Bayesian Interpretations of Regularization

Charlie Frogner

9.520 Class 20

April 21, 2010

The Plan

Regularized least squares maps $\{(x_i, y_i)\}_{i=1}^n$ to a function that minimizes the regularized loss:

$$f_{S} = \underset{f \in \mathcal{H}}{\operatorname{arg\,min}} \frac{1}{2} \sum_{i=1}^{n} (y_{i} - f(x_{i}))^{2} + \frac{\lambda}{2} ||f||_{\mathcal{H}}^{2}$$

Can we interpret RLS from a probabilistic point of view?

Some notation

- $S = \{(x_i, y_i)\}_{i=1}^n$ is the set of observed input/output pairs in $\mathbb{R}^d \times \mathbb{R}$ (the training set).
- X and Y denote the matrices $[x_1, \ldots, x_n]^T \in \mathbb{R}^{n \times d}$ and $[y_1, \ldots, y_n]^T \in \mathbb{R}^n$, respectively.
- θ is a vector of parameters in \mathbb{R}^p .
- $p(Y|X,\theta)$ is the joint distribution over outputs Y given inputs X and the parameters.

Where do probabilities show up?

$$\frac{1}{2} \sum_{i=1}^{n} V(y_i, f(x_i)) + \frac{\lambda}{2} ||f||_{\mathcal{H}}^2$$

becomes

$$p(Y|f,X) \cdot p(f)$$

- Likelihood, a.k.a. noise model: p(Y|f, X).
 - Gaussian: $y_i \sim \mathcal{N}\left(f^*(x_i), \sigma_i^2\right)$
 - Poisson: $y_i \sim Pois(f^*(x_i))$
- Prior: p(f).

Where do probabilities show up?

$$\frac{1}{2}\sum_{i=1}^{n}V(y_{i},f(x_{i}))+\frac{\lambda}{2}||f||_{\mathcal{H}}^{2}$$

becomes

$$p(Y|f,X) \cdot p(f)$$

- Likelihood, a.k.a. noise model: p(Y|f, X).
 - Gaussian: $y_i \sim \mathcal{N}\left(f^*(x_i), \sigma_i^2\right)$
 - Poisson: $y_i \sim Pois(f^*(x_i))$
- **Prior**: *p*(*f*).

Estimation

The estimation problem:

- Given data $\{(x_i, y_i)\}_{i=1}^N$ and model p(Y|f, X), p(f).
- Find a good f to explain data.

The Plan

- Maximum likelihood estimation for ERM
- MAP estimation for linear RLS
- MAP estimation for kernel RLS
- Transductive model
- Infinite dimensions get more complicated

Maximum likelihood estimation

- Given data $\{(x_i, y_i)\}_{i=1}^N$ and model p(Y|f, X), p(f).
- A good f is one that maximizes p(Y|f, X).

Maximum likelihood and least squares

For least squares, noise model is:

$$y_i|f, x_i \sim \mathcal{N}\left(f(x_i), \sigma^2\right)$$

a.k.a.

$$Y|f, X \sim \mathcal{N}\left(f(X), \sigma^2 I\right)$$

So

$$p(Y|f,X) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{-\sum_{i=1}^{N} \frac{1}{\sigma^2} (y_i - f(x_i))^2\right\}$$

Maximum likelihood and least squares

For least squares, noise model is:

$$y_i|f, x_i \sim \mathcal{N}\left(f(x_i), \sigma^2\right)$$

a.k.a.

$$Y|f, X \sim \mathcal{N}\left(f(X), \sigma^2 I\right)$$

So

$$p(Y|f,X) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{-\sum_{i=1}^{N} \frac{1}{\sigma^2} (y_i - f(x_i))^2\right\}$$

Maximum likelihood and least squares

Maximum likelihood: maximize

$$p(Y|f,X) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{-\sum_{i=1}^{N} \frac{1}{\sigma^2} (y_i - f(x_i)))^2\right\}$$

Empirical risk minimization: minimize

$$\sum_{i=1}^{N}(y_i-f(x_i))^2$$

$$\sum_{i=1}^{N}(y_i-f(x_i))^2$$

$$e^{-\sum_{i=1}^{N}\frac{1}{\sigma^2}(y_i-f(x_i))^2}$$

RLS:

$$\arg\min_{f} \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \frac{\lambda}{2} ||f||_{\mathcal{H}}^2$$

Is there a model of Y and f that yields RLS?

$$e^{-\frac{1}{2\sigma_{\varepsilon}^2}\left(\sum\limits_{i=1}^n(y_i-f(x_i))^2\right)-\frac{\lambda}{2}\|f\|_{\mathcal{H}}^2}$$

$$p(Y|f,X) \cdot p(f)$$

RLS:

$$\arg\min_{f} \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \frac{\lambda}{2} ||f||_{\mathcal{H}}^2$$

Is there a model of Y and f that yields RLS?

$$e^{-rac{1}{2\sigma_{\varepsilon}^{2}}\left(\sum\limits_{i=1}^{n}(y_{i}-f(x_{i}))^{2}
ight)-rac{\lambda}{2}\|f\|_{\mathcal{H}}^{2}}$$

$$p(Y|f,X) \cdot p(f)$$

RLS:

$$\arg\min_{f} \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \frac{\lambda}{2} ||f||_{\mathcal{H}}^2$$

Is there a model of Y and f that yields RLS?

$$e^{-\frac{1}{2\sigma_{\varepsilon}^{2}}\left(\sum\limits_{i=1}^{n}(y_{i}-f(x_{i}))^{2}\right)}\cdot e^{-\frac{\lambda}{2}\|f\|_{\mathcal{H}}^{2}}$$

$$p(Y|f,X) \cdot p(f)$$

RLS:

$$\arg\min_{f} \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \frac{\lambda}{2} ||f||_{\mathcal{H}}^2$$

Is there a model of Y and f that yields RLS?

$$e^{-\frac{1}{2\sigma_{\varepsilon}^{2}}\left(\sum\limits_{i=1}^{n}(y_{i}-f(x_{i}))^{2}\right)}\cdot e^{-\frac{\lambda}{2}\|f\|_{\mathcal{H}}^{2}}$$

$$p(Y|f,X) \cdot p(f)$$

Posterior function estimates

- Given data $\{(x_i, y_i)\}_{i=1}^N$ and model p(Y|f, X), p(f).
- Find a good f to explain data.

(If we can get p(f|Y,X))

Bayes least squares estimate:

$$\hat{f}_{BLS} = \mathbb{E}_{(f|X,Y)}[f]$$

i.e. the mean of the posterior.

MAP estimate:

$$\hat{f}_{MAP}(Y|X) = \underset{f}{\operatorname{arg max}} p(f|X, Y)$$

i.e. a mode of the posterior.

Posterior function estimates

- Given data $\{(x_i, y_i)\}_{i=1}^N$ and model p(Y|f, X), p(f).
- Find a good f to explain data.

(If we can get p(f|Y,X))

Bayes least squares estimate:

$$\hat{f}_{BLS} = \mathbb{E}_{(f|X,Y)}[f]$$

i.e. the mean of the posterior.

MAP estimate:

$$\hat{f}_{MAP}(Y|X) = \underset{f}{\operatorname{arg\,max}} p(f|X, Y)$$

i.e. a mode of the posterior.

Posterior function estimates

- Given data $\{(x_i, y_i)\}_{i=1}^N$ and model p(Y|f, X), p(f).
- Find a good f to explain data.

(If we can get p(f|Y,X))

Bayes least squares estimate:

$$\hat{f}_{BLS} = \mathbb{E}_{(f|X,Y)}[f]$$

i.e. the mean of the posterior.

MAP estimate:

$$\hat{f}_{MAP}(Y|X) = \underset{f}{arg \max} p(f|X, Y)$$

i.e. a mode of the posterior.

How to find p(f|Y,X)? Bayes' rule:

$$p(f|X, Y) = \frac{p(Y|X, f) \cdot p(f)}{p(Y|X)}$$
$$= \frac{p(Y|X, f) \cdot p(f)}{\int p(Y|X, f) df}$$

When is this well-defined?

How to find p(f|Y,X)? Bayes' rule:

$$p(f|X, Y) = \frac{p(Y|X, f) \cdot p(f)}{p(Y|X)}$$
$$= \frac{p(Y|X, f) \cdot p(f)}{\int p(Y|X, f) df}$$

When is this well-defined?

Functions vs. parameters:

$$\mathcal{H} \cong \mathbb{R}^p$$

Represent functions in ${\cal H}$ by their coordinates w.r.t. a basis:

$$f \in \mathcal{H} \leftrightarrow \theta \in \mathbb{R}^p$$

Assume (for the moment): $p < \infty$

Functions vs. parameters:

$$\mathcal{H} \cong \mathbb{R}^p$$

Represent functions in ${\cal H}$ by their coordinates w.r.t. a basis:

$$f \in \mathcal{H} \leftrightarrow \theta \in \mathbb{R}^p$$

Assume (for the moment): $p < \infty$

Linear function:

$$f(x) = \langle x, \theta \rangle$$

Noise model:

$$\mathbf{Y}|\mathbf{X}, \mathbf{\theta} \sim \mathcal{N}\left(\mathbf{X}\mathbf{\theta}, \sigma_{\varepsilon}^{2}\mathbf{I}\right)$$

Add a prior:

$$\theta \sim \mathcal{N}\left(0,\Lambda\right)$$

Model:

$$Y|X, \theta \sim \mathcal{N}\left(X\theta, \sigma_{\varepsilon}^{2}I\right), \qquad \theta \sim \mathcal{N}\left(0, \Lambda\right)$$

Joint over Y and θ :

$$\left[\begin{array}{c} \boldsymbol{Y} \\ \boldsymbol{\theta} \end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{0} \end{array}\right], \left[\begin{array}{cc} \boldsymbol{X}\boldsymbol{\Lambda}\boldsymbol{X}^T + \sigma_{\varepsilon}^2\boldsymbol{I} & \boldsymbol{X}\boldsymbol{\Lambda} \\ \boldsymbol{\Lambda}\boldsymbol{X}^T & \boldsymbol{\Lambda} \end{array}\right]\right)$$

Condition on Y.

Posterior:

$$\theta | X, Y \sim \mathcal{N} \left(\mu_{\theta | X, Y}, \Sigma_{\theta | X, Y} \right)$$

where

$$\begin{split} & \mu_{\theta|X,Y} = \Lambda X^T (X \Lambda X^T + \sigma_{\varepsilon}^2 I)^{-1} Y \\ & \Sigma_{\theta|X,Y} = \Lambda - \Lambda X^T (X \Lambda X^T + \sigma_{\varepsilon}^2 I)^{-1} X \Lambda \end{split}$$

This is Gaussian, so

$$\hat{\theta}_{MAP}(Y|X) = \hat{\theta}_{BLS}(Y|X) = \Lambda X^{T} (X\Lambda X^{T} + \sigma_{\varepsilon}^{2} I)^{-1} Y$$

Posterior:

$$\theta | X, Y \sim \mathcal{N}\left(\mu_{\theta | X, Y}, \Sigma_{\theta | X, Y}\right)$$

where

$$\begin{split} & \mu_{\theta|X,Y} = \Lambda X^T (X \Lambda X^T + \sigma_{\varepsilon}^2 I)^{-1} Y \\ & \Sigma_{\theta|X,Y} = \Lambda - \Lambda X^T (X \Lambda X^T + \sigma_{\varepsilon}^2 I)^{-1} X \Lambda \end{split}$$

This is Gaussian, so

$$\hat{\theta}_{MAP}(Y|X) = \hat{\theta}_{BLS}(Y|X) = \Lambda X^{T}(X\Lambda X^{T} + \sigma_{\varepsilon}^{2}I)^{-1}Y$$

Linear RLS as a MAP estimator

Model:

$$Y|X, \theta \sim \mathcal{N}\left(X\theta, \sigma_{\varepsilon}^{2}I\right), \qquad \theta \sim \mathcal{N}\left(0, \Lambda\right)$$

$$\hat{\theta}_{MAP}(Y|X) = \Lambda X^T (X\Lambda X^T + \sigma_{\varepsilon}^2 I)^{-1} Y$$

Recall the linear RLS solution:

$$\hat{\theta}_{RLS}(Y|X) = \underset{\theta}{\arg\min} \frac{1}{2} \sum_{i=1}^{N} (y_i - \langle x_i, \theta \rangle)^2 + \frac{\lambda}{2} \|\theta\|^2$$
$$= \Lambda X^T (XX^T + \frac{\lambda}{2}I)^{-1} Y$$

So what's Λ ? λ ?

Linear RLS as a MAP estimator

Model:

$$Y|X, \theta \sim \mathcal{N}\left(X\theta, \sigma_{\varepsilon}^{2}I\right), \qquad \theta \sim \mathcal{N}\left(0, \Lambda\right)$$

$$\hat{\theta}_{MAP}(Y|X) = \Lambda X^T (X\Lambda X^T + \sigma_{\varepsilon}^2 I)^{-1} Y$$

Recall the linear RLS solution:

$$\hat{\theta}_{RLS}(Y|X) = \underset{\theta}{\arg\min} \frac{1}{2} \sum_{i=1}^{N} (y_i - \langle x_i, \theta \rangle)^2 + \frac{\lambda}{2} \|\theta\|^2$$
$$= \Lambda X^T (XX^T + \frac{\lambda}{2}I)^{-1} Y$$

So what's Λ ? λ ?

Extending to kernel RLS

Represent functions in ${\cal H}$ by their coordinates w.r.t. a basis:

$$f \in \mathcal{H} \leftrightarrow \theta \in \mathbb{R}^p$$

Which basis?

Extending to kernel RLS

Mercer's theorem:

$$K(x_i, x_j) = \sum_{k} \nu_k \psi_k(x_i) \psi_k(x_j)$$

where $\nu_k \psi_k(\cdot) = \int K(\cdot, y) \psi_k(y) dy$ for all k. The functions $\{\sqrt{\nu_k} \psi_k(\cdot)\}$ form an *orthonormal basis* for \mathcal{H}_K . Let $\phi(\cdot) = [\sqrt{\nu_1} \psi_1(\cdot), \dots, \sqrt{\nu_p} \psi_p(\cdot)]$. Then:

$$\mathcal{H}_{\mathcal{K}} = \{ \phi(\cdot)\theta | \theta \in \mathbb{R}^{p} \}$$

Posterior for kernel RLS

Model for linear RLS:

$$Y|X, \theta \sim \mathcal{N}\left(X\theta, \sigma_{\varepsilon}^{2}I\right), \qquad \theta \sim \mathcal{N}\left(0, I\right)$$

Model for kernel RLS?

$$Y|X, \theta \sim \mathcal{N}\left(\phi(X)\theta, \sigma_{\varepsilon}^{2}I\right), \qquad \theta \sim \mathcal{N}\left(0, I\right)$$

Then:

$$\hat{\theta}_{MAP}(Y|X) = \phi(X)^{T} (\phi(X)\phi(X)^{T} + \sigma_{\varepsilon}^{2} I)^{-1} Y$$

Potential problem?

Posterior for kernel RLS

Model for linear RLS:

$$Y|X, heta \sim \mathcal{N}\left(X heta, \sigma_{arepsilon}^2I
ight), \qquad heta \sim \mathcal{N}\left(0, I
ight)$$

Model for kernel RLS?

$$Y|X, \theta \sim \mathcal{N}\left(\phi(X)\theta, \sigma_{\varepsilon}^{2}I\right), \qquad \theta \sim \mathcal{N}\left(0, I\right)$$

Then:

$$\hat{\theta}_{MAP}(Y|X) = \phi(X)^{T} (\phi(X)\phi(X)^{T} + \sigma_{\varepsilon}^{2} I)^{-1} Y$$

Potential problem?

Posterior for kernel RLS

Model for linear RLS:

$$Y|X, \theta \sim \mathcal{N}\left(X\theta, \sigma_{\varepsilon}^{2}I\right), \qquad \theta \sim \mathcal{N}\left(0, I\right)$$

Model for kernel RLS?

$$Y|X, heta \sim \mathcal{N}\left(\phi(X)\theta, \sigma_{arepsilon}^2 I\right), \qquad heta \sim \mathcal{N}\left(0, I\right)$$

Then:

$$\hat{\theta}_{MAP}(Y|X) = \phi(X)^T (K + \sigma_{\varepsilon}^2 I)^{-1} Y$$

Potential problem?

Prior on infinite-dimensional space

Problem: there's no such thing as

$$\theta \sim \mathcal{N}\left(\mathbf{0}, I\right)$$

when $\theta \in \mathbb{R}^{\infty}$!

A quick recap

Empirical risk minimization is ML.

$$ho(Y|f,X) \propto e^{-rac{1}{2}\sum_{i=1}^N(y_i-f(x_i))^2}$$

Linear RLS is MAP.

$$\rho(Y,f|X) \propto e^{-\frac{1}{2}\sum_{i=1}^{N}(y_i - \langle x_i,\theta \rangle)^2} \cdot e^{-\frac{\lambda}{2}\theta^T\theta}$$

Kernel RLS is also MAP.

$$p(Y, f|X) \propto e^{-\frac{1}{2}\sum_{i=1}^{N}(y_i - f(x_i)^2 \cdot e^{-\frac{\lambda}{2}\|f\|_{\mathcal{H}}^2}$$

But these aren't well-defined for infinite dimensional function spaces...

A quick recap

• Empirical risk minimization is ML.

$$p(Y|f,X) \propto e^{-rac{1}{2}\sum_{i=1}^{N}(y_i-f(x_i))^2}$$

Linear RLS is MAP.

$$\rho(Y, f|X) \propto e^{-\frac{1}{2}\sum_{i=1}^{N}(y_i - \langle x_i, \theta \rangle)^2} \cdot e^{-\frac{\lambda}{2}\theta^T\theta}$$

Kernel RLS is also MAP.

$$p(Y, f|X) \propto e^{-\frac{1}{2} \sum_{i=1}^{N} (y_i - f(x_i)^2 \cdot e^{-\frac{\lambda}{2} ||f||_{\mathcal{H}}^2}$$

But these aren't well-defined for infinite dimensional function spaces...

A quick recap

Empirical risk minimization is ML.

$$p(Y|f,X) \propto e^{-rac{1}{2}\sum_{i=1}^{N}(y_i-f(x_i))^2}$$

Linear RLS is MAP.

$$p(Y, f|X) \propto e^{-\frac{1}{2}\sum_{i=1}^{N}(y_i - \langle x_i, \theta \rangle)^2} \cdot e^{-\frac{\lambda}{2}\theta^T\theta}$$

Kernel RLS is also MAP.

$$p(Y, f|X) \propto e^{-\frac{1}{2}\sum_{i=1}^{N}(y_i - f(x_i)^2 \cdot e^{-\frac{\lambda}{2}||f||_{\mathcal{H}}^2}$$

But these aren't well-defined for infinite dimensional function spaces...

We hinted at problems if dim $\mathcal{H}_K = \infty$.

Idea: Forget about estimating θ (i.e. f).

Instead: Estimate predicted outputs

$$Y^* = [y_1^*, \dots, y_M^*]^T$$

at test inputs

$$X^* = [x_1^*, \dots, x_M^*]^T$$

Need the joint distribution over Y^* and Y.

Say Y^* and Y are jointly Gaussian:

$$\left[\begin{array}{c} \mathbf{Y} \\ \mathbf{Y}^* \end{array}\right] = \mathcal{N}\left(\left[\begin{array}{c} \mu_{\mathbf{Y}} \\ \mu_{\mathbf{Y}^*} \end{array}\right], \left[\begin{array}{cc} \Lambda_{\mathbf{Y}} & \Lambda_{\mathbf{Y}\mathbf{Y}^*} \\ \Lambda_{\mathbf{Y}^*\mathbf{Y}} & \Lambda_{\mathbf{Y}^*} \end{array}\right]\right)$$

Want: kernel RLS.

General form for the posterior:

$$\mathbf{Y}^*|\mathbf{X},\,\mathbf{Y}\sim\mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{Y}*|\mathbf{X},\mathbf{Y}},\boldsymbol{\Sigma}_{\mathbf{Y}^*|\mathbf{X},\mathbf{Y}}\right)$$

where

$$\mu_{Y^*|X,Y} = \mu_{Y^*} + \Lambda_{YY^*}^T \Lambda_Y^{-1} (Y - \mu_Y)$$

$$\Sigma_{Y^*|X,Y} = \Lambda_{Y^*} - \Lambda_{YY^*}^T \Lambda_Y^{-1} \Lambda_{YY^*}$$

Say Y^* and Y are jointly Gaussian:

$$\left[\begin{array}{c} \mathbf{Y} \\ \mathbf{Y}^* \end{array}\right] = \mathcal{N}\left(\left[\begin{array}{c} \mu_{\mathbf{Y}} \\ \mu_{\mathbf{Y}^*} \end{array}\right], \left[\begin{array}{cc} \Lambda_{\mathbf{Y}} & \Lambda_{\mathbf{Y}\mathbf{Y}^*} \\ \Lambda_{\mathbf{Y}^*\mathbf{Y}} & \Lambda_{\mathbf{Y}^*} \end{array}\right]\right)$$

Want: kernel RLS.

General form for the posterior:

$$\mathbf{Y}^* | \mathbf{X}, \mathbf{Y} \sim \mathcal{N}\left(\mu_{\mathbf{Y}*|\mathbf{X},\mathbf{Y}}, \Sigma_{\mathbf{Y}^*|\mathbf{X},\mathbf{Y}}\right)$$

where

$$\mu_{Y^*|X,Y} = \mu_{Y^*} + \Lambda_{YY^*}^T \Lambda_Y^{-1} (Y - \mu_Y)$$

$$\Sigma_{Y^*|X,Y} = \Lambda_{Y^*} - \Lambda_{YY^*}^T \Lambda_Y^{-1} \Lambda_{YY^*}$$

Set
$$\Lambda_Y = K(X, X) + \sigma^2 I$$
, $\Lambda_{YY^*} = K(X, X^*)$, $\Lambda_{Y^*} = K(X^*, X^*)$.

Posterior:

$$Y^*|X, Y \sim \mathcal{N}\left(\mu_{Y*|X,Y}, \Sigma_{Y^*|X,Y}\right)$$

where

$$\mu_{Y^*|X,Y} = \mu_{Y^*} + K(X^*, X)(K(X, X + \sigma^2 I)^{-1}(Y - \mu_Y))$$

$$\Sigma_{Y^*|X,Y} = K(X^*, X^*) - K(X^*, X)(K(X, X) + \sigma^2 I)^{-1}K(X, X^*)$$

So:
$$\hat{Y}_{MAP}^* = \hat{f}_{RLS}(X^*)$$
.

Model:

$$\left[\begin{array}{c} Y \\ Y^* \end{array}\right] = \mathcal{N}\left(\left[\begin{array}{c} \mu_Y \\ \mu_{Y^*} \end{array}\right], \left[\begin{array}{c} K(X,X) + \sigma_{\varepsilon}^2 I & K(X,X^*) \\ K(X^*,X) & K(X^*,X^*) \end{array}\right]\right)$$

MAP estimate (posterior mean) = RLS function at every point x^* , regardless of dim \mathcal{H}_K .

Are the prior and posterior (*on points*!) consistent with a distribution on \mathcal{H}_K ?

Strictly speaking, θ and f don't come into play here at all:

Have: $p(Y^*|X, Y)$ Do not have: $p(\theta|X, Y)$ or p(f|X, Y)

But, if \mathcal{H}_K is finite dimensional, the joint over Y and Y^* is consistent with:

- $Y = f(X) + \varepsilon$,
- $Y^* = f(X)$, and
- $f \in \mathcal{H}_K$ is a random trajectory from a **Gaussian process** over the domain, with mean μ and covariance K.
- (Ergo, people call this "Gaussian process regression.")
 (Also "Kriging," because of a guy.)

Strictly speaking, θ and f don't come into play here at all:

Have:
$$p(Y^*|X, Y)$$

Do not have: $p(\theta|X, Y)$ or $p(f|X, Y)$

But, if \mathcal{H}_K is finite dimensional, the joint over Y and Y^* is consistent with:

- $Y = f(X) + \varepsilon$,
- $Y^* = f(X)$, and
- $f \in \mathcal{H}_K$ is a random trajectory from a **Gaussian process** over the domain, with mean μ and covariance K.
- (Ergo, people call this "Gaussian process regression.")
 (Also "Kriging," because of a guy.)

Recap redux

 Empirical risk minimization is the maximum likelihood estimator when:

$$\mathbf{y} = \mathbf{x}^T \theta + \varepsilon$$

• Linear RLS is the MAP estimator when:

$$y = x^T \theta + \varepsilon, \qquad \theta \sim \mathcal{N}(0, I)$$

• Kernel RLS is the MAP estimator when:

$$\mathbf{y} = \phi(\mathbf{x})^T \theta + \varepsilon, \qquad \theta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

in finite dimensional \mathcal{H}_K .

Kernel RLS is the MAP estimator at points when:

$$\left[\begin{array}{c} Y \\ Y^* \end{array}\right] = \mathcal{N}\left(\left[\begin{array}{c} \mu_Y \\ \mu_{Y^*} \end{array}\right], \left[\begin{array}{cc} K(X,X) + \sigma_{\varepsilon}^2 I & K(X,X^*) \\ K(X^*,X) & K(X^*,X^*) \end{array}\right]\right)$$

in possibly infinite dimensional \mathcal{H}_K .

Is this useful in practice?

- Want confidence intervals + believe the posteriors are meaningful = yes
- Maybe other reasons?