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About this class

Goal In many practical problems, it is convenient to
model the object of interest as a function with
multiple outputs.
In machine learning, this problem typically goes
under the name of multi-task or multi-output
learning. We present some concepts and
algorithms to solve this kind of problems.
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Costumers Modeling

Costumers Modeling

the goal is to model buying preferences of several people
based on previous purchases.

borrowing strength
People with similar tastes will tend to buy similar items and their
buying history is related.
The idea is then to predict the consumer preferences for all
individuals simultaneously by solving a multi-output learning
problem.

Each consumer is modelled as a task and its previous
preferences are the corresponding training set.
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Multi-task Learning

We are given T scalar tasks.

For each task j = 1, . . . ,T , we are given a set of examples

Sj = (x j
i , y

j
i )

nj
i=1

sampled i.i.d. according to a distribution Pj .
The goal is to find

f j(x) ∼ y j = 1, . . . ,T .
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Multi-task Learning

Task 1

Task 2

X

X

Y
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Pharmacological Data

Blood concentration of a medicine across different times. Each
task is a patient.
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Red dots are test and black dots are training points.
( pics from Pillonetto et al. 08)
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Names and Applicatons

Related problems:
conjoint analysis
transfer learning
collaborative filtering
co-kriging

Examples of applications:
geophysics
music recommendation (Dinuzzo 08)
pharmacological data (Pillonetto at el. 08)
binding data (Jacob et al. 08)
movies recommendation (Abernethy et al. 08)
HIV Therapy Screening (Bickel et al. 08)
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Multi-task Learning: Remarks

The framework is very general.
The input spaces can be different.
The output space can be different.
The hypotheses spaces can be different
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How Can We Design an Algorithm?

In all the above problems one can think of improving
performances, by exploiting relation among the different
outputs.

A possible way to do this is penalized empirical risk
minimization

min
f 1,...,f T

ERR[f1, . . . , fT ] + λPEN(f 1, . . . , f T )

Typically
The error term is the sum of the empirical risks.
The penalty term enforces similarity among the tasks.
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Error Term

We are going to choose the square loss to measure errors.

ERR[f 1, . . . , f T ] =
T∑

j=1

1
nj

n∑
i=1

(y j
i − f j(x j

i ))2

L. Rosasco Regularization for Multi-Output Learning



MTL

MTL

Let f j : X → R, j = 1, . . .T then

ERR[f 1, . . . , f T ] =
T∑

j=1

ISj [f
j ]

with

IS[f ] =
1
n

n∑
i=1

(yi − f (xi))2
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Building Regularizers

We assume that input, output and hypotheses spaces are the
same, i.e.

Xj = X ,

Yj = Y ,

and
Hj = H,

for all j = 1, . . . ,T .
We also assume H to be a RKHS with kernel K .
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Regularizers: Mixed Effect

For each component/task the solution is the same function plus
a component/task specific component.

PEN(f1, . . . , fT ) = λ

T∑
j=1

‖f j‖2K + γ

T∑
j=1

‖f j −
T∑

s=1

f s‖2K
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Regularizers: Graph Regularization

We can define a regularizer that, in addition to a standard
regularization on the single components, forces stronger or
weaker similarity through a T × T positive weight matrix M:

PEN(f1, . . . , fT ) = γ
T∑

`,q=1

‖f ` − f q‖2K M`q + λ
T∑

`=1

‖f `‖2K M``
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Regularizers: cluster

The components/tasks are partitioned into c clusters:
components in the same cluster should be similar.
Let

mr , r = 1, . . . , c, be the cardinality of each cluster,
I(r), r = 1, . . . , c, be the index set of the components that
belong to cluster c.

PEN(f1, . . . , fT ) = γ

c∑
r=1

∑
l∈I(r)

||f l − f r ||2K + λ

c∑
r=1

mr ||f r ||2K

where f r , , r = 1, . . . , c, is the mean in cluster c.
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How can we find a the solution?

We have to solve

min
f1,...,fT

{1
n

T∑
j=1

n∑
i=1

(y j
i − f j(xi))2 + λ

T∑
j=1

‖f j‖2K + γ

T∑
j=1

‖f j −
T∑

s=1

f s‖2K}

(we considered the first regularizer as an example).
The theory of RKHS gives us a way to do this using what we
already know from the scalar case.
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Tikhonov Regularization

We now show that for al the above penalties we can define a
suitable RKHS with kernel Q (and re-index the sums in the
error term), so that

min
f1,...,fT

{
T∑

j=1

1
n j

n∑
i=1

(y j
i − f j(xi))2 + λPEN(f1, . . . , fT )}

can be written as

min
f∈H
{1

n T

nT∑
i=1

(yi − f (xi , ti))2 + λ‖f‖2Q}
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Kernels at Rescue

Consider a (joint) kernel Q : (X ,Π)× (X ,Π)→ R, where
Π = 1, . . .T is the index set of the output components.
A function in the space is

f (x , t) =
∑

i

Q((x , t), (xi , ti))ci ,

with norm
‖f‖2Q =

∑
i,j

Q((xj , tj), (xi , ti))cicj .
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A Useful Class of Kernels

Let A be a T × T positive definite matrix and K a scalar kernel.
Consider a kernel Q : (X ,Π)× (X ,Π)→ R, defined by

Q((x , t), (x ′, t ′)) = K (x , x ′)At ,t ′ .

Then the norm of a function is

‖f‖2Q =
∑
i,j

K (xi , xj)Ati tj cicj .
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Regularizers and Kernels

If we fix t then ft (x) = f (t , x) is one of the task. The norm ‖ · ‖Q
can be related to the scalar products among the tasks.

‖f‖2Q =
∑
s,t

A†s,t〈fs, ft〉K

This implies that :
A regularizer of the form

∑
s,t A†s,t〈fs, ft〉K defines a kernel

Q.
The norm induced by a kernel Q of the form K (x , x ′)A can
be seen as a regularizer.

The matrix A encodes relations among outputs.

L. Rosasco Regularization for Multi-Output Learning



Regularizers and Kernels

If we fix t then ft (x) = f (t , x) is one of the task. The norm ‖ · ‖Q
can be related to the scalar products among the tasks.

‖f‖2Q =
∑
s,t

A†s,t〈fs, ft〉K

This implies that :
A regularizer of the form

∑
s,t A†s,t〈fs, ft〉K defines a kernel

Q.
The norm induced by a kernel Q of the form K (x , x ′)A can
be seen as a regularizer.

The matrix A encodes relations among outputs.

L. Rosasco Regularization for Multi-Output Learning



Regularizers and Kernels

If we fix t then ft (x) = f (t , x) is one of the task. The norm ‖ · ‖Q
can be related to the scalar products among the tasks.

‖f‖2Q =
∑
s,t

A†s,t〈fs, ft〉K

This implies that :
A regularizer of the form

∑
s,t A†s,t〈fs, ft〉K defines a kernel

Q.
The norm induced by a kernel Q of the form K (x , x ′)A can
be seen as a regularizer.

The matrix A encodes relations among outputs.

L. Rosasco Regularization for Multi-Output Learning



Regularizers and Kernels

If we fix t then ft (x) = f (t , x) is one of the task. The norm ‖ · ‖Q
can be related to the scalar products among the tasks.

‖f‖2Q =
∑
s,t

A†s,t〈fs, ft〉K

This implies that :
A regularizer of the form

∑
s,t A†s,t〈fs, ft〉K defines a kernel

Q.
The norm induced by a kernel Q of the form K (x , x ′)A can
be seen as a regularizer.

The matrix A encodes relations among outputs.

L. Rosasco Regularization for Multi-Output Learning



Regularizers and Kernels

We sketch the proof of

‖f‖2Q =
∑
s,t

A†s,t〈fs, ft〉K

Recall that
‖f‖2Q =

∑
ij

K (xi , xj)Ati tj cicj

and note that if ft (x) =
∑

i K (x , xi)At ,ti ci , then

〈fs, ft〉K =
∑
i,j

K (xi , xj)As,ti At ,tj cicj .

We need to multiply by A−1
s,t (or rather A†s,t ) the last equality.
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Examples I

Let 1 be the T × T matrix whose entries are all equal to 1 and I
the d-dimensional identity matrix.
The kernel

Q((x , t)(x ′, t ′)) = K (x , x ′)(ω1 + (1− ω)I)t ,t ′

induces a penalty:

Aω

Bω

T∑
`=1

||f `||2K + ωT
T∑

`=1

||f ` − 1
T

T∑
q=1

f q||2K


where Aω = 1

2(1−ω)(1−ω+ωT ) and Bω = (2− 2ω + ωT ).
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Examples II

The penalty

1
2

T∑
`,q=1

||f ` − f q||2K M`q +
T∑

`=1

||f `||2K M``

can be rewritten as:

T∑
`,q=1

< f `, f q >K L`q

where L = D −M, with D`q = δ`q(
∑T

h=1 M`h + M`q).
The kernel is Q((x , t)(x ′, t ′)) = K (x , x ′)L†t ,t ′ .
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Examples III

The penalty

ε1

r∑
c=1

∑
l∈I(c)

||f l − f c ||2K + ε2

r∑
c=1

mc ||f c ||2K

induces a kernel Q((x , t)(x ′, t ′)) = K (x , x ′)G†t ,t ′ with

Glq = ε1δlq + (ε2 − ε1)Mlq.

The T × T matrix M is such that Mlq = 1
mc

if components l and
q belong to the same cluster c, and mc is its cardinality
(Mlq = 0 otherwise).
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Tikhonov Regularization

Given the above penalties and re-indexing the sums in the error
term

min
f1,...,fT

{
T∑

j=1

1
n j

n∑
i=1

(y j
i − f j(xi))2 + λPEN(f1, . . . , fT )}

can be written as

min
f∈H
{1

n T

nT∑
i=1

(yi − f (xi , ti))2 + λ‖f‖2Q}

where H is the RKHS with kernel Q and we consider a training
set (x1, y1, t1), . . . , (xnT , ynT , tnT ) with nT =

∑T
j=1 nj .
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Representer Theorem

A representer theorem can be proved using the same
technique of the standard case

f (x , t) = ft (x) =
n∑

i=1

Q((x , t), (xi , ti))ci ,

where the coefficients are given by

(Q + λI)C = Y.

where C = (c1, . . . , cn)T , Qij = Q((xi , ti), (xj , tj)) and
Y = (y1, . . . , yn)T .
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L2 Boosting

Note that we can write the empirical risk as,

1
nT
‖Y−QC‖2nT

The minimization with gradient descent show that the
coefficients can be found by setting C0 = 0 and considering for
i = 1, . . . , t − 1 the following iteration

Ci = Ci−1 + η(Y−QCi−1),

where η the step size.
Regularization can be achieved by early stopping.
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Remarks

The effect of MTL is especially evident when few examples
are available for each task.
The complexity of Tikhonov regularization can be reduced
when some (all) input points are the same (Dinuzzo et al.
09, Baldassarre et al. 09).
The design of efficient kernel is a considerably more
difficult problem than in the scalar case.
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Learning Vector Fields: Example

We sample the velocity fields of an incompressible fluid and
want to recover the whole velocity field.

Figure 3. Divergence-free synthetic data.
Top: samples and our div-free solution; Bot-
tom: div of scalar SVR and associated field.

Figure 4. Fluid simulation data. Top: sam-
ples and our div-free solution; Bottom: div
of scalar SVR and associated vector field.

Figure 5. Measurement PIV data. Top: sam-
ples and our div-free solution; Bottom: div
of scalar SVR and associated vector field.

Figure 6. Curl-free synthetic data. Top: sam-
ples and our curl-free solution; Bottom: curl
of scalar SVR and associated vector field.

To each point in the space we associate a velocity vector.
(figures from Macêdo and Castro 08)
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Learning Vector fields

It is the most natural extension of the scalar setting.

We are given a training set of points
S = {(x1, y1), . . . , (xn, yn)},where

x1, . . . , xn ∈ Rp

y1, . . . , yn ∈ RT

As usual the point are assumed to be sampled (i.i.d.) according
to some probability distribution P.
The goal is to find

f (x) ∼ y ,

where y is a vector.
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Vector fields Learning

Component 1

Component 2

X

X

Y
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Error Term for Vector fields

Note that

ERR[f 1, . . . , f T ] =
1
n

T∑
j=1

n∑
i=1

(y j
i − f j(x j

i ))2

can be written as

VFL

ERR[f ] =
1
n

n∑
i=1

‖yi − f (xi)‖2T , ‖y − f (x)‖2T =
T∑

j=1

(y j − f j(x))2

with f : X → RT and f = f 1, . . . f T .
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Vector fields vs Multi-task Learning

Component 1

Component 2

X

X

Y Task 1

Task 2

X

X

Y
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Vector fields vs Multi-task Learning

The two problems are clearly related.

Tasks can be seen as components of a vector fields and
viceversa
In multitask we might sample each task in a different way,
so that when we consider the tasks together we are
essentially augmenting the number of sample available for
each individual task.
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Multi-class and Multi-label

Multiclass
In multi-category classification each input can be assigned to
one of T classes. We can think of encoding each class with a
vector, for example: class one can be (1,0 . . . ,0), class 2
(0,1 . . . ,0) etc.

Multilabel
Images contain at most T objects each input image is
associate to a vector

(1,0,1 . . . ,0)

where 1/0 indicate presence/absence of the an object.
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One Versus All

Consider the coding where class 1 is (1,−1, . . . ,−1), class 2 is
(−1,1, . . . ,−1) ...

One can easily check that the problem

min
f1,...,fT

{1
n

T∑
j=1

n∑
i=1

(y j
i − f j(xi))2 + λ

T∑
j=1

‖f j‖2K

is exactly the one versus all scheme with regularized least
squares.
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Final Remarks

Kernel Methods and regularization can be used in a many
situations when the object of interest is a multi output function.

Kernel/Regularizer choice is crucial

Sparsity
Manifold
????
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Sparsity Across Tasks

Assume that each task is of the form

f t (x) =

p∑
j=1

φj(x)ct
j

where φ1, . . . , φp are the same features for all tasks.

A penalization can be written as∑
j

‖cj‖T

where cj = (c1
j , . . . , c

T
j ) are the coefficients corresponding to

the j − th feature across the various tasks.
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