Bayesian Interpretations of Regularization

Charlie Frogner

9.520 Class 17

April 6, 2011

C. Frogner Bayesian Interpretations of Regularization



The Plan

Regularized least squares maps {(x;,yi)}{., to a function that
minimizes the regularized loss:

I A
fs = arg min 5 E (vi — f(x))* + 5\“”3{
i=1

Can we interpret RLS from a probabilistic point of view?
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@ Training set: S = {(X1,Y1),--., (Xn,¥n)}.
@ Inputs: X = {Xq,...,Xn}.

@ Labels: Y = {y1,...,Yn}.

@ Parameters: 6 € RP.

@ p(Y|X,8) is the joint distribution over labels Y given inputs
X and the parameters.
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Where do probabilities show up?

n

A
2. V(yi, f(xi)) + E”fH%L
i=1
becomes

p(YIF,X) - p(f)
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Where do probabilities show up?

n

A
2. V(yi, f(xi)) + E”fH%L
i=1
becomes

p(YIF,X) - p(f)

@ Likelihood, a.k.a. noise model: p(Y|f,X).
o Gaussian: yi ~ N (f*(x),0?)
@ Poisson: y; ~ Pois (f*(x;))

@ Prior: p(f).
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The estimation problem:
@ Given data {(x;,y;)}_; and model p(Y|f, X), p(f).
@ Find a good f to explain data.
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The Plan

@ Maximum likelihood estimation for ERM
@ MAP estimation for linear RLS

@ MAP estimation for kernel RLS

@ Transductive model

@ Infinite dimensions get more complicated
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Maximum likelihood estimation

@ Given data {(xi,yi)}I., and model p(Y|f,X), p(f).
@ A good f is one that maximizes p(Y|f, X).

C. Frogner Bayesian Interpretations of Regularization



Maximum likelihood and least squares

For least squares, noise model is:

yilf, xi ~ N (f(xi), 02)

Y\f,XwN(f(X),aZI)
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Maximum likelihood and least squares

For least squares, noise model is:

yilf, xi ~ N (f(xi), 02>

Y\f,XwN(f(X),aZI)
So

N
p(Y|f,X) = & 2)N/Zexp{ Z% —fx)}
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Maximum likelihood and least squares

Maximum likelihood: maximize
N
1 1 5
p(Y[f,X) = (2ro?d)N 2 exp {— — ;(M —f(xi))) }
Empirical risk minimization: minimize

N

> (i —f(x))?

i=1
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Z(Yi — f(x;))?
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e i=1
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What about regularization?

RLS:

n

1 A
argfmln > Z(yi —f(xi))% + EHfH%L
i—1

Is there a model of Y and f that yields RLS?
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What about regularization?

RLS:

n

1 A
argfmln > Z(yi —f(xi))% + EHfH%L
i—1

Is there a model of Y and f that yields RLS?

Yes.

M:

ez (Soeteor) -,
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What about regularization?

RLS:

n

1 A
argfmln > Z(yi —f(xi))% + EHfH%L
i—1

Is there a model of Y and f that yields RLS?

Yes. )
_ 1 _f(x: ))2
= (Son-roa?) a2 IE,
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What about regularization?

RLS:

I 5 Ao
g ming >0 —106))* + 311
Is there a model of Y and f that yields RLS?

Yes. )
_ 1 _f(x: ))2
= (Son-roa?) a2 IE,

p(YIf,X) - p(f)

C. Frogner Bayesian Interpretations of Regularization



Posterior function estimates

@ Given data {(x;,y;)}\_; and model p(Y|f, X), p(f).
@ Find a good f to explain data.
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Posterior function estimates

@ Given data {(x;,y;)}\_; and model p(Y|f, X), p(f).
@ Find a good f to explain data.

(If we can get p(f|Y, X))
Bayes least squares estimate:

fars = Eqx v)lf]

i.e. the mean of the posterior.
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Posterior function estimates

@ Given data {(x;,y;)}\_; and model p(Y|f, X), p(f).
@ Find a good f to explain data.

(If we can get p(f|Y, X))
Bayes least squares estimate:

fars = Eqx v)lf]

i.e. the mean of the posterior.
MAP estimate:

fuap (Y[X) = argmaxp(f[X, Y)
f

i.e. a mode of the posterior.
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A posterior on functions?

How to find p(f|Y, X)?
Bayes’ rule:

p(Y[X.f) - p(f)
p(Y[X)
_ p(Y[X,f)-p(f)
Jp(Y[X,F)dp(f)

p(f|X,Y) =
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A posterior on functions?

How to find p(f|Y, X)?
Bayes’ rule:

p(Y[X.f) - p(f)
p(Y[X)
_ p(Y[X,f)-p(f)
Jp(Y[X,F)dp(f)

When is this well-defined?

p(f|X,Y) =
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A posterior on functions?

Functions vs. parameters:
H = RP
Represent functions in 4 by their coordinates w.r.t. a basis:

feHo0eRP
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A posterior on functions?

Functions vs. parameters:
H = RP
Represent functions in 4 by their coordinates w.r.t. a basis:
feHl— 0eRP

Assume (for the moment): p < c
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A posterior on functions?

Mercer’s theorem:

K (i, %) ZVkl/Jk (xi)v (%)

where y gy (-) = [ K(-,y)¢k(y)dy for all k. The functions
{v/"¥k (-)} form an orthonormal basis for H .

Let o(-) = [yP1va(:), -, yPpip(-)]. Then:
Hi ={o(-)6]6 € R}
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Prior on infinite-dimensional space

Problem: there’s no such thing as
6 ~ N (0,1)

when 6 € R*°!
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Posterior for linear RLS

Linear function:
f(x) = (x,0)

Noise model:
Y[X, 6 ~ N (xe, a§|)

Add a prior:
6 ~ N (0,1)
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Posterior for linear RLS

Model:
Y|x,9~/\/(x0,a§|), 6~ N (0,1)

Joint over Y and ¢:

e 5 1)

Conditionon Y.
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Posterior for linear RLS

Posterior:
01X, Y ~ N (pox.v> Zoix.v)

where

popxy = XT(XXT 4+ 021)71Y
Ty =1 = XT(XXT 4 021)71X

C. Frogner Bayesian Interpretations of Regularization



Posterior for linear RLS

Posterior:
01X, Y ~ N (pox.v> Zoix.v)

where

popxy = XT(XXT 4+ 021)71Y
Ty =1 = XT(XXT 4 021)71X

This is Gaussian, so

Oap (Y[X) = fgLs(Y[X) = XT(XXT +021)71Y
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Linear RLS as a MAP estimator

Model:
Y|x,9~/\/(x0,a§|), 6~ N (0,1)

Ouap (YIX) = XT(XXT +021)71Y

Recall the linear RLS solution:
N A
Ors(YIX) = —§ 216117
rLs(Y[X) arggml 5 - — (Xi, 0 2|| |

= XT(XXT + +51)7 ly
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Linear RLS as a MAP estimator

Model:
Y|x,9~/\/(x0,a§|), 6~ N (0,1)

Ouap (YIX) = XT(XXT +021)71Y

Recall the linear RLS solution:
N A
Ors(YIX) = —§ 216117
rLs(Y[X) arggml 5 - — (Xi, 0 2|| |

= XT(XXT + +51)7 ly

So what's \?
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Posterior for kernel RLS

Model for linear RLS:
Y|x,9~/\/(x9,a§|>, 6 ~ N (0,1)

Model for kernel RLS?
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Posterior for kernel RLS

Model for linear RLS:
Y|x,9~/\/(x9,a§|>, 6 ~ N (0,1)
Model for kernel RLS?
Y|X,9~N(¢(X)a,a§|), 0~ N (0,1)

Then: A
Oap (Y1X) = 9(X)T (6(X)¢(X)" + o21) 1Y
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Posterior for kernel RLS

Model for linear RLS:
Y|x,9~/\/(x9,a§|>, 6 ~ N (0,1)
Model for kernel RLS?
Y|X,9~N(¢(X)a,a§|), 0~ N (0,1)

Then:
Baae (YIX) = 6(X)T (K + 021) 1Y
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A quick recap

@ Empirical risk minimization is ML.

p(Y|f, X) ox e~ % Zati=f ()
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A quick recap

@ Empirical risk minimization is ML.

p(Y|f, X) ox e~ % Zati=f ()

@ Linear RLS is MAP.

p(Y,f|X) x e~z SN i- (.02 . g—3676
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A quick recap

@ Empirical risk minimization is ML.

p(Y|f, X) ox e~ % Zati=f ()

@ Linear RLS is MAP.

p(Y,f|X) x e~z SN i- (.02 . g—3676

@ Kernel RLS is also MAP.

p(Y,f|X) e_% S i (x)? . e—%”f”%_[
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Transductive setting

Idea: Forget about estimating @ (i.e. f).

Instead: Estimate predicted outputs

Y =1yi, . yalt
at test inputs

X* = x5, oxy]"

Need the joint distribution over Y* and Y.
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Transductive setting

Say Y* and Y are jointly Gaussian:

e =le L R )

Want: kernel RLS.
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Transductive setting

Say Y* and Y are jointly Gaussian:

(e L )
Want: kernel RLS.
General form for the posterior:
YHXY ~ N (py axys Ty x.v)
where

T A-1
HY*|X,Y = /\YY*/\Y Y

T -1
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Transductive setting

Set Ay = K(X, X) + 021, Ayy« = K(X, X*), Ay« = K(X*,X*).

Posterior:
YHX, Y ~ N iy axvs Ty x,v)

where
fy ey = K(X*, X)(K (X, X) + 0?1)71Y
Tyapxy = K(X*,X*) = K(X*, X)(K(X, X) + o?1) 71K (X, X*)

So: Yiap = fris (X*).
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Transductive setting

Model:

(O] R A )

MAP estimate (posterior mean) = RLS function at every point
x*, regardless of dim Hy.

Are the prior and posterior (on points!) consistent with a
distribution on Hy ?
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Transductive setting

Strictly speaking, 6 and f don’t come into play here at all:

Have: p(Y *|X,Y)
Do not have: p(#|X,Y) or p(f|X,Y)
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Transductive setting

Strictly speaking, 6 and f don’t come into play here at all:

Have: p(Y *|X,Y)
Do not have: p(#|X,Y) or p(f|X,Y)

But, if Hy is finite dimensional, the joint over Y and Y * is
consistent with:

oY =1f(X)+e,

@ Y* =1f(X), and

o f € Hg is arandom trajectory from a Gaussian process
over the domain, with mean x and covariance K.

@ (Ergo, people call this “Gaussian process regression.”)
(Also “Kriging,” because of a guy.)
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@ Empirical risk minimization is the maximum likelihood
estimator when:
y=x"0+c¢

@ Linear RLS is the MAP estimator when:
y =X'0+e, 6~ N(0,1)
@ Kernel RLS is the MAP estimator when:
y =o(x)T0+¢, 6~ N(0,1)

in finite dimensional Hy .
@ Kernel RLS is the MAP estimator at points when:

Y o] ey K(X,X) + a2l K(X,X*)
Y|~ py- |7 K(X* X)) K(X*,X¥)
in possibly infinite dimensional Hy .
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Is this useful in practice?

@ Want confidence intervals + believe the posteriors are
meaningful = yes
@ Maybe other reasons?

Gaussian Regression + Confidence Intervals Gaussian Regression + Posterior
5
IN Regression function
4 [N\Q ©__ Observed points.
3
2
1
> 0
-1
-2
-3
-4
-5
-6 -4 2 2 a 6

xo
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