
Regularized Least Squares

Charlie Frogner 1

MIT

2011

1Slides mostly stolen from Ryan Rifkin (Google).
C. Frogner Regularized Least Squares

Summary

In RLS, the Tikhonov minimization problem boils down to
solving a linear system (and this is good).
We can compute the solution for each of a bunch of λ’s, by
using the eigendecomposition of the kernel matrix.
We can compute the leave-one-out error over the whole
training set about as cheaply as solving the minimization
problem once.
The linear kernel allows us to do all of this when n� d .

C. Frogner Regularized Least Squares

Basics: Data

Training set: S = {(x1, y1), . . . , (xn, yn)}.
Inputs: X = {x1, . . . , xn}.
Labels: Y = {y1, . . . , yn}.

C. Frogner Regularized Least Squares

Basics: RKHS, Kernel

RKHS H with a positive semidefinite kernel function K :

linear: K (xi , xj) = xT
i xj

polynomial: K (xi , xj) = (xT
i xj + 1)d

gaussian: K (xi , xj) = exp

(
−
||xi − xj ||2

σ2

)

Define the kernel matrix K to satisfy Kij = K (xi , xj).
The kernel function with one argument fixed is
Kx = K (x , ·).
Given an arbitrary input x∗, Kx∗ is a vector whose i th entry
is K (xi , x∗). (So the training set X is assumed.)

C. Frogner Regularized Least Squares

The RLS Setup

Goal: Find the function f ∈ H that minimizes the weighted
sum of the square loss and the RKHS norm

argmin
f∈H

1
2

n∑
i=1

(f (xi)− yi)
2 +

λ

2
||f ||2H. (1)

This loss function makes sense for regression. We can
also use it for binary classification, where it is less
immediately intuitive but works great.
Also called “ridge regression.”

C. Frogner Regularized Least Squares

Applying the Representer

Claim: We can rewrite (1) as

argmin
c∈Rn

1
2
||Y− Kc||22 +

λ

2
||f ||2H.

Proof: The representer theorem guarantees that the solution to
(1) can be written as

f (·) =
n∑

j=1

cjKxj (·)

for some c ∈ Rn.
So Kc gives a vector whose i th element is f (xi):

f (xi) =
n∑

j=1

cjKxi (xj) =
n∑

j=1

cjKij = (Ki,·)c

C. Frogner Regularized Least Squares

Applying the Representer Theorem, Part II

Claim:
‖f‖2H = cT Kc.

Proof:

f (·) =
n∑

j=1

cjKxj (·),

so

||f ||2H = < f , f >H

=

〈
n∑

i=1

ciKxi ,

n∑
j=1

cjKxj

〉
H

=
n∑

i=1

n∑
j=1

cicj
〈
Kxi ,Kxj

〉
H

=
n∑

i=1

n∑
j=1

cicjK (xi , xj) = ctKc

C. Frogner Regularized Least Squares

The RLS Solution

Putting it all together, the RLS problem is:

argmin
f∈H

1
2
||Y− Kc||22 +

λ

2
cT Kc

This is convex in c (why?), so we can find its minimum by
setting the gradient w.r.t c to 0:

−K(Y− Kc) + λKc = 0
(K + λI)c = Y

c = (K + λI)−1Y

We find c by solving a system of linear equations.

C. Frogner Regularized Least Squares

The RLS Solution, Comments

The solution exists and is unique (for λ > 0).
Define G(λ) = K + λI. (Often λ is clear from context and
we write G.)
The prediction at a new test input x∗ is:

f (x∗) =
n∑

j=1

cjKxj (x∗)

= Kx∗c
= Kx∗G−1Y

The use of G−1 (or other inverses) is formal only. We do
not recommend taking matrix inverses.

C. Frogner Regularized Least Squares

Solving RLS, Parameters Fixed.

Situation: All hyperparameters fixed
We just need to solve a single linear system

(K + λI)c = Y.

The matrix K + λI is symmetric positive definite, so the
appropriate algorithm is Cholesky factorization.
In Matlab, the “slash” operator seems to be using
Cholesky, so you can just write c = (K+l*I)\Y, but to be
safe, (or in octave), I suggest R = chol(K+l*I); c =
(R\(R’\Y));.

C. Frogner Regularized Least Squares

Solving RLS, Varying λ

Situation: We don’t know what λ to use, all other
hyperparameters fixed.
Is there a more efficent method than solving
c(λ) = (K + λI)−1Y anew for each λ?
Form the eigendecomposition K = QΛQT , where Λ is
diagonal with Λii ≥ 0 and QQT = I.
Then

G = K + λI
= QΛQT + λI
= Q(Λ + λI)QT ,

which implies that G−1 = Q(Λ + λI)−1QT .

C. Frogner Regularized Least Squares

Solving RLS, Varying λ

Situation: We don’t know what λ to use, all other
hyperparameters fixed.
Is there a more efficent method than solving
c(λ) = (K + λI)−1Y anew for each λ?
Form the eigendecomposition K = QΛQT , where Λ is
diagonal with Λii ≥ 0 and QQT = I.
Then

G = K + λI
= QΛQT + λI
= Q(Λ + λI)QT ,

which implies that G−1 = Q(Λ + λI)−1QT .

C. Frogner Regularized Least Squares

Solving RLS, Varying λ, Cont’d

O(n3) time to solve one (dense) linear system, or to
compute the eigendecomposition (constant is maybe 4x
worse). Given Q and Λ, we can find c(λ) in O(n2) time:

c(λ) = Q(Λ + λI)−1QT Y,

noting that (Λ + λI) is diagonal.
Finding c(λ) for many λ’s is (essentially) free!

C. Frogner Regularized Least Squares

Validation

We showed how to find c(λ) quickly as we vary λ.
But how do we decide if a given λ is “good”?
Simplest idea: Use the training set error.
Problem: This invariably overfits. Don’t do this!
Other methods are possible, but today we consider
validation.
Validation means checking our function’s behavior on
points other than the training set.

C. Frogner Regularized Least Squares

Validation

We showed how to find c(λ) quickly as we vary λ.
But how do we decide if a given λ is “good”?
Simplest idea: Use the training set error.
Problem: This invariably overfits. Don’t do this!
Other methods are possible, but today we consider
validation.
Validation means checking our function’s behavior on
points other than the training set.

C. Frogner Regularized Least Squares

Types of Validation

If we have a huge amount of data, we could hold back
some percentage of our data (30% is typical), and use this
development set to choose hyperparameters.
More common is k-fold cross-validation, which means a
couple of different things:

Divide your data into k equal sets S1, . . . ,Sk . For each i ,
train on the other k − 1 sets and test on the i th set.
A total of k times, randomly split your data into a training
and test set.

The limit of (the first kind of) k-fold validation is
leave-one-out cross-validation.

C. Frogner Regularized Least Squares

Leave-One-Out Cross-Validation

For each data point xi , build a classifier using the
remaining n − 1 data points, and measure the error at xi .
Empirically, this seems to be the method of choice when n
is small.
Problem: We have to build n different predictors, on data
sets of size n − 1.
We will now proceed to show that for RLS, obtaining the
LOO error is (essentially) free!

C. Frogner Regularized Least Squares

Leave-One-Out CV: Notation

Define Si to be the data set with the i th point removed:

Si = {(x1, y1), . . . , (xi−1, yi−1), *poof*, (xi+1, yi+1), . . . , (xn, yn)}

The i th leave-one-out value is fSi (xi).
The i th leave-one-out error is yi − fSi (xi).
Define LV and LE to be the vectors of leave-one-out values
and errors over the training set.
||LE ||22 is considered a good empirical proxy for the error on
future points, and we often want to choose parameters by
minimizing this quantity.

C. Frogner Regularized Least Squares

LE derivation, I

Imagine that we already know fSi (xi).
Define the vector Yi via

y i
j =

{
yj j 6= i

fSi (xi) j = i

C. Frogner Regularized Least Squares

LE derivation, II

Claim: Solving RLS using Yi gives us fSi , i.e.

fSi = argmin
f∈H

1
2

n∑
j=1

(y i
j − f (xj))2 +

λ

2
‖f‖2H = (*).

Proof:

(1) = (y i
i − f (xi))2 ≥ 0 ∀f

and (y i
i − fSi (xi))2 = (fSi (xi)− fSi (xi))2 = 0

⇒ fSi minimizes (1)
fSi also minimizes

∑
j 6=i

(y i
j − f (xj))2 + λ

2‖f‖
2
H = (2)

⇒ fSi minimizes (*) = (1) + (2)

C. Frogner Regularized Least Squares

LE derivation, III

Therefore,

c i = G−1Yi

fSi (xi) = (KG−1Yi)i

This is circular reasoning so far, because we need to know
fSi (xi) to form Yi in the first place.
However, assuming we have already solved RLS for the
whole training set, and we have computed fS(X) = KG−1Y,
we can do something nice . . .

C. Frogner Regularized Least Squares

LE derivation, IV

fSi (xi)− fS(xi) =
∑

j

(KG−1)ij(y i
j − yj)

= (KG−1)ii(fSi (xi)− yi)

fSi (xi) =
fS(xi)− (KG−1)iiyi

1− (KG−1)ii

=
(KG−1Y)i − (KG−1)iiyi

1− (KG−1)ii
.

C. Frogner Regularized Least Squares

LE derivation, V

LV =
KG−1Y− diagm(KG−1)Y

diagv (I − KG−1)
,

LE = Y− LV

= Y +
diagm(KG−1)Y− KG−1Y

diagv (I − KG−1)

=
diagm(I − KG−1)Y
diagv (I − KG−1)

+
diagm(KG−1)Y− KG−1Y

diagv (I − KG−1)

=
Y− KG−1Y

diagv (I − KG−1)
.

C. Frogner Regularized Least Squares

LE derivation, VI

We can simplify our expressions in a way that leads to better
computational and numerical properties by noting

KG−1 = QΛQT Q(Λ + λI)−1QT

= QΛ(Λ + λI)−1QT

= Q(Λ + λI − λI)(Λ + λI)−1QT

= I − λG−1.

C. Frogner Regularized Least Squares

LE derivation, VII

Substituting into our expression for LE yields

LE =
Y− KG−1Y

diagv (I − KG−1)

=
Y− (I − λG−1)Y

diagv (I − (I − λG−1))

=
λG−1Y

diagv (λG−1)

=
G−1Y

diagv (G−1)

=
c

diagv (G−1)
.

C. Frogner Regularized Least Squares

The cost of computing LE

For RLS, we compute LE via

LE =
c

diagv (G−1)
.

We already showed how to compute c(λ) in O(n2) time
(given K = QΛQT).
We can also compute a single entry of G(λ)−1 in O(n)
time:

G−1
ij = (Q(Λ + λI)−1QT)ij

=
n∑

k=1

QikQjk

Λkk + λ
,

and therefore we can compute diag(G−1), and compute
LE , in O(n2) time.

C. Frogner Regularized Least Squares

Summary So Far

If we can (directly) solve one RLS problem on our data, we
can find a good value of λ using LOO optimization at
essentially the same cost.
When can we solve one RLS problem? (I.e. what are the
bottlenecks?)
We need to form K, which takes O(n2d) time and O(n2)
memory. We need to perform a solve or an
eigendecomposition of K, which takes O(n3) time.
Usually, we run out of memory before we run out of time.
The practical limit on today’s workstations is (more-or-less)
10,000 points (using Matlab).
How can we do more?

C. Frogner Regularized Least Squares

Summary So Far

If we can (directly) solve one RLS problem on our data, we
can find a good value of λ using LOO optimization at
essentially the same cost.
When can we solve one RLS problem? (I.e. what are the
bottlenecks?)
We need to form K, which takes O(n2d) time and O(n2)
memory. We need to perform a solve or an
eigendecomposition of K, which takes O(n3) time.
Usually, we run out of memory before we run out of time.
The practical limit on today’s workstations is (more-or-less)
10,000 points (using Matlab).
How can we do more?

C. Frogner Regularized Least Squares

The Linear Case

The linear kernel is K (xi , xj) = xT
i xj .

The linear kernel offers many advantages for computation.
Key idea: we get a decomposition of the kernel matrix for
free: K = XXT .
In the linear case, we will see that we have two different
computation options.

C. Frogner Regularized Least Squares

Linear kernel, linear function

With a linear kernel, the function we are learning is linear as
well:

f (x∗) = Kx∗c
= xT

∗ XT c
= xT

∗ w ,

where we define the hyperplane w to be XT c. We can classify
new points in O(d) time, using w , rather than having to
compute a weighted sum of n kernel products (which will
usually cost O(nd) time).

C. Frogner Regularized Least Squares

Linear kernel, SVD approach, I

Assume n, the number of points, is bigger than d , the
number of dimensions. (If not, the best bet is to ignore the
special properties of the linear kernel.)
The economy-size SVD of X can be written as X = USV T ,
with U ∈ Rn×d , S ∈ Rd×d , V ∈ Rd×d ,
UT U = V T V = VV T = Id , and S diagonal and positive
semidefinite. (Note that UUT 6= In).
We will express the LOO formula directly in terms of the
SVD, rather than K.

C. Frogner Regularized Least Squares

Linear kernel, SVD approach, II

K = XXT = (USV T)(VSUT) = US2UT

K + λI = US2UT + λIn

=

[
U U⊥

] [
S2 + λId

λIn−d

] [
UT

UT
⊥

]
= U(S2 + λId)UT + λU⊥UT

⊥

= U(S2 + λId)UT + λ(In − UUT)

= US2UT + λIn

C. Frogner Regularized Least Squares

Linear kernel, SVD approach, III

(K + λI)−1

= (US2UT + λIn)−1

=

([
U U⊥

] [
S2 + λId

λIn−d

] [
UT

UT
⊥

])−1

=

[
U U⊥

] [
S2 + λId

λIn−d

]−1 [
UT

UT
⊥

]
= U(S2 + λI)−1UT + λ−1U⊥UT

⊥

= U(S2 + λI)−1UT + λ−1(I − UUT)

= U
[
(S2 + λI)−1 − λ−1I

]
UT + λ−1I

C. Frogner Regularized Least Squares

Linear kernel, SVD approach, IV

c = (K + λI)−1Y

= U
[
(S2 + λI)−1 − λ−1I

]
UT Y + λ−1Y

G−1
ij =

d∑
k=1

UikUjk [(Skk + λ)−1 − λ−1] + [i = j]λ−1

G−1
ii =

d∑
k=1

U2
ik [(Skk + λ)−1 − λ−1] + λ−1

LE =
c

diagv (G−1)

=
U
[
(S2 + λI)−1 − λ−1I

]
UT Y + λ−1Y

diagv (U
[
(S2 + λI)−1 − λ−1I

]
UT + λ−1I)

C. Frogner Regularized Least Squares

Linear kernel, SVD approach, computational costs

We need O(nd) memory to store the data in the first place.
The (economy-sized) SVD also requires O(nd) memory,
and O(nd2) time.
Once we have the SVD, we can compute the LOO error
(for a given λ) in O(nd) time.
Compared to the nonlinear case, we have replaced an
O(n) with an O(d), in both time and memory. If n >> d ,
this can represent a huge savings.

C. Frogner Regularized Least Squares

Linear kernel, direct approach, I

For the linear kernel,

L = argmin
c∈Rn

1
2
||Y− Kc||22 +

λ

2
cT Kc

= argmin
c∈Rn

1
2
||Y− XXT c||22 +

λ

2
cT XXT c

= argmin
w∈Rd

1
2
||Y− Xw ||22 +

λ

2
||w ||22.

Taking the derivative with respect to w ,

∂L
∂w

= XT Xw − XT Y + λw ,

and setting to zero implies

w = (XT X + λI)−1XT Y.

C. Frogner Regularized Least Squares

Linear kernel, direct approach, II

If we are willing to give up LOO validation, we can skip the
computation of c and just get w directly.
We can work with the Gram matrix XT X ∈ Rd×d .
The algorithm is identical to solving a general RLS problem
with kernel matrix XT X and labels XT y .
Form the eigendecomposition of XT X, in O(d3) time, form
w(λ) in O(d2) time.
Why would we give up LOO validation? Maybe n is very
large, so using a development set is good enough.

C. Frogner Regularized Least Squares

Summary

In RLS, the Tikhonov minimization problem boils down to
solving a linear system:

argmin
f∈H

1
2

n∑
i=1

(yi − f (xi))2 +
λ

2
||f ||2H = K(·)c

where (K + λI)c = Y.
We can (more) cheaply compute c(λ) for a bunch of λ’s, by
using the eigendecomposition of the kernel matrix:
K = QΛQT .
We can compute the leave-one-out error over the whole
training set about as cheaply as solving for c once.
The linear kernel allows us to do all of this when n� d .

C. Frogner Regularized Least Squares

Parting Shot

“You should be asking how the answers will be used and what
is really needed from the computation. Time and time again
someone will ask for the inverse of a matrix when all that is
needed is the solution of a linear system; for an interpolating
polynomial when all that is needed is its values at some point;
for the solution of an ODE at a sequence of points when all that
is needed is the limiting, steady-state value. A common
complaint is that least squares curve-fitting couldn’t possibly
work on this data set and some more complicated method is
needed; in almost all such cases, least squares curve-fitting will
work just fine because it is so very robust.”

Leader, Numerical Analysis and Scientific Computation

C. Frogner Regularized Least Squares

