Regularized Least Squares

Charlie Frogner ¹

MIT

2011

¹Slides mostly stolen from Ryan Rifkin (Google).

Summary

- In RLS, the Tikhonov minimization problem boils down to solving a linear system (and this is good).
- We can compute the solution for each of a bunch of λ 's, by using the eigendecomposition of the kernel matrix.
- We can compute the leave-one-out error over the whole training set about as cheaply as solving the minimization problem once.
- The linear kernel allows us to do all of this when $n \gg d$.

Basics: Data

- Training set: $S = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Inputs: $X = \{x_1, \dots, x_n\}.$
- Labels: $Y = \{y_1, ..., y_n\}.$

Basics: RKHS, Kernel

• RKHS \mathcal{H} with a positive semidefinite *kernel function K*:

linear:
$$K(x_i, x_j) = x_i^T x_j$$

polynomial: $K(x_i, x_j) = (x_i^T x_j + 1)^d$
gaussian: $K(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{\sigma^2}\right)$

- Define the kernel matrix **K** to satisfy $\mathbf{K}_{ij} = K(x_i, x_j)$.
- The kernel function with one argument fixed is $K_x = K(x, \cdot)$.
- Given an arbitrary input x_* , \mathbf{K}_{x_*} is a vector whose *i*th entry is $K(x_i, x_*)$. (So the training set **X** is assumed.)

The RLS Setup

• Goal: Find the function $f \in \mathcal{H}$ that minimizes the weighted sum of the square loss and the RKHS norm

$$\underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \frac{\lambda}{2} ||f||_{\mathcal{H}}^2. \tag{1}$$

- This loss function makes sense for regression. We can also use it for binary classification, where it is less immediately intuitive but works great.
- Also called "ridge regression."

Applying the Representer

Claim: We can rewrite (1) as

$$\operatorname*{argmin}_{c \in \mathbb{R}^n} \frac{1}{2} ||\mathbf{Y} - \mathbf{K}c||_2^2 + \frac{\lambda}{2} ||f||_{\mathcal{H}}^2.$$

Proof: The representer theorem guarantees that the solution to (1) can be written as

$$f(\cdot) = \sum_{j=1}^{n} c_j K_{x_j}(\cdot)$$

for some $c \in \mathbb{R}^n$.

So **K***c* gives a vector whose *i*th element is $f(x_i)$:

$$f(x_i) = \sum_{j=1}^n c_j K_{x_i}(x_j) = \sum_{j=1}^n c_j \mathbf{K}_{ij} = (\mathbf{K}_{i,\cdot})c$$

Applying the Representer Theorem, Part II

Claim:

$$||f||_{\mathcal{H}}^2 = c^T \mathbf{K} c.$$

Proof:

$$f(\cdot) = \sum_{j=1}^{n} c_j K_{x_j}(\cdot),$$

SO

$$||f||_{\mathcal{H}}^{2} = \langle f, f \rangle_{\mathcal{H}}$$

$$= \left\langle \sum_{i=1}^{n} c_{i} K_{x_{i}}, \sum_{j=1}^{n} c_{j} K_{x_{j}} \right\rangle_{\mathcal{H}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \left\langle K_{x_{i}}, K_{x_{j}} \right\rangle_{\mathcal{H}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} K(x_{i}, x_{j}) = c^{t} K c$$

The RLS Solution

Putting it all together, the RLS problem is:

$$\underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{2} ||\mathbf{Y} - \mathbf{K} c||_2^2 + \frac{\lambda}{2} c^T \mathbf{K} c$$

This is convex in c (why?), so we can find its minimum by setting the gradient w.r.t c to 0:

$$-\mathbf{K}(\mathbf{Y} - \mathbf{K}c) + \lambda \mathbf{K}c = 0$$

$$(\mathbf{K} + \lambda I)c = \mathbf{Y}$$

$$c = (\mathbf{K} + \lambda I)^{-1}\mathbf{Y}$$

We find c by solving a system of linear equations.

The RLS Solution, Comments

- The solution exists and is unique (for $\lambda > 0$).
- Define G(λ) = K + λI. (Often λ is clear from context and we write G.)
- The prediction at a new test input x_{*} is:

$$f(x_*) = \sum_{j=1}^{n} c_j \mathbf{K}_{x_j}(x_*)$$
$$= \mathbf{K}_{x_*} \mathbf{c}$$
$$= \mathbf{K}_{x_*} \mathbf{G}^{-1} \mathbf{Y}$$

 The use of G⁻¹ (or other inverses) is formal only. We do not recommend taking matrix inverses.

Solving RLS, Parameters Fixed.

- Situation: All hyperparameters fixed
- We just need to solve a single linear system

$$(\mathbf{K} + \lambda \mathbf{I})\mathbf{c} = \mathbf{Y}.$$

- The matrix K + λI is symmetric positive definite, so the appropriate algorithm is Cholesky factorization.
- In Matlab, the "slash" operator seems to be using Cholesky, so you can just write $c = (K+1*I) \setminus Y$, but to be safe, (or in octave), I suggest R = chol(K+1*I); $c = (R \setminus (R' \setminus Y))$;.

Solving RLS, Varying λ

- Situation: We don't know what λ to use, all other hyperparameters fixed.
- Is there a more efficent method than solving $c(\lambda) = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{Y}$ anew for each λ ?
- Form the eigendecomposition $\mathbf{K} = \mathbf{Q} \wedge \mathbf{Q}^T$, where Λ is diagonal with $\Lambda_{ii} \geq 0$ and $\mathbf{Q} \mathbf{Q}^T = I$.
- Then

$$\mathbf{G} = \mathbf{K} + \lambda I$$

$$= \mathbf{Q} \wedge \mathbf{Q}^T + \lambda I$$

$$= \mathbf{Q} (\Lambda + \lambda I) \mathbf{Q}^T,$$

which implies that $\mathbf{G}^{-1} = \mathbf{Q}(\Lambda + \lambda I)^{-1}\mathbf{Q}^{T}$.

Solving RLS, Varying λ

- Situation: We don't know what λ to use, all other hyperparameters fixed.
- Is there a more efficent method than solving $c(\lambda) = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{Y}$ anew for each λ ?
- Form the eigendecomposition $\mathbf{K} = \mathbf{Q} \wedge \mathbf{Q}^T$, where Λ is diagonal with $\Lambda_{ii} \geq 0$ and $\mathbf{Q}\mathbf{Q}^T = I$.
- Then

$$\mathbf{G} = \mathbf{K} + \lambda \mathbf{I}$$

$$= \mathbf{Q} \wedge \mathbf{Q}^T + \lambda \mathbf{I}$$

$$= \mathbf{Q} (\Lambda + \lambda \mathbf{I}) \mathbf{Q}^T,$$

which implies that $\mathbf{G}^{-1} = \mathbf{Q}(\Lambda + \lambda I)^{-1}\mathbf{Q}^{T}$.

Solving RLS, Varying λ , Cont'd

• $O(n^3)$ time to solve one (dense) linear system, or to compute the eigendecomposition (constant is maybe 4x worse). Given **Q** and Λ , we can find $c(\lambda)$ in $O(n^2)$ time:

$$c(\lambda) = \mathbf{Q}(\Lambda + \lambda I)^{-1}\mathbf{Q}^T\mathbf{Y},$$

noting that $(\Lambda + \lambda I)$ is diagonal.

• Finding $c(\lambda)$ for many λ 's is (essentially) free!

Validation

- We showed how to find $c(\lambda)$ quickly as we vary λ .
- But how do we decide if a given λ is "good"?
- Simplest idea: Use the training set error
- Problem: This invariably overfits. Don't do this!
- Other methods are possible, but today we consider validation.
- Validation means checking our function's behavior on points other than the training set.

Validation

- We showed how to find $c(\lambda)$ quickly as we vary λ .
- But how do we decide if a given λ is "good"?
- Simplest idea: Use the training set error.
- Problem: This invariably overfits. Don't do this!
- Other methods are possible, but today we consider validation.
- Validation means checking our function's behavior on points other than the training set.

Types of Validation

- If we have a huge amount of data, we could hold back some percentage of our data (30% is typical), and use this development set to choose hyperparameters.
- More common is k-fold cross-validation, which means a couple of different things:
 - Divide your data into k equal sets S_1, \ldots, S_k . For each i, train on the other k-1 sets and test on the ith set.
 - A total of k times, randomly split your data into a training and test set.
- The limit of (the first kind of) k-fold validation is leave-one-out cross-validation.

Leave-One-Out Cross-Validation

- For each data point x_i , build a classifier using the remaining n-1 data points, and measure the error at x_i .
- Empirically, this seems to be the method of choice when n is small.
- Problem: We have to build n different predictors, on data sets of size n − 1.
- We will now proceed to show that for RLS, obtaining the LOO error is (essentially) free!

Leave-One-Out CV: Notation

• Define S^i to be the data set with the *i*th point removed:

$$S^i = \{(x_1, y_1), \dots, (x_{i-1}, y_{i-1}), \text{`poof*}, (x_{i+1}, y_{i+1}), \dots, (x_n, y_n)\}$$

- The *i*th leave-one-out *value* is $f_{S^i}(x_i)$.
- The *i*th leave-one-out *error* is $y_i f_{S^i}(x_i)$.
- Define L_V and L_E to be the vectors of leave-one-out values and errors over the training set.
- $||L_E||_2^2$ is considered a good empirical proxy for the error on future points, and we often want to choose parameters by minimizing this quantity.

L_E derivation, I

- Imagine that we already know $f_{S^i}(x_i)$.
- Define the vector Yⁱ via

$$y_j^i = \begin{cases} y_j & j \neq i \\ f_{S^i}(x_i) & j = i \end{cases}$$

L_E derivation, II

Claim: Solving RLS using \mathbf{Y}^i gives us f_{S^i} , i.e.

$$f_{S^i} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{2} \sum_{j=1}^n (y_j^i - f(x_j))^2 + \frac{\lambda}{2} ||f||_{\mathcal{H}}^2 = (*).$$

Proof:

L_E derivation, III

Therefore,

$$c^i = \mathbf{G}^{-1}\mathbf{Y}^i$$

 $f_{S^i}(x_i) = (\mathbf{K}\mathbf{G}^{-1}\mathbf{Y}^i)_i$

- This is circular reasoning so far, because we need to know $f_{S^i}(x_i)$ to form \mathbf{Y}^i in the first place.
- However, assuming we have already solved RLS for the whole training set, and we have computed $f_S(\mathbf{X}) = \mathbf{K}\mathbf{G}^{-1}\mathbf{Y}$, we can do something nice . . .

L_E derivation, IV

$$f_{S^{i}}(x_{i}) - f_{S}(x_{i}) = \sum_{j} (\mathbf{K}\mathbf{G}^{-1})_{ij} (y_{j}^{i} - y_{j})$$

$$= (\mathbf{K}\mathbf{G}^{-1})_{ii} (f_{S^{i}}(x_{i}) - y_{i})$$

$$f_{S^{i}}(x_{i}) = \frac{f_{S}(x_{i}) - (\mathbf{K}\mathbf{G}^{-1})_{ii} y_{i}}{1 - (\mathbf{K}\mathbf{G}^{-1})_{ii}}$$

$$= \frac{(\mathbf{K}\mathbf{G}^{-1}\mathbf{Y})_{i} - (\mathbf{K}\mathbf{G}^{-1})_{ii} y_{i}}{1 - (\mathbf{K}\mathbf{G}^{-1})_{ii}}.$$

L_E derivation, V

$$\begin{split} L_V &= \frac{\mathbf{K}\mathbf{G}^{-1}\mathbf{Y} - \mathrm{diag}_m(\mathbf{K}\mathbf{G}^{-1})\mathbf{Y}}{\mathrm{diag}_v(I - \mathbf{K}\mathbf{G}^{-1})}, \\ L_E &= \mathbf{Y} - L_V \\ &= \mathbf{Y} + \frac{\mathrm{diag}_m(\mathbf{K}\mathbf{G}^{-1})\mathbf{Y} - \mathbf{K}\mathbf{G}^{-1}\mathbf{Y}}{\mathrm{diag}_v(I - \mathbf{K}\mathbf{G}^{-1})} \\ &= \frac{\mathrm{diag}_m(I - \mathbf{K}\mathbf{G}^{-1})\mathbf{Y}}{\mathrm{diag}_v(I - \mathbf{K}\mathbf{G}^{-1})} + \frac{\mathrm{diag}_m(\mathbf{K}\mathbf{G}^{-1})\mathbf{Y} - \mathbf{K}\mathbf{G}^{-1}\mathbf{Y}}{\mathrm{diag}_v(I - \mathbf{K}\mathbf{G}^{-1})} \\ &= \frac{\mathbf{Y} - \mathbf{K}\mathbf{G}^{-1}\mathbf{Y}}{\mathrm{diag}_v(I - \mathbf{K}\mathbf{G}^{-1})}. \end{split}$$

L_E derivation, VI

We can simplify our expressions in a way that leads to better computational and numerical properties by noting

$$\mathbf{K}\mathbf{G}^{-1} = \mathbf{Q}\Lambda\mathbf{Q}^{T}\mathbf{Q}(\Lambda + \lambda I)^{-1}\mathbf{Q}^{T}$$

$$= \mathbf{Q}\Lambda(\Lambda + \lambda I)^{-1}\mathbf{Q}^{T}$$

$$= \mathbf{Q}(\Lambda + \lambda I - \lambda I)(\Lambda + \lambda I)^{-1}\mathbf{Q}^{T}$$

$$= I - \lambda \mathbf{G}^{-1}.$$

L_E derivation, VII

Substituting into our expression for L_E yields

$$L_E = \frac{\mathbf{Y} - \mathbf{K}\mathbf{G}^{-1}\mathbf{Y}}{\operatorname{diag}_{\nu}(I - \mathbf{K}\mathbf{G}^{-1})}$$

$$= \frac{\mathbf{Y} - (I - \lambda \mathbf{G}^{-1})\mathbf{Y}}{\operatorname{diag}_{\nu}(I - (I - \lambda \mathbf{G}^{-1}))}$$

$$= \frac{\lambda \mathbf{G}^{-1}\mathbf{Y}}{\operatorname{diag}_{\nu}(\lambda \mathbf{G}^{-1})}$$

$$= \frac{\mathbf{G}^{-1}\mathbf{Y}}{\operatorname{diag}_{\nu}(\mathbf{G}^{-1})}$$

$$= \frac{c}{\operatorname{diag}_{\nu}(\mathbf{G}^{-1})}.$$

The cost of computing L_E

For RLS, we compute L_E via

$$L_E = \frac{c}{\operatorname{diag}_{\nu}(\mathbf{G}^{-1})}.$$

- We already showed how to compute $c(\lambda)$ in $O(n^2)$ time (given $\mathbf{K} = \mathbf{Q} \wedge \mathbf{Q}^T$).
- We can also compute a single entry of G(λ)⁻¹ in O(n) time:

$$\mathbf{G}_{ij}^{-1} = (\mathbf{Q}(\Lambda + \lambda I)^{-1}\mathbf{Q}^{T})_{ij}$$
$$= \sum_{k=1}^{n} \frac{\mathbf{Q}_{ik}\mathbf{Q}_{jk}}{\Lambda_{kk} + \lambda},$$

and therefore we can compute diag(\mathbf{G}^{-1}), and compute L_F , in $O(n^2)$ time.

Summary So Far

- If we can (directly) solve one RLS problem on our data, we can find a good value of λ using LOO optimization at essentially the same cost.
- When can we solve one RLS problem? (I.e. what are the bottlenecks?)
- We need to form K, which takes O(n²d) time and O(n²) memory. We need to perform a solve or an eigendecomposition of K, which takes O(n³) time.
- Usually, we run out of memory before we run out of time.
- The practical limit on today's workstations is (more-or-less) 10,000 points (using Matlab).
- How can we do more?

Summary So Far

- If we can (directly) solve one RLS problem on our data, we can find a good value of λ using LOO optimization at essentially the same cost.
- When can we solve one RLS problem? (I.e. what are the bottlenecks?)
- We need to form K, which takes O(n²d) time and O(n²) memory. We need to perform a solve or an eigendecomposition of K, which takes O(n³) time.
- Usually, we run out of memory before we run out of time.
- The practical limit on today's workstations is (more-or-less) 10,000 points (using Matlab).
- How can we do more?

The Linear Case

- The linear kernel is $K(x_i, x_j) = x_i^T x_j$.
- The linear kernel offers many advantages for computation.
- Key idea: we get a decomposition of the kernel matrix for free: K = XX^T.
- In the linear case, we will see that we have two different computation options.

Linear kernel, linear function

With a linear kernel, the function we are learning is linear as well:

$$f(x_*) = \mathbf{K}_{x_*} \mathbf{c}$$

$$= x_*^T \mathbf{X}^T \mathbf{c}$$

$$= x_*^T \mathbf{w},$$

where we define the hyperplane w to be $\mathbf{X}^T c$. We can classify new points in O(d) time, using w, rather than having to compute a weighted sum of n kernel products (which will usually cost O(nd) time).

Linear kernel, SVD approach, I

- Assume n, the number of points, is bigger than d, the number of dimensions. (If not, the best bet is to ignore the special properties of the linear kernel.)
- The economy-size SVD of **X** can be written as $\mathbf{X} = USV^T$, with $U \in \mathbb{R}^{n \times d}$, $S \in \mathbb{R}^{d \times d}$, $V \in \mathbb{R}^{d \times d}$, $U^TU = V^TV = VV^T = I_d$, and S diagonal and positive semidefinite. (Note that $UU^T \neq I_n$).
- We will express the LOO formula directly in terms of the SVD, rather than K.

Linear kernel, SVD approach, II

$$\mathbf{K} = \mathbf{XX}^{T} = (USV^{T})(VSU^{T}) = US^{2}U^{T}$$

$$\mathbf{K} + \lambda I = US^{2}U^{T} + \lambda I_{n}$$

$$= \begin{bmatrix} U & U_{\perp} \end{bmatrix} \begin{bmatrix} S^{2} + \lambda I_{d} \\ & \lambda I_{n-d} \end{bmatrix} \begin{bmatrix} U^{T} \\ & U_{\perp}^{T} \end{bmatrix}$$

$$= U(S^{2} + \lambda I_{d})U^{T} + \lambda U_{\perp}U_{\perp}^{T}$$

$$= U(S^{2} + \lambda I_{d})U^{T} + \lambda (I_{n} - UU^{T})$$

$$= US^{2}U^{T} + \lambda I_{n}$$

Linear kernel, SVD approach, III

$$\begin{aligned} & (\mathbf{K} + \lambda I)^{-1} \\ &= & (US^{2}U^{T} + \lambda I_{n})^{-1} \\ &= & \left(\begin{bmatrix} U & U_{\perp} \end{bmatrix} \begin{bmatrix} S^{2} + \lambda I_{d} & & \\ & \lambda I_{n-d} \end{bmatrix} \begin{bmatrix} U^{T} & & \\ & U^{T} & & \\ & & & \end{bmatrix} \right)^{-1} \\ &= & \begin{bmatrix} U & U_{\perp} \end{bmatrix} \begin{bmatrix} S^{2} + \lambda I_{d} & & \\ & \lambda I_{n-d} \end{bmatrix}^{-1} \begin{bmatrix} U^{T} & & \\ & & \\ & & & \end{bmatrix}^{-1} \\ &= & U(S^{2} + \lambda I)^{-1}U^{T} + \lambda^{-1}U_{\perp}U_{\perp}^{T} \\ &= & U(S^{2} + \lambda I)^{-1}U^{T} + \lambda^{-1}(I - UU^{T}) \\ &= & U[(S^{2} + \lambda I)^{-1} - \lambda^{-1}I]U^{T} + \lambda^{-1}I \end{aligned}$$

Linear kernel, SVD approach, IV

$$c = (\mathbf{K} + \lambda I)^{-1} \mathbf{Y}$$

$$= U \left[(S^{2} + \lambda I)^{-1} - \lambda^{-1} I \right] U^{T} \mathbf{Y} + \lambda^{-1} \mathbf{Y}$$

$$G_{ij}^{-1} = \sum_{k=1}^{d} U_{ik} U_{jk} [(S_{kk} + \lambda)^{-1} - \lambda^{-1}] + [i = j] \lambda^{-1}$$

$$G_{ii}^{-1} = \sum_{k=1}^{d} U_{ik}^{2} [(S_{kk} + \lambda)^{-1} - \lambda^{-1}] + \lambda^{-1}$$

$$L_{E} = \frac{c}{\operatorname{diag}_{v}(G^{-1})}$$

$$= \frac{U \left[(S^{2} + \lambda I)^{-1} - \lambda^{-1} I \right] U^{T} \mathbf{Y} + \lambda^{-1} \mathbf{Y}}{\operatorname{diag}_{v} (U \left[(S^{2} + \lambda I)^{-1} - \lambda^{-1} I \right] U^{T} + \lambda^{-1} I)}$$

Linear kernel, SVD approach, computational costs

- We need O(nd) memory to store the data in the first place.
 The (economy-sized) SVD also requires O(nd) memory, and O(nd²) time.
- Once we have the SVD, we can compute the LOO error (for a given λ) in O(nd) time.
- Compared to the nonlinear case, we have replaced an O(n) with an O(d), in both time and memory. If n >> d, this can represent a huge savings.

Linear kernel, direct approach, I

For the linear kernel,

$$\begin{split} L &= \underset{c \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} ||\mathbf{Y} - \mathbf{K}c||_2^2 + \frac{\lambda}{2} c^T \mathbf{K}c \\ &= \underset{c \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} ||\mathbf{Y} - \mathbf{X} \mathbf{X}^T c||_2^2 + \frac{\lambda}{2} c^T \mathbf{X} \mathbf{X}^T c \\ &= \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2} ||\mathbf{Y} - \mathbf{X} w||_2^2 + \frac{\lambda}{2} ||w||_2^2. \end{split}$$

Taking the derivative with respect to w,

$$\frac{\partial L}{\partial w} = \mathbf{X}^T \mathbf{X} w - \mathbf{X}^T \mathbf{Y} + \lambda w,$$

and setting to zero implies

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}.$$

Linear kernel, direct approach, II

- If we are willing to give up LOO validation, we can skip the computation of c and just get w directly.
- We can work with the *Gram matrix* $\mathbf{X}^T \mathbf{X} \in \mathbb{R}^{d \times d}$.
- The algorithm is identical to solving a general RLS problem with kernel matrix X^TX and labels X^Ty.
- Form the eigendecomposition of $\mathbf{X}^T\mathbf{X}$, in $O(d^3)$ time, form $w(\lambda)$ in $O(d^2)$ time.
- Why would we give up LOO validation? Maybe *n* is very large, so using a development set is good enough.

Summary

 In RLS, the Tikhonov minimization problem boils down to solving a linear system:

$$\underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \frac{\lambda}{2} ||f||_{\mathcal{H}}^2 = \mathbf{K}_{(\cdot)} c$$

where $(\mathbf{K} + \lambda I)c = \mathbf{Y}$.

- We can (more) cheaply compute c(λ) for a bunch of λ's, by using the eigendecomposition of the kernel matrix:
 K = QΛQ^T.
- We can compute the leave-one-out error over the whole training set about as cheaply as solving for c once.
- The linear kernel allows us to do all of this when $n \gg d$.

Parting Shot

"You should be asking how the answers will be used and what is *really* needed from the computation. Time and time again someone will ask for the inverse of a matrix when all that is needed is the solution of a linear system; for an interpolating polynomial when all that is needed is its values at some point; for the solution of an ODE at a sequence of points when all that is needed is the limiting, steady-state value. A common complaint is that least squares curve-fitting couldn't possibly work on this data set and some more complicated method is needed; in almost all such cases, least squares curve-fitting will work just fine because it is so very robust."

Leader, Numerical Analysis and Scientific Computation

