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The Plan

Regularized least squares maps {(x;, y;)}/_ to a function that
minimizes the regularized loss:

1< A
fs =argmin 5> (y; — f(x)))? + §||f||%
feH i—1

Can we interpret RLS from a probabilistic point of view?
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@ S = {(x;,yi)} is the set of observed input/output pairs in
RY x R (the training set).

@ X and Y denote the matrices [xi, ..., xn]" € R™9 and
[vi,...,yn]T € R", respectively.

@ 0 is a vector of parameters in RP.

@ p(Y|X,0) is the joint distribution over outputs Y given
inputs X and the parameters.
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Where do probabilities show up?

1< A
> Z V(yi, f(x;)) + EHfH%
i=1

becomes
p(Y|f, X) - p(f)

C. Frogner Bayesian Interpretations of Regularization



Where do probabilities show up?

1< A
> Z V(yi, f(x;)) + EHfH%
i=1

becomes
p(Y|f,X) - p(f)

o Likelihood, a.k.a. noise model: p(Y|f, X).
e Gaussian: y; ~ N (f*(x;), 0?)
e Poisson: y; ~ Pois(f*(x;))

@ Prior: p(f).
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The estimation problem:
@ Given data {(x;, y;)}"., and model p(Y|f, X), p(f).
@ Find a good f to explain data.
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The Plan

@ Maximum likelihood estimation for ERM
@ MAP estimation for linear RLS

@ MAP estimation for kernel RLS

@ Transductive model

@ Infinite dimensions get more complicated
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Maximum likelihood estimation

e Given data {(x;, y;)}"., and model p(Y|f, X), p(f).
@ A good f is one that maximizes p(Y|f, X).
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Maximum likelihood and least squares

For least squares, noise model is:

yilf, xi ~ N (f(Xi),crz)

Y|, X ~ N (f(X),azl>
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Maximum likelihood and least squares

For least squares, noise model is:

yilf, xi ~ N (f(Xi),crz)

Y|, X ~ N (f(X),azl>
So

N

p(Y|f, X) = (27r012)N/2 exp {— > %(YI - f(Xi))z}

i=1

C. Frogner Bayesian Interpretations of Regularization



Maximum likelihood and least squares

Maximum likelihood: maximize

pYIf. X) = Wexp{—z(;(yf - f(x,-)))"’}

i=1
Empirical risk minimization: minimize

N

> (i f(xi)?

i=1
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N
> (i — f(x))?
i=1
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N
=3 S i—f(x))?
e =l
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What about regularization?

RLS:

n

1 A
argfmm 5 Z(}/i — f(x))? + EH"H%
e

Is there a model of Y and f that yields RLS?

C. Frogner Bayesian Interpretations of Regularization



What about regularization?

RLS:

n

1 A
argfmm 5 Z(}/i — f(x))? + EH"H%
e

Is there a model of Y and f that yields RLS?

Yes.

s
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What about regularization?

RLS:

n

1 A
argfmm 5 Z(}/i — f(x))? + EH"H%
e

Is there a model of Y and f that yields RLS?

Yes.
L
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What about regularization?

RLS:

1 5 Ao
argfmln > ;(}’i — (X)) + E”fHH
Is there a model of Y and f that yields RLS?

Yes.
L

p(YIf.X) - p(f)
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Posterior function estimates

e Given data {(x;, y;)}"., and model p(Y|f, X), p(f).
@ Find a good f to explain data.

C. Frogner Bayesian Interpretations of Regularization



Posterior function estimates

e Given data {(x;, y;)}"., and model p(Y|f, X), p(f).
@ Find a good f to explain data.

(If we can get p(f|Y, X))
Bayes least squares estimate:

fars = Eqrpx,v)lf]

i.e. the mean of the posterior.
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Posterior function estimates

e Given data {(x;, y;)}"., and model p(Y|f, X), p(f).
@ Find a good f to explain data.

(If we can get p(f|Y, X))
Bayes least squares estimate:

fars = Eqrpx,v)lf]

i.e. the mean of the posterior.
MAP estimate:

fuap(Y|X) = argmax p(f|X, Y)
f

i.e. a mode of the posterior.
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A posterior on functions?

How to find p(f]Y, X)?
Bayes’ rule:

_ pYIX, f) - p(f)
_ pLYIX. ) -p(f)
= Ip(YIX.f)df
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A posterior on functions?

How to find p(f]Y, X)?
Bayes’ rule:

p(Y|X,f) - p(f)
p(Y[X)

_ p(YIX, 1) - p(f)

— [p(YIX, f)df

p(fIX,Y) =

When is this well-defined?
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A posterior on functions?

Functions vs. parameters:
H = RP
Represent functions in H by their coordinates w.r.t. a basis:

feH—0cRP
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A posterior on functions?

Functions vs. parameters:
H = RP
Represent functions in H by their coordinates w.r.t. a basis:
feH—0cRP

Assume (for the moment): p < oo
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Posterior for linear RLS

Linear function:
f(x) = (x,0)

Noise model:
YIX,0 ~ N (X0,021)

Add a prior:
6 ~ N (0,N)
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Posterior for linear RLS

Model:
Y|IX, 0~ N (xe,agl) . O~N(O,A)

Joint over Y and 6:

185 )

Condition on Y.
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Posterior for linear RLS

Posterior:
01X, Y ~ N (pox,v, Loix,v)

where

pox.y = AXT(XAXT + 02Dy
Toxy =N — AXT(XAXT + 0217 XA
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Posterior for linear RLS

Posterior:
01X, Y ~ N (pox,v, Loix,v)

where

pox.y = AXT(XAXT + 02Dy
Toxy =N — AXT(XAXT + 0217 XA

This is Gaussian, so

Omap(Y|X) = 0g.s(Y|X) = AXT(XAXT + 62171y
&€
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Linear RLS as a MAP estimator

Model:
YIX, 0~ N (xe,afl) . 0~N(0,A)

Ouap(Y|X) = AXT(XAXT + 02171y
Recall the linear RLS solution:

N
A
Ors(YIX) —argmln Z — (X, 0 §||9\|2

= AXT(XXT + %/)— Y
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Linear RLS as a MAP estimator

Model:
YIX, 0~ N (xe,afl) . 0~N(0,A)

Ouap(Y|X) = AXT(XAXT + 02171y
Recall the linear RLS solution:

N
A
Ors(YIX) —argmln Z — (X, 0 §||9\|2

= AXT(XXT + %/)— Y

So whats AN? \?
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Extending to kernel RLS

Represent functions in H by their coordinates w.r.t. a basis:
feH—0cRP

Which basis?
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Extending to kernel RLS

Mercer’s theorem:

K(xi, xj) = Z vk (X)) k(X))

where vk(-) = [ K(-, ¥)¢k(y)dy for all k. The functions
{Vvk¥k(-)} form an orthonormal basis for H.

Let o(-) = [v¥1v1(), -, /Ppthp(-)]- Then:
Hi = {o(-)0l0 € R}
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Posterior for kernel RLS

Model for linear RLS:
YIX.0~ N (X0,021), 0~ N(0,))

Model for kernel RLS?
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Posterior for kernel RLS

Model for linear RLS:
YIX, 0~ N (Xe, a§/> . 0~N(0,))
Model for kernel RLS?
YIX, 0~ N (¢(X)9,a§/) . 0~N(0,))
Then:

Ouap(Y1X) = o(X)T (6(X)o(X)T + 2171y
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Posterior for kernel RLS

Model for linear RLS:
Y|X,0 ~ N (X@, 05/) . 0~N(0,))
Model for kernel RLS?
Y|IX,0 ~ N (¢(X)9,a§/) . 0~N(0,))

Then:
Ouap(Y1X) = 6(X)T (K + o217y

Potential problem?
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Prior on infinite-dimensional space

Problem: there’s no such thing as
6 ~N(0,)

when 6 € R*°|
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A quick recap

@ Empirical risk minimization is ML.

p(Y|f, X) o e~z L 0= f(x))®
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A quick recap

@ Empirical risk minimization is ML.

p(Y|f, X) o e~z L 0= f(x))®

@ Linear RLS is MAP.

p(Y, fIX) x o 3 il (i—(xi0)? | g=5070
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A quick recap

@ Empirical risk minimization is ML.

p(Y|f, X) o e~z L 0= f(x))®

@ Linear RLS is MAP.

p(Y, fIX) x o 3 il (i—(xi0)? | g=5070

@ Kernel RLS is also MAP.
p(Y, f|X) ox e~z L= f00® . g=2 Il

But these aren’t well-defined for infinite dimensional function
spaces...
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Transductive setting

We hinted at problems if dim Hx = oc.
Idea: Forget about estimating 6 (i.e. f).

Instead: Estimate predicted outputs

Y =lyi oyl
at test inputs

X =[x, xy"

Need the joint distribution over Y* and Y.
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Transductive setting

Say Y* and Y are jointly Gaussian:

RAE(FARPea)

Want: kernel RLS.
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Transductive setting

Say Y* and Y are jointly Gaussian:

Y % ] [ Ny /\W*D
L | =N ,
|: Y :| <|: Hy= /\y*y /\y*
Want: kernel RLS.
General form for the posterior:
YAX, Y ~ N (pysx,v, Ty« ix,v)

where

Lyex,y =ty + Ay AV (Y = py)
Tyexy = Ays — Ny AL Ayy-
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Transductive setting

Set Ay = K(X,X) + 021, Ayys = K(X,X*), Ay« = K(X*,X*)

Posterior:
Y¥X, Y ~ N (pyax,ys Zyeix,y)

where
fryix.y = by + KX X) (KX X + a2 7H(Y — py)
Tyaxy = K(X*, X*) = K(X*, X)(K(X, X) + a2) T K(X, X*)

So: s\/l\ﬂ;IAP = ?RLS(X*)-
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Transductive setting

Model:

L e )6 )

MAP estimate (posterior mean) = RLS function at every point
x*, regardless of dim H.

Are the prior and posterior (on points!) consistent with a
distribution on Hg?
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Transductive setting

Strictly speaking, # and f don’t come into play here at all:

Have: p(Y*|X,Y)
Do not have: p(6|X, Y) or p(f| X, Y)
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Transductive setting

Strictly speaking, # and f don’t come into play here at all:

Have: p(Y*|X,Y)
Do not have: p(6|X, Y) or p(f| X, Y)

But, if Hk is finite dimensional, the joint over Y and Y* is
consistent with:

o Y="F(X)+e,

@ Y*=f(X),and

@ f € Hg is a random trajectory from a Gaussian process
over the domain, with mean . and covariance K.

@ (Ergo, people call this “Gaussian process regression.”)
(Also “Kriging,” because of a guy.)
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@ Empirical risk minimization is the maximum likelihood
estimator when:
y=x"0+c¢

@ Linear RLS is the MAP estimator when:
y=x"0+c¢, 0~ N(0,))
@ Kernel RLS is the MAP estimator when:
y=0¢(x)"0+e,  0~N(0,I)

in finite dimensional H.
@ Kernel RLS is the MAP estimator at points when:

L R G )

in possibly infinite dimensional H .
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Is this useful in practice?

@ Want confidence intervals + believe the posteriors are
meaningful = yes
@ Maybe other reasons?
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