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Generalization Bounds, Intro to Stability
Lecturer: Lorenzo Rosasco Scribes: J. Kaeli and J. Wiens

The goal of today’s class is to revisit the concept of generalization bounds and derive them
using a measure of stability. We will do this using concentration inequalities.

1 Generalization Bounds
A learning algorithm maps a training set S = {(x1, y1), ..., (xn, yn)} = {z1, ..., zn}, where z = (x, y),
to a function fS . It is assumed that this mapping, denoted by A, is both deterministic (the same
training set will always result in the same mapping) and independent of the ordering of the points
in the training set. The quality of the mapping can be measured using a loss function V (fS(x), y) =
V (fS , z). We define the expected risk I[fS ] and the empirical risk IS [fS ] to be:

I[fS ] = Ez [V (fS , z)] =
∫
V (fS , z) dµ(z)

IS [fS ] =
1
n

n∑
i=1

V (fS , zi).

Ideally, we would like to choose A so that the expected risk I[fS ] is small. While we can measure
the empirical risk IS [fS ], we cannot measure I[fS ] because it depends on the unknown probability
distribution µ. A generalization bound is a (probabilistic) bound on the defect (generalization error),

D[fS ] = I[fS ]− IS [fS ].

In the second lecture, the notion of generalization was introduced. We saw that a learning algo-
rithm A generalizes if for any unknown probability distribution µ, the defect converges to zero (in
probability) as the number of training points approaches infinity. This means IS [fS ] can be used as
a “proxy” for I[fS ]: if the defect can be bounded and IS [fS ] can be observed to be small, then with
high probability I[fS ] is also small. A probabilistic bound takes the form

P(D[fS ] ≥ ε) ≤ δ

where both ε and δ will go to zero as n goes to infinity. Relating the error ε, confidence δ, and
number of training points n allows us to say something about the quality our learning algorithm in
a probabilistic sense.

Historically, the necessary and sufficient conditions for learning have relied upon finite complexity
(justifying that a property holds if the size of the space it occupies can be controlled) and uniform
Glivenko-Cantelli classes (measurable functions of i.i.d. variables whose empirical measures converge
to their true values) to uphold generalization and consistency [1]. However, suitable notions of
stability in learning algorithms turn out to be also a necessary and sufficient condition for learning
[2].

2 Stability
Stability, in the context of learning algorithms, means that the function fS should depend contin-
uously on the training data S. This means that a small perturbation on the training set S should
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induce only a small change in the solution function fS . Typically, we expect that this dependence
should decrease with the size of S. We can define, for a training set S, the new training set Si,z

which is obtained by replacing the ith point in S with a new point z. An algorithm has uniform
stability (or, is β-stable) if

∀(S, z) ∈ Zn+1, ∀i, sup
z′∈Z
|V (fS , z

′)− V (fSi,z , z′)| ≤ β.

In words, for all training sets S, and all training points in S (not including z′), the worst possible
difference (using all possible z′) between the loss function evaluated at z′ for the function obtained
using training set S and the loss function evaluated at z′ for the function obtained using the new
training set Si,z will be at most β. This β is typically itself a function of n [2].

This is a strong requirement, implying that the function fS must be very insensitive to changes
in the training set Si,z even when an unlikely or “bad” training set is drawn. This notion is stronger
than the one discussed in the second class; yet it is still satisfied by Tikhonov regularization, as we
shall see in the next lecture. Once the stability is characterized by β, relating this to the bounds on
its performance can be accomplished using concentration inequalities.

3 Concentration Inequalities
The law of large numbers states that the sums of independent random variables have a high proba-
bilty of being near the expected value of the sums. This is true for a relatively large class of functions
of independent random variables as well. Concentration inequalities are a way to represent how these
functions and variables are distributed around their expectations [3]. In particular, McDiarmid’s
inequality is a useful formulation.

Let V1, . . . , Vn be random variables. If a function F mapping V1, . . . , Vn to R satisfies

sup
v1,...,vn,v′

i

|F (v1, . . . , vn)− F (v1, . . . , vi−1, v
′
i, vi+1, . . . , vn)| ≤ ci,

then the following statement holds:

P (|F (v1, . . . , vn)− E(F (v1, . . . , vn))| > ε) ≤ 2 exp
(
− 2ε2∑n

i=1 c
2
i

)
.

In words, if the largest difference (over all vi) between a function operating on a set of random
variables and the same function operating on the same set of random variables with one variable
changed is less than or equal to some constant ci, then the probabibility that that same function
operating on the same set of random variables will differ from its expectation by more than ε is an
exponential function of ε and ci.

The above inequality can be used to derive Hoeffding’s Inequality. Suppose each vi ∈ [a, b],
and we define F (v1, . . . , vn) = 1

n

∑n
i=1 vi, the average of the vi. Then, ci = 1

n (b − a). Applying
McDiarmid’s Inequality, we have that

P (|F (v)− E(F (v))| > ε) ≤ 2 exp
(
− 2ε2∑n

i=1 c
2
i

)
= 2 exp

(
− 2ε2∑n

i=1(
1
n (b− a))2

)
= 2 exp

(
− 2nε2

(b− a)2

)
.
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4 Generalization Bounds via McDiarmid’s Inequality
As previously stated, our main goal here is to bound the difference between empirical and expected
error for a β-stable algorithm A. In other words, for any ε ≥ 0 our goal is to bound the term:

P(|IS [fS ]− I[fS ]| > ε)

To formulate this bound, we will apply McDiarmid’s inequality to the random variable

D[fS ] = I[fS ]− IS [fS ].

In order to do so we will first need to bound:

1. how much the random variable D[fS ] can change when changing one example, and

2. the expectation of the random variable D[fS ].

Bounding the Expectation of the Defect
Given a β-stable algorithm A, the expected value of the defect is as follows:

ESD[fS ] = ES [IS [fS ]− I[fS ]]

= ES

[
1
n

n∑
i=1

V (fS , zi)−
∫
V (fS , z)dµ(z)

]

= ES

[∫ ( 1
n

n∑
i=1

V (fS , zi)− V (fS , z)
)
dµ(z)

]

= E(S,z)

[
1
n

n∑
i=1

V (fS , zi)− V (fS , z)

]

= E(S,z)

[
1
n

n∑
i=1

V (fSi,z , z)− V (fS , z)

]

= E(S,z)

[
1
n

n∑
i=1

(
V (fSi,z , z)− V (fS , z)

)]

≤ E(S,z)

[
1
n

n∑
i=1

β

]
≤ β

The fifth equality follows by the symmetry of the expectation. The expected value of a training
set on a training point doesn’t change when we rename the points. Thus, by renaming the ith point
in the training set S to z we can replace zi with z, such that the two loss functions are with respect
to the same variable z. This renaming allows us to apply McDiarmid’s inequality directly.
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Bounding the Deviation of the Defect
Let A a β-stable learning algorithm with respect to a loss function V where the loss function V is
bounded, i.e. for all x ∈ X , V (fS , x) ≤M for some M ≥ 0, then:

|D[fS ]−D[fSi,z ]| =
∣∣IS [fS ]− I[fS ]− ISi,z [fSi,z ] + I[fSi,z ]

∣∣
≤

∣∣I[fS ]− I[fSi,z ]
∣∣+ ∣∣IS [fS ]− ISi,z [fSi,z ]

∣∣
≤ β +

1
n

∣∣V (fS , zi)− V (fSi,z , z)
∣∣+ 1

n

∑
j 6=i

∣∣V (fS , zj)− V (fSi,z , zj)
∣∣

≤ β +
M

n
+ β

= 2β +
M

n

Based on the above results for the bound on the deviation of the defect we can now apply
McDiarmid’s inequality: for any ε > 0,

P
(∣∣D[fS ]− ED[fS ]

∣∣ > ε
)
≤ 2 exp

(
− 2ε2

n(2(β + M
n ))2

)

= 2 exp
(
− nε2

2(nβ +M)2

)
.

Now, recalling the definition of the defect, D[fS ] = I[fS ]−IS [fS ], and the bound on the expectation
of the defect, we have,

P
(∣∣I[fS ]− IS [fS ]− β

∣∣ ≥ ε) ≤ 2 exp
(
− nε2

2(nβ +M)2

)

Letting

δ = 2 exp
(
− nε2

2(nβ +M)2

)
,

then, with confidence 1− δ, we have the bound

I[fS ] ≤ IS [fS ] + β + (βn+M)

√
2 ln(2/δ)

n
.

5 Convergence
Letting β = k

n for some constant k, then with probability 1− δ:

I[fS ] ≤ IS [fS ] +
k

n
+ (2k +M)

√
2 ln(2/δ)

n
.

Notice that the error term on the right hand side is O
(

1√
n

)
. Here we see that β = k

n is good

enough, since once β = O( 1
n ), further increases in stability don’t effect the rate of convergence. Even

when β = 0 the convergence is still O
(

1√
n

)
.
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