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About this class

Goal To introduce and motivate regularization with
multiple kernel and take a peak at the field of
structured sparsity regularization.
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Plan

Introduction
Sum of reproducing kernels.
Solving mkl.
Applications.
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Multiple Kernel Learning

Let k1, . . . , kp a sequence of reproducing kernels and
(H1, ‖·‖1), . . . , (Hp, ‖·‖p) the corresponding RKHSs.

Multiple Kernel Learning (MKL)

Consider the following minimization problem

min
f=

Pp
j=1 fj , f1∈H1,...,fp∈Hp

{
1
n

n∑
i=1

(f (xi)− yi)
2 + 2λ

p∑
j=1

∥∥fj
∥∥

j

}
,
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Why Multiple Kernels?

We will see in the following that MKL has several applications:

Applications
1 To augment approximation power.
2 As an alternative to model selection.
3 To perform non-linear feature selection.
4 To perform data fusion.
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Applications

Augment approximation power

Rather than taking a single kernel we can take a combination of
a large number of kernels.

Model Selection
Many kernels require choosing at least one parameter. Using
MKL we can choose the solution as a combination of the
different kernels obtained from different regularization
parameter values.

For example, if Kσ(x , x ′) = e
−‖x−x′‖2

2σ2 , we can take σ1, . . . , σp
and set

k1 = Kσ1 , . . . , kp = Kσp .
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Applications (cont.)

Non Linear Feature selection

Take kj(x , t) = kj(x j , t j) so that f (x) =
∑p

j=1 fj(x j).
By using sparse MKL we can select a subset of feature that
(individually) depend non linearly to the output.

Data Fusion
We can consider different kernels k1, . . . , kp capturing different
features of the data.
In the case of images we can take kernels based colors, texture
etc. and combine them to obtain a better model.
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Preliminaries: Sum of RKHSs

Let k1, k2 be reproducing kernels then k = k1 + k2 is also a
reproducing kernel, and we can consider its RKHS Hk with
inner product 〈·, ·〉k and norm ‖·‖k .

Can we describe HK in terms of the composing RKHSs?

If H1 ∩H2 = ∅ then

‖f‖2k = ‖f1‖21 + ‖f2‖22 ,

and Hk = H1 ⊕H2.
If H1 ∩H2 6= ∅, the norm of f ∈ Hk is given by

‖f‖2k = min
{
‖f1‖21 + ‖f2‖22

}
,

where f1 ∈ Hk1 , f2 ∈ Hk2 such that f = f1 + f2.
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Sum of RKHSs (cont.)

The RKHS can be endowed with other norms.

If H1 ∩H1 = ∅ we can consider ‖f‖ = ‖f1‖1 + ‖f2‖2.
If H1 ∩H2 6= ∅, we can consider

‖f‖ = min
{
‖f1‖1 + ‖f2‖2

}
where f1 ∈ Hk1 , f2 ∈ Hk2 such that f = f1 + f2.

Note that the above norms are not induced by the inner
product in Hk .
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How should we Regularize with Multiple Kernels?

Based on the previous norms, we can consider two different
algorithms:

Tikhonov MKL

min
f=

Pp
j=1 fj , f1∈H1,...,fp∈Hp

{
1
n

n∑
i=1

(f (xi)− yi)
2 + λ

p∑
j=1

∥∥fj
∥∥

j
2
}
,

Sparse MKL

min
f=

Pp
j=1 fj , f1∈H1,...,fp∈Hp

{
1
n

n∑
i=1

(f (xi)− yi)
2 + 2λ

p∑
j=1

∥∥fj
∥∥

j

}
,
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Sparse Regularization with Multiple Kernels

The difference between the two regularizers is clear in a simple
case:
Take ki(x , t) = x i t i , then:

f (x) =
∑p

j=1 fj(x) =
∑p

j=1 w jx j = 〈w , x〉∑p
j=1

∥∥fj
∥∥2

j =
∑p

j=1 |w
j |2 = ‖w‖2∑p

j=1

∥∥fj
∥∥

j =
∑p

j=1 |w
j |
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Sparsity Inducing Regularization

In general one can see that the regularizer

R(f ) =

p∑
j=1

∥∥fj
∥∥

j

forces the norm of some functions to be zero.

Some of the kernels will play no role in the solution!
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A key observation

Let k =
∑p

j=1 βjkj , with βj > for all j = 1, . . . ,p. Then

‖f‖2k = min
{ p∑

j=1

∥∥fj
∥∥2

j

βj

}

where fj ∈ Hkj ,for j = 1, . . . ,p and f =
∑p

j=1 fj .
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A key observation (cont.)

Consider the functional

min
k∈K
‖f‖k

where

K = {k : k =

p∑
j=1

βjkj , βj ≥ 0, j = 1, . . . ,p,
p∑

j=1

βj = 1}.

It is possible to prove that:

min
k∈K
‖f‖k = min

{ p∑
j=1

∥∥fj
∥∥

j

}
,

where fj ∈ Hkj ,for j = 1, . . . ,p and f =
∑p

j=1 fj .
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Learning the Kernel Function

Using the previous observation one can prove that the problem

min
f=

Pp
j=1 fj , f1∈H1,...,fp∈Hp

{
1
n

n∑
i=1

(f (xi)− yi)
2 + 2λ(

p∑
j=1

∥∥fj
∥∥

j)
2
}
,

is equivalent to the double minimization

min
k∈K

min
f∈Hk

{
1
n

n∑
i=1

(f (xi)− yi)
2 + 2λ

p∑
j=1

‖f‖2k
}
.

Note that we took the square of the penalty in the first problem, this can be
shown to be equivalent to changing the regularization parameter, (see, e.g.,
Borwein and Lewis, 2000, Section 3.2).
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Learning the Kernel Function (cont.)

Considering

min
k∈K

min
f∈Hk

{
1
n

n∑
i=1

(f (xi)− yi)
2 + 2λ

p∑
j=1

‖f‖2
}
,

we have a new interpretation of the algorithm.

We are learning a new kernel given by a (convex) combination
of basis kernels.
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Algorithms for MKL

There are many algorithms to solve MKL:
Block Coordinate
Active Sets Methods
Greedy (approximate) methods
...

We are going to describe an optimization procedure using a
proximal method.
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Representer Theorem

One can see that the solution of the problem

min
f=

Pp
j=1 fj , f1∈H1,...,fp∈Hp

{
1
n

n∑
i=1

(f (xi)− yi)
2 + 2λ

p∑
j=1

∥∥fj
∥∥

j

}
,

is of the form

f ∗ =

p∑
j=1

f ∗j ,

where

f ∗j (x) =
n∑

i=1

αj
iki(xi , x).

We can reduce the minimization to a finite dimensional problem
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Some Notation

We need some notation:

c = (c1, . . . , cp)T with c j = (c j
1, . . . , c

j
n)

T ,

K =

 K1 . . . Kp
...

. . .
...

K1 . . . Kp


p times with [Kj ]ii ′ = kj(xi , xi ′),

y = (yT , . . . , yT︸ ︷︷ ︸
p times

)T

k(x) = (k1(x), . . . ,kp(x))T

with
kj(x) =

(
kj(x1, x), . . . , kj(xn, x)

)
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Iterative Soft Thresholding

We can write the solution as f ∗(x) = cT
1 k1(x) + · · ·+ cT

p kp(x))
where the coefficients are given by the following iteration

set c0 = 0
for t= 1, . . . , tmax

ct = Proxλ/η

(
ct−1 − 1

ηn
(Kct−1 − y)

)
The map Proxλ/η is the so called proximal operator.
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Proximal Operator and Soft Thresholding

The proximal operator can be computed in a simple closed
form.
In fact

Proxλ/η

(
ct−1 − 1

ηn
(Kct−1 − y)

)
= Ŝλ/η

(
K, ct−1 − 1

ηn
(Kct−1 − y)

)
where the soft-thresholding operator Ŝτ (K, c) acts
component-wise as

Ŝτ (K, c)j =
cT

j√
cT

j Kjcj

(
√

cT
j Kjcj − τ)+.
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Remarks on Computations

[Step Size]. η is a step-size that can be chosen a priori or
adaptively.

[Regularization Path]. When computing the solution for
several regularization parameter values it helps to use a
continuation strategy:

1 take a grid of values for τ , e.g. τ1 < · · · < τq .
2 Compute the solution cq corresponding to the larger value.
3 Use this solution to initialize the algorithm for the next value
τq−1.
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Applications of MKL

Applications
1 To augment approximation power.
2 As an alternative to model selection.
3 To perform non-linear feature selection.
4 To perform data fusion.
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Final Remarks

Multiple kernel learning: Sparse vs Tikhonov regularization.
Sparse regularization gives more interpretable models, it
seems preferable when the number of base kernels is
large, is computationally demanding.
Tikhonov regularization seems to work well when the basis
kernels are few and well designed. It is computationally
efficient.

Related Topics:
Learning with structured kernels, e.g. hierarchical kernels
Structured sparsity regularization, group lasso etc.
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