{V} | x_{IT})$$
$$= P(x_{0} | x_{V}) P(x_{V} | x_{IT})$$

Inference:

$$P(x_{V} \mid x_{0}, x_{IT}) = \frac{P(x_{0} \mid x_{V}, x_{IT})P(x_{V} \mid x_{IT})}{P(x_{0} \mid x_{IT})}$$

$$P(x_{0} \mid x_{V})P(x_{V} \mid x_{IT})$$
Bottom-up Top-down

Belief propagation

Biological plausibility

Trees

Polytrees

Attention Background & motivation

visual processing. What and

where

- Ventral ('what') stream:
 - Processes shape information
 - Responsible for object recognition
 - Progressive loss of location information
- Dorsal ('where') stream:
 - Processes location and motion information
 - Progressive loss of form
- •Form and location is processed concurrently fame (in the processed concurrently) independently of each other
- •How does the brain combine form and location information?

recognition

Zoccolan Kouh Poggio DiCarlo 2007

•How does the brain recognize objects under clutter?

Figures from Serre et al, Hung et al.

Parallel vs. serial processing

Attention is needed to recognize objects under clutter

- Filter theory (Broadbent)
- Biased competition (Desimone)
- •Feature integration theory (Treisman)
- Guided search (Wolfe)
- Scanpath theory (Noton)

- Bayesian surprise (Itti)
- Bottleneck (Tsotsos)

Computational Role

Biology

• V1

- V4
- MT
- LIP
- FEF

Attention

Effects

Everybody knows what attentional what attentions what attentions what attentions where the state of the state

- -William James, 1907•Response gain
 - Modulation under spatial attention
 - Modulation under feature attention
 - Pop-out
 - Serial vs. Parallel
 - •Bottom-up vs. Top-down

Bridging the gap

- Conceptual models (theories)
 - Provide justifications not implementations
- Computational models
 - Model behavior (eye-movements)
 - Cannot model physiological effects
- Phenomenological models
 - Model specific physiological effects
 - Cannot provide theory
- Bridging the gap
 - Phenomenological, predicts behavior, theory

A theoretical framework

$$P(S,I) = P(I|S)P(S)$$
 Kersten & Yuille '04
$$S = \{O_1,O_2,\cdots,O_n,L_1,L_2,\cdots,L_n\}$$
 $P(S,I) = P(O_1,L_1,O_2,L_2,\cdots,O_n,L_n,I)$

$$P(O_1, L_1, I) = \sum_{O_2 \cdots O_n, L_2 \cdots L_n} P(O_1, L_1, O_2 \cdots, O_n, L_2, \cdots, L_n, I)$$
 ects, one at

Assumption: object location and identity are marginally independent of each other

$$P(O, L, I) = P(O)P(L)P(I|L, O).$$

Assumption: Every object is generated using a set of N complex features each of which may be present or absent

$$P(O, L, X^{1}, \dots, X^{N}, I)$$

$$= P(O)P(L) \left\{ \prod_{i=1}^{i=N} \left\{ P(X^{i}|L, O) \right\} \right\} P(I|X^{1}, \dots, X^{N})$$

Fi: Location/scale invariant features

$$\begin{split} &P(O,L,X^1,\cdots,X^N,F^1,\cdots,F^N,I)\\ &=P(O)P(L)\left\{\prod_{i=1}^{i=N}\left\{P(X^i|L,F^i)P(F^i|O)\right\}\right\}P(I|X^1,\cdots,X^N) \end{split}$$

Computational model

Relation to biology

EpatiareabtesetdoatteWthan:sWahereatsionobject O?

Model description

Model properties: invariance

Model properties: crowding

Model: spatial attention

•What is at location X?

Model: feature-based attention

•Where is object X?

Model properties

Spatial Invariance

Spatial Attention

Feature Attention

Feature Popout

Parallel vs. Serial Search

Application I: Predicting eye-movements

Predicting eye movements

- Eye movements can be considered as a proxy for attention
- Cues influencing eye-movements
 - Bottom-up image saliency
 - Top-down feature biases
 - Top-down spatial bias

Model can predict human eye-movements

Top-Bottompatialtemtiemature attention

Method	ROC area (Cars)	ROC area (Pedestrian)
Itti et al. '01	42.3%	42.3%
Torralba et al.	78.9%	77.1%
Proposed	80.4%	80.1%
Humans	87.8%	87.4%

Application II: Improving recognition

Effect of clutter on detection

recognition without attention

Head Close-body Medium-body Far-body

recognition under attention

Recognition performance improves with attention

Recognition performance improves with attention

Summary

Theory

 Attention is part of the inference process that solves the problem of what is where.

Computational model

- We describe a computational model and relate it to functional anatomy of attention.
- Attentional phenomena (pop-out, multiplicative modulation, contrast response) are 'predicted' by the model.

Applications

- Predicting human eye movements.
- Improving object recognition

Thank you!

Relation to prior work

	Proposed	[Bruce and Tsotsos, 2006]	[Zhang et al., 2008]	[Deco and Rolls, 2004]	[K. et al., 2009]	[Fukushima, 1986]	[Hou and Zhang, 2007]	[Harel et al., 2007]	[Itti and Koch, 2001]	[Rao, 2005]	[Torralba, 2003]	[Walther and Koch, 2007]	[Wolfe, 2007]	[Yu and Dayan, 2005]
Biologically plausible	✓	✓	√	✓	×	√	×	×	√	√	√	✓	✓	✓
Real world stimuli	✓	✓	✓	×	✓	×	✓	✓	✓	×	✓	✓	×	×
Pop-out	✓	✓	✓	×	✓	×	✓	✓	✓	×	✓	✓	×	×
Feature-based attention	✓	×	×	✓	✓	√	×	×	×	×	✓	×	✓	✓
Spatial attention	✓	×	×	×	✓	×	×	×	×	✓	✓	✓	×	✓
Parallel vs. serial search	✓	×	×	×	×	×	×	×	×	×	×	×	✓	×
Explicitly models ventral/parietal	✓	×	×	✓	×	×	×	×	×	✓	×	×	×	×

Mental Imagery

Murray J. F., Visual recognition, inference and coding using learned sparse overcomplete representations, PhD thesis, UCSD, 2005 Hinton G. E, Osindero S. and Teh. Y, A fast learning algorithm for deep belief nets, Neural computation, vol. 18, 2006

Visual attention/Segmentation

Murray J. F., Visual recognition, inference and coding using learned sparse overcomplete representations, PhD thesis, UCSD, 2005 Fukushima K., A neural network model for selective attention in visual pattern recognition, Biological Cybernetics, vol. 55, 1986

'Predicting' physiological effects

Spatial attention

Feature-based attention

Contrast gain vs. Response gain

Attentional effects in MT: popout

MT: Feature based attention

MT: Multi-modal interaction

