
Support Vector Machines

Charlie Frogner 1

MIT

2011

1Slides mostly stolen from Ryan Rifkin (Google).
C. Frogner Support Vector Machines

Plan

Regularization derivation of SVMs.

Analyzing the SVM problem: optimization, duality.

Geometric derivation of SVMs.

Practical issues.

C. Frogner Support Vector Machines

The Regularization Setting (Again)

Given n examples (x1, y1), . . . , (xn, yn), with xi ∈ R
n and

yi ∈ {−1,1} for all i .
We can find a classification function by solving a regularized
learning problem:

argmin
f∈H

1
n

n
∑

i=1

V (yi , f (xi)) + λ||f ||2H.

Note that in this class we are specifically considering binary
classification .

C. Frogner Support Vector Machines

The Hinge Loss

The classical SVM arises by considering the specific loss
function

V (f (x , y)) ≡ (1 − yf (x))+,

where
(k)+ ≡ max(k ,0).

C. Frogner Support Vector Machines

The Hinge Loss

−3 −2 −1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

y * f(x)

H
in

ge
 L

os
s

C. Frogner Support Vector Machines

Substituting In The Hinge Loss

With the hinge loss, our regularization problem becomes

argmin
f∈H

1
n

n
∑

i=1

(1 − yi f (xi))+ + λ||f ||2H.

Note that we don’t have a 1
2 multiplier on the regularization

term.

C. Frogner Support Vector Machines

Slack Variables

This problem is non-differentiable (because of the “kink” in V).
So rewrite the “max” function using slack variables ξi .

argmin
f∈H

1
n

∑n
i=1 ξi + λ||f ||2H

subject to : ξi ≥ 1 − yi f (xi) i = 1, . . . ,n

ξi ≥ 0 i = 1, . . . ,n

C. Frogner Support Vector Machines

Applying The Representer Theorem

Substituting in:

f ∗(x) =
n

∑

i=1

ciK (x , xi),

we get a constrained quadratic programming problem:

argmin
c∈Rn ,ξ∈Rn

1
n

∑n
i=1 ξi + λcT Kc

subject to : ξi ≥ 1 − yi
∑n

j=1 cjK (xi , xj) i = 1, . . . ,n

ξi ≥ 0 i = 1, . . . ,n

C. Frogner Support Vector Machines

Adding A Bias Term

Adding an unregularized bias term b (which presents some
theoretical difficulties) we get the “primal” SVM:

argmin
c∈Rn ,b∈R,ξ∈Rn

1
n

∑n
i=1 ξi + λcT Kc

subject to : ξi ≥ 1 − yi(
∑n

j=1 cjK (xi , xj) + b) i = 1, . . . ,n

ξi ≥ 0 i = 1, . . . ,n

C. Frogner Support Vector Machines

Standard Notation

In most of the SVM literature, instead of λ, a parameter C is
used to control regularization:

C =
1

2λn
.

Using this definition (after multiplying our objective function by
the constant 1

2λ , the regularization problem becomes

argmin
f∈H

C
n

∑

i=1

V (yi , f (xi)) +
1
2
||f ||2H.

Like λ, the parameter C also controls the tradeoff between
classification accuracy and the norm of the function. The primal
problem becomes . . .

C. Frogner Support Vector Machines

The Reparametrized Problem

argmin
c∈Rn ,b∈R,ξ∈Rn

C
∑n

i=1 ξi +
1
2cT Kc

subject to : ξi ≥ 1 − yi(
∑n

j=1 cjK (xi , xj) + b) i = 1, . . . ,n

ξi ≥ 0 i = 1, . . . ,n

C. Frogner Support Vector Machines

How to Solve?

argmin
c∈Rn ,b∈R,ξ∈Rn

C
∑n

i=1 ξi +
1
2cT Kc

subject to : ξi ≥ 1 − yi(
∑n

j=1 cjK (xi , xj) + b) i = 1, . . . ,n

ξi ≥ 0 i = 1, . . . ,n

This is a constrained optimization problem. The general
approach:

Form the primal problem – we did this.
Lagrangian from primal – just like Lagrange multipliers.
Dual – one dual variable associated to each primal
constraint in the Lagrangian.

C. Frogner Support Vector Machines

Lagrangian

We derive the dual from the primal using the Lagrangian:

L(c, ξ,b, α, ζ) = C
n

∑

i=1

ξi +
1
2

cT Kc

−

n
∑

i=1

αi(yi{

n
∑

j=1

cjK (xi , xj) + b} − 1 + ξi)

−

n
∑

i=1

ζiξi

C. Frogner Support Vector Machines

Dual I

Dual problem is:

argmax
α,ζ≥0

inf
c,ξ,b

L(c, ξ,b, α, ζ)

First, minimize L w.r.t. (c, ξ,b):

(1) ∂L
∂c = 0 =⇒ ci = αiyi

(2) ∂L
∂b = 0 =⇒

n
∑

i=1

αiyi = 0

(3) ∂L
∂ξi

= 0 =⇒ C − αi − ζi = 0

=⇒ 0 ≤ αi ≤ C

C. Frogner Support Vector Machines

Dual II

Dual:
argmax
α,ζ≥0

inf
c,ξ,b

L(c, ξ,b, α, ζ)

Optimality conditions:

(1) ci = αiyi

(2)
∑n

i=1 αiyi = 0

(3) αi ∈ [0,C]

Plug in (2) and (3):

argmax
α≥0

inf
c

L(c, α) =
1
2

cT Kc +
n

∑

i=1

αi



1 − yi

n
∑

j=1

K (xi , xj)cj





C. Frogner Support Vector Machines

Dual II

Dual:
argmax
α,ζ≥0

inf
c,ξ,b

L(c, ξ,b, α, ζ)

Optimality conditions:

(1) ci = αiyi

(2)
∑n

i=1 αiyi = 0

(3) αi ∈ [0,C]

Plug in (1):

argmax
α≥0

L(α) =
∑n

i=1 αi −
1
2

∑n
i ,j=1 αiyiK (xi , xj)αjyj

=
∑n

i=1 αi −
1
2α

T (diagY)K(diagY)α

C. Frogner Support Vector Machines

The Primal and Dual Problems Again

argmin
c∈Rn ,b∈R,ξ∈Rn

C
∑n

i=1 ξi +
1
2cT Kc

subject to : ξi ≥ 1 − yi(
∑n

j=1 cjK (xi , xj) + b) i = 1, . . . ,n

ξi ≥ 0 i = 1, . . . ,n

max
α∈Rn

∑n
i=1 αi −

1
2α

T Qα

subject to :
∑n

i=1 yiαi = 0

0 ≤ αi ≤ C i = 1, . . . ,n

C. Frogner Support Vector Machines

SVM Training

Basic idea: solve the dual problem to find the optimal α’s,
and use them to find b and c.

The dual problem is easier to solve the primal problem. It
has simple box constraints and a single equality constraint,
and the problem can be decomposed into a sequence of
smaller problems (see appendix).

C. Frogner Support Vector Machines

Interpreting the solution

α tells us:

c and b.

The identities of the misclassified points.

How to analyze? Use the optimality conditions.

Already used: derivative of L w.r.t. (c, ξ,b) is zero at
optimality.

Haven’t used: complementary slackness, primal/dual
constraints.

C. Frogner Support Vector Machines

Optimality Conditions: all of them

All optimal solutions must satisfy:

n
∑

j=1

cjK (xi , xj)−
n

∑

j=1

yiαjK (xi , xj) = 0 i = 1, . . . ,n

n
∑

i=1

αiyi = 0

C − αi − ζi = 0 i = 1, . . . ,n

yi(
n

∑

j=1

yjαjK (xi , xj) + b)− 1 + ξi ≥ 0 i = 1, . . . ,n

αi [yi(

n
∑

j=1

yjαjK (xi , xj) + b)− 1 + ξi] = 0 i = 1, . . . ,n

ζiξi = 0 i = 1, . . . ,n

ξi , αi , ζi ≥ 0 i = 1, . . . ,n

C. Frogner Support Vector Machines

Optimality Conditions II

These optimality conditions are both necessary and sufficient
for optimality: (c, ξ,b, α, ζ) satisfy all of the conditions if and
only if they are optimal for both the primal and the dual. (Also
known as the Karush-Kuhn-Tucker (KKT) conditons.)

C. Frogner Support Vector Machines

Interpreting the solution — c

∂L
∂c

= 0 =⇒ ci = αiyi , ∀i

C. Frogner Support Vector Machines

Interpreting the solution — b

Suppose we have the optimal αi ’s. Also suppose that there
exists an i satisfying 0 < αi < C. Then

αi < C =⇒ ζi > 0

=⇒ ξi = 0

=⇒ yi(
n

∑

j=1

yjαjK (xi , xj) + b)− 1 = 0

=⇒ b = yi −
n

∑

j=1

yjαjK (xi , xj)

C. Frogner Support Vector Machines

Interpreting the solution — sparsity

(Remember we defined f (x) =
∑n

i=1 yiαiK (x , xi) + b.)

yi f (xi) > 1 ⇒ (1 − yi f (xi)) < 0

⇒ ξi 6= (1 − yi f (xi))

⇒ αi = 0

C. Frogner Support Vector Machines

Interpreting the solution —- support vectors

yi f (xi) < 1 ⇒ (1 − yi f (xi)) > 0

⇒ ξi > 0

⇒ ζi = 0

⇒ αi = C

C. Frogner Support Vector Machines

Interpreting the solution — support vectors

So
yi f (xi) < 1 ⇒ αi = C.

Conversely, suppose αi = C:

αi = C =⇒ ξi = 1 − yi f (xi)

=⇒ yi f (xi) ≤ 1

C. Frogner Support Vector Machines

Interpreting the solution

Here are all of the derived conditions:

αi = 0 =⇒ yi f (xi) ≥ 1

0 < αi < C =⇒ yi f (xi) = 1

αi = C ⇐= yi f (xi) < 1

αi = 0 ⇐= yi f (xi) > 1

αi = C =⇒ yi f (xi) ≤ 1

C. Frogner Support Vector Machines

Geometric Interpretation of Reduced Optimality
Conditions

C. Frogner Support Vector Machines

Summary so far

The SVM is a Tikhonov regularization problem, using the
hinge loss:

argmin
f∈H

1
n

n
∑

i=1

(1 − yi f (xi))+ + λ||f ||2H.

Solving the SVM means solving a constrained quadratic
program.

Solutions can be sparse – some coefficients are zero.

The nonzero coefficients correspond to points that aren’t
classified correctly enough – this is where the “support
vector” in SVM comes from.

C. Frogner Support Vector Machines

The Geometric Approach

The “traditional” approach to developing the mathematics of
SVM is to start with the concepts of separating hyperplanes
and margin. The theory is usually developed in a linear space,
beginning with the idea of a perceptron, a linear hyperplane
that separates the positive and the negative examples. Defining
the margin as the distance from the hyperplane to the nearest
example, the basic observation is that intuitively, we expect a
hyperplane with larger margin to generalize better than one
with smaller margin.

C. Frogner Support Vector Machines

Large and Small Margin Hyperplanes

(a) (b)

C. Frogner Support Vector Machines

Maximal Margin Classification

Classification function:

f (x) = sign (w · x). (1)

w is a normal vector to the hyperplane separating the classes.
We define the boundaries of the margin by 〈w , x〉 = ±1.

What happens as we change ‖w‖?

We push the margin in/out by rescaling w – the margin moves
out with 1

‖w‖ . So maximizing the margin corresponds to
minimizing ‖w‖.

C. Frogner Support Vector Machines

Maximal Margin Classification

Classification function:

f (x) = sign (w · x). (1)

w is a normal vector to the hyperplane separating the classes.
We define the boundaries of the margin by 〈w , x〉 = ±1.

What happens as we change ‖w‖?

We push the margin in/out by rescaling w – the margin moves
out with 1

‖w‖ . So maximizing the margin corresponds to
minimizing ‖w‖.

C. Frogner Support Vector Machines

Maximal Margin Classification, Separable case

Separable means ∃w s.t. all points are beyond the margin, i.e.

yi〈w , xi〉 ≥ 1 , ∀i .

So we solve:

argmin
w

‖w‖2

s.t. yi〈w , xi 〉 ≥ 1 , ∀i

C. Frogner Support Vector Machines

Maximal Margin Classification, Non-separable case

Non-separable means there are points on the wrong side of the
margin, i.e.

∃i s.t. yi〈w , xi 〉 < 1 .

We add slack variables to account for the wrongness:

argmin
ξi ,w

∑n
i=1 ξi + ‖w‖2

s.t. yi〈w , xi〉 ≥ 1 − ξi , ∀i

C. Frogner Support Vector Machines

Historical Perspective

Historically, most developments begin with the geometric form,
derived a dual program which was identical to the dual we
derived above, and only then observed that the dual program
required only dot products and that these dot products could be
replaced with a kernel function.

C. Frogner Support Vector Machines

More Historical Perspective

In the linearly separable case, we can also derive the
separating hyperplane as a vector parallel to the vector
connecting the closest two points in the positive and negative
classes, passing through the perpendicular bisector of this
vector. This was the “Method of Portraits”, derived by Vapnik in
the 1970’s, and recently rediscovered (with non-separable
extensions) by Keerthi.

C. Frogner Support Vector Machines

Summary

The SVM is a Tikhonov regularization problem, with the
hinge loss:

argmin
f∈H

1
n

n
∑

i=1

(1 − yi f (xi))+ + λ||f ||2H.

Solving the SVM means solving a constrained quadratic
program.

It’s better to work with the dual program.

Solutions can be sparse – few non-zero coefficients.

The non-zero coefficients correspond to points not
classified correctly enough – a.k.a. “support vectors.”

There is alternative, geometric interpretation of the SVM,
from the perspective of “maximizing the margin.”

C. Frogner Support Vector Machines

Practical issues

We can also use RLS for classification. What are the
tradeoffs?

SVM possesses sparsity: can have parameters set to zero
in the solution. This enables potentially faster training and
faster prediction than RLS.

SVM QP solvers tend to have many parameters to tune.

SVM can scale to very large datasets, unlike RLS – for the
moment (active research topic!).

C. Frogner Support Vector Machines

Good Large-Scale SVM Solvers

SVM Light: http://svmlight.joachims.org

SVM Torch: http://www.torch.ch

libSVM:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

C. Frogner Support Vector Machines

http://svmlight.joachims.org
http://www.torch.ch
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Appendix

(Follows.)

C. Frogner Support Vector Machines

SVM Training

Our plan will be to solve the dual problem to find the α’s, and
use that to find b and our function f . The dual problem is easier
to solve the primal problem. It has simple box constraints and a
single inequality constraint, even better, we will see that the
problem can be decomposed into a sequence of smaller
problems.

C. Frogner Support Vector Machines

Off-the-shelf QP software

We can solve QPs using standard software. Many codes are
available. Main problem — the Q matrix is dense, and is
n-by-n, so we cannot write it down. Standard QP software
requires the Q matrix, so is not suitable for large problems.

C. Frogner Support Vector Machines

Decomposition, I

Partition the dataset into a working set W and the remaining
points R. We can rewrite the dual problem as:

max
αW∈R|W |, αR∈R|R|

∑n
i=1
i∈W

αi +
∑

i=1
i∈R

αi

−1
2 [αW αR]

[

QWW QWR

QRW QRR

] [

αW

αR

]

subject to :
∑

i∈W yiαi +
∑

i∈R yiαi = 0

0 ≤ αi ≤ C, ∀i

C. Frogner Support Vector Machines

Decomposition, II

Suppose we have a feasible solution α. We can get a better
solution by treating the αW as variable and the αR as constant.
We can solve the reduced dual problem:

max
αW ∈R|W |

(1 − QWRαR)αW − 1
2αW QWWαW

subject to :
∑

i∈W yiαi = −
∑

i∈R yiαi

0 ≤ αi ≤ C, ∀i ∈ W

C. Frogner Support Vector Machines

Decomposition, III

The reduced problems are fixed size, and can be solved using
a standard QP code. Convergence proofs are difficult, but this
approach seems to always converge to an optimal solution in
practice.

C. Frogner Support Vector Machines

Selecting the Working Set

There are many different approaches. The basic idea is to
examine points not in the working set, find points which violate
the reduced optimality conditions, and add them to the working
set. Remove points which are in the working set but are far
from violating the optimality conditions.

C. Frogner Support Vector Machines

