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About this class

Goal In this class we continue our journey in the world
of RKHS. We discuss the Mercer theorem which
gives a new characterization of RKHS while
introducing the concept of feature map. Then we
discussed the concept of feature map and its
interpretation. Finally, we show the computational
implication of using RKHS by deriving the general
solution of Tikhonov regularization, the so called
he representer theorem.
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Plan

Part I: RKHS are Hilbert spaces with bounded, continuous
evaluation functionals.
Part II: Reproducing Kernels
Part III: Mercer Theorem
Part IV: Feature Maps
Part V: Representer Theorem
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Part III: Mercer Theorem
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Different Views on RKHS
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Integral Operator

RKH space can be characterized via the integral operator

LK f (x) =

∫
X

K (x , s)f (s)p(s)dx

where p(x) is the probability density on X .

The operator has domain and range in L2(X ,p(x)dx) the space
of functions f : X → R such that

〈f , f 〉L2 =

∫
X
|f (x)|2p(x)dx <∞

L. Rosasco RKHS



Integral Operator

If X is a compact set and K is a continuous reproducing
kernel (i.e. symmetric and PD) then LK is a compact, positive
and self-adjoint operator.

There is a decreasing sequence (σi)i ≥ 0 such that
limi→∞ σi = 0 and

LKφi(x) =

∫
X

K (x , s)φi(s)p(s)ds = σiφi(x),

where φi is an orthonormal basis in L2(X ,p(x)dx).
The action of LK can be written as

LK f =
∑
i≥1

σi〈f , φi〉φi .
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Mercer Theorem

The kernel function have the following representation

K (x , s) =
∑
i≥1

σiφi(x)φi(s).

A symmetric, positive definite and continuous Kernel is called a
Mercer kernel.
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Different Definition of RKHS

It is possible to prove that:

H = {f ∈ L2(X ,p(x)dx)|
∑
i≥1

〈f , φi〉2L2

σi
<∞}.

The scalar product in H is

〈f ,g〉H =
∑
i≥1

〈f , φi〉L2
〈g, φi〉L2

σi
.
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Part IV: Feature Map
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Different Views on RKHS
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Mercer Theorem and Feature Map

K (x , s) =
∑
i≥1

σiφi(x)φi(s).

Let Φ(x) = (
√
σiφi(x))i , then Φ : X → `2 and (by definition)

K (x , s) = 〈Φ(x),Φ(x)〉 .

The above is an example of feature map associated to K .
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Feature Maps and Kernels

The above remark shows that we can associate a feature map
to every kernel.
In fact, multiple feature maps can be associated to a kernel.

Let Φ(x) = Kx . Then Φ : X → H.
Let Φ(x) = (ψj(x))j , where (ψj(x))j is an orthonormal basis
of H. Then Φ : X → `2.
Why?
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Feature Map and Feature Space

In general a feature map is a map Φ : X → F , where F is a
Hilbert space and is called Feature Space.
Every feature map defines a kernel via

K (x , s) = 〈Φ(x),Φ(x)〉 .
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Kernel from Feature Maps

Often times, feature map, and hence kernels, are defined
through a dictionary of features

D = {φj , i = 1, . . . ,p | φj : X → R, ∀j}

where p ≤ ∞.
We can interpret the above functions as (possibly non linear)
measurements on the inputs.

If p <∞ we can always define a feature map.
If p =∞ we need extra assumptions.
Which ones?
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Function as Hyperplanes in the Feature Space

The concept of feature map allows to give a new interpretation
of RKHS.

Functions can be seen as hyperplanes,

f (x) = 〈w ,Φ(x)〉 .

This can be seen for any of the previous examples.
Let Φ(x) = (

√
σjφj(x))j .

Let Φ(x) = Kx .
Let Φ(x) = (ψj(x))j .
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Feature Maps Illustrated
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Kernel "Trick" and Kernelization

Any algorithm which works in a euclidean space, hence
requiring only inner products in the computations, can be
kernelized

K (x , s) = 〈Φ(x),Φ(x)〉 .

Kernel PCA.
Kernel ICA.
Kernel CCA.
Kernel LDA.
Kernel...
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Part V: Regularization Networks and
Representer Theorem
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Again Tikhonov Regularization

The algorithms (Regularization Networks) that we want to study
are defined by an optimization problem over RKHS,

f λS = arg min
f∈H

1
n

n∑
i=1

V (f (xi), yi) + λ‖f‖2H

where the regularization parameter λ is a positive number, H is
the RKHS as defined by the pd kernel K (·, ·), and V (·, ·) is a
loss function.
Note that H is possibly infinite dimensional!
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Existence and uniqueness of minimum

If the positive loss function V (·, ·) is convex with respect to its
first entry, the functional

Φ[f ] =
1
n

n∑
i=1

V (f (xi), yi) + λ‖f‖2H

is strictly convex and coercive, hence it has exactly one local
(global) minimum.
Both the squared loss and the hinge loss are convex.
On the contrary the 0-1 loss

V = Θ(−f (x)y),

where Θ(·) is the Heaviside step function, is not convex.
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The Representer Theorem

An important result
The minimizer over the RKHS H, fS, of the regularized
empirical functional

IS[f ] + λ‖f‖2H,

can be represented by the expression

f λS (x) =
n∑

i=1

ciK (xi , x),

for some n-tuple (c1, . . . , cn) ∈ Rn.
Hence, minimizing over the (possibly infinite dimensional)
Hilbert space, boils down to minimizing over Rn.
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Sketch of proof

Define the linear subspace of H,

H0 = span({Kxi}i=1,...,n)

Let H⊥0 be the linear subspace of H,

H⊥0 = {f ∈ H|f (xi) = 0, i = 1, . . . ,n}.

From the reproducing property of H, ∀f ∈ H⊥0

〈f ,
∑

i

ciKxi 〉H =
∑

i

ci〈f ,Kxi 〉H =
∑

i

ci f (xi) = 0.

H⊥0 is the orthogonal complement of H0.
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Sketch of proof (cont.)

Every f ∈ H can be uniquely decomposed in components along
and perpendicular to H0: f = f0 + f⊥0 .
Since by orthogonality

‖f0 + f⊥0 ‖2 = ‖f0‖2 + ‖f⊥0 ‖2,

and by the reproducing property

IS[f0 + f⊥0 ] = IS[f0],

then
IS[f0] + λ‖f0‖2H ≤ IS[f0 + f⊥0 ] + λ‖f0 + f⊥0 ‖2H.

Hence the minimum f λS = f0 must belong to the linear space H0.
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Common Loss Functions

The following two important learning techniques are
implemented by different choices for the loss function V (·, ·)
• Regularized least squares (RLS)

V = (y − f (x))2

• Support vector machines for classification (SVMC)

V = |1− yf (x)|+

where
(k)+ ≡ max(k ,0).
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Tikhonov Regularization for RLS and SVMs

In the next two classes we will study Tikhonov regularization
with different loss functions for both regression and
classification. We will start with the square loss and then
consider SVM loss functions.
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