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Computational Learning

Statistical Learning Theory

Learning is viewed as a generalization/inference problem from
usually small sets of high dimensional, noisy data.
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Learning Tasks and Models

@ Supervised

@ Semisupervised
@ Unsupervised

@ Online

@ Transductive

@ Active

@ Variable Selection
@ Reinforcement

One can consider the data to be created in a deterministic,
stochastic or even adversarial way.

Tomaso Poggio The Learning Problem and Regularization



Where to Start?
Statistical and Supervised Learning

@ Statistical Models are essentially to deal with noise
sampling and other sources of uncertainty.

@ Supervised Learning is by far the most understood class of
problems

Tomaso Poggio The Learning Problem and Regularization



Where to Start?
Statistical and Supervised Learning

@ Statistical Models are essentially to deal with noise
sampling and other sources of uncertainty.

@ Supervised Learning is by far the most understood class of
problems

Regularization

@ Regularization provides a a fundamental framework to
solve learning problems and design learning algorithms.

@ We present a set of ideas and tools which are at the
core of several developments in supervised learning
and beyond it.

@ Thisisa theory and associated algorithms which work in practice, eg in products, such as in vision systems

for cars. Later in the semester we will learn about ongoing research combining neuroscience and learning.

The latter research is at the frontier on approaches that may work in practice or may not (similar to Bayes

techniques: still unclear how well they work beyond toy or special problems).
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Remarks on Foundations of Learning Theory

Intelligent behavior (at least learning) consists of optimizing
under constraints. Constraints are key for solving
computational problems; constraints are key for prediction.
Constraints may correspond to rather general symmetry
properties of the problem (eg time invariance, space invariance,
invariance to physical units (pai theorem), universality of
numbers and metrics implying normalization, etc.)

@ Key questions at the core of learning theory:
e generalization and predictivity not explanation
e probabilities are unknown, only data are given
e which constraints are needed to ensure generalization
(therefore which hypotheses spaces)?
e regularization techniques result usually in computationally
“nice” and well-posed optimization problems
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e Part I: Basic Concepts and Notation
@ Part Il: Foundational Results
@ Part Ill: Algorithms
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Problem at a Glance

Given a training set of input-output pairs

Sn: (X1a}’1)7-~-a(Xn,,Vn)

find fs such that
fs(x) ~y.

e.g. the x’s are vectors and the y’s discrete labels in
classification and real values in regression.
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Learning is Inference

For the above problem to make sense we need to assume input
and output to be related!
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Learning is Inference

For the above problem to make sense we need to assume input
and output to be related!

Statistical and Supervised Learning

@ Each input-output pairs is a sample from a fixed but
unknown distribution p(x, y).

@ Under general condition we can write

p(x,y) = p(y|x)p(x).

@ the training set S, is a set of identically and
independently distributed samples.
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Again: Data Generated By A Probability Distribution

We assume that there are an “input” space X and an “output”
space Y. We are given a training set S consisting n samples
drawn i.i.d. from the probability distribution p(z) on Z = X x Y:

(X1a}/1)7-~-7(xn7}/n)

thatis zy,...,z,
We will use the conditional probability of y given x, written
p(y|x):

1(z) = p(x,y) = p(y|x) - p(x)
It is crucial to note that we view p(x, y) as fixed but unknown.
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p (YIx)

the same x can generate different y (according to p(y|x)):
@ the underlying process is deterministic, but there is noise
in the measurement of y;
@ the underlying process is not deterministic;

@ the underlying process is deterministic, but only
incomplete information is available.

V.
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...and Sampling

y
even in a noise free case we
have to deal with sampling
the marginal p(x) distribution
X .
\/ might model

@ errors in the location of

p(x) the input points;

@ discretization error for a
given grid;

@ presence or absence of

certain input instances
X ”
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...and Sampling
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o, even in a noise free case we
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@ errors in the location of
p(x) the input points;

@ discretization error for a
given grid;

@ presence or absence of
certain input instances
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...and Sampling

even in a noise free case we
have to deal with sampling

x the marginal p(x) distribution
might model

@ errors in the location of
the input points;

P @ discretization error for a

given grid;
@ presence or absence of
certain input instances

V.
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...and Sampling

. even in a noise free case we
s . have to deal with sampling
‘\ ./‘ « the marginal p(x) distribution
. might model

@ errors in the location of
the input points;

P(x) @ discretization error for a

given grid;
@ presence or absence of
certain input instances
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Problem at a Glance

Given a training set of input-output pairs

Sn: (X1a}’1)7-~-a(Xn7,Vn)

find fs such that
fs(x) ~ y.

e.g. the x’s are vectors and the y’s discrete labels in
classification and real values in regression.
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Learning, Generalization and Overfitting

Predictivity or Generalization

Given the data, the goal is to learn how to make
decisions/predictions about future data / data not belonging to
the training set. Generalization is the key requirement
emphasized in Learning Theory. This emphasis makes it
different from traditional statistics (especially explanatory
statistics) or Bayesian freakonomics.

The problem is often: Avoid overfitting!!
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Loss functions

As we look for a deterministic estimator in stochastic
environment we expect to incur into errors.
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Loss functions

As we look for a deterministic estimator in stochastic
environment we expect to incur into errors.

A loss function V : R x Y determines the price V(f(x),y) we
pay, predicting f(x) when in fact the true output is y.
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Loss functions for regression

@ The most common is the square loss or L, loss

V(£(x),y) = (f(x) - y)?

@ Absolute value or L loss:

V(f(x),y) = [f(x) = y|

@ Vapnik’s e-insensitive loss:

V(f(x),y) = (If(x) =y =€)+

Tomaso Poggio The Learning Problem and Regularization



Loss functions for (binary) classification

@ The most intuitive one: 0 — 1-loss:

V(f(x),y) = 0(=yf(x))

(@ is the step function)
@ The more tractable hinge loss:

V(#(x),y) = (1 = yf(x))+

@ And again the square loss or L, loss

V(f(x),y) = (1 - yf(x))?
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Expected Risk

A good function — we will also speak about hypothesis — should
incur in only a few errors. We need a way to quantify this idea.
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Expected Risk

A good function — we will also speak about hypothesis — should
incur in only a few errors. We need a way to quantify this idea.

Expected Risk
The quantity

i = /X VA, 9)p(x.y)dcy.

is called the expected error and measures the loss averaged
over the unknown distribution.

A good function should have small expected risk.
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Target Function

The expected risk is usually defined on some large space F
possible dependent on p(x, y).

The best possible error is

inf /[f
iy

The infimum is often achieved at a minimizer f, that we call
target function.
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Learning Algorithms and Generalization

A learning algorithm can be seen as a map
Sn — fn

from the training set to the a set of candidate functions.
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Basic definitions

@ p(x,y) probability distribution,

@ S, training set,

@ V(f(x),y) loss function,

o Ih[fl=1>1 1 V(f(x:),y;), empirical risk,

o [f] = [,y V(f(x),y)p(x,y)dxdy, expected risk,
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Reminder

Convergence in probability

Let {X,} be a sequence of bounded random variables. Then

lim X, = X in probability

n—oo

Ve>0 lim P{|X,— X| > ¢} =0
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Reminder
Convergence in probability

Let {X,} be a sequence of bounded random variables. Then

nlim Xn = X in probability

Ve>0 lim P{|X,— X| > ¢} =0

Convergence in Expectation
Let {X,} be a sequence of bounded random variables. Then

lim X, =X in expectation

n—oo

lim E(|X, — X|) =0

dll DI ONVEIUSNCe |1 DIODJ
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Consistency and Universal Consistency

A requirement considered of basic importance in classical
statistics is for the algorithm to get better as we get more data
(in the context of machine learning consistency is less
immediately critical than generalization)...
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Consistency and Universal Consistency

A requirement considered of basic importance in classical
statistics is for the algorithm to get better as we get more data
(in the context of machine learning consistency is less
immediately critical than generalization)...

We say that an algorithm is consistent if

Ve>0 lim P{/[f,] — /[i] > e} =0
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Consistency and Universal Consistency

A requirement considered of basic importance in classical
statistics is for the algorithm to get better as we get more data
(in the context of machine learning consistency is less
immediately critical than generalization)...

We say that an algorithm is consistent if

Ve>0 lim P{/[f,] — /[i] > e} =0

Universal Consistency

We say that an algorithm is universally consistent if for all
probability p,

Ve>0 lim P{I[f] — [[f] > e} =0

Tomaso Poggio The Learning Problem and Regularization



Sample Complexity and Learning Rates

The above requirements are asymptotic.
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Sample Complexity and Learning Rates

The above requirements are asymptotic.

A more practical question is, how fast does the error decay?
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Sample Complexity and Learning Rates

The above requirements are asymptotic.

Error Rates

A more practical question is, how fast does the error decay?
This can be expressed as

P{I[f,] — [[£.]} < e(n, )} > 1 — 4.
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Sample Complexity and Learning Rates

The above requirements are asymptotic.

A more practical question is, how fast does the error decay?
This can be expressed as

P{I[f,] — [[£.]} < e(n, )} > 1 — 4.

Sample Complexity

Or equivalently, ‘how many point do we need to achieve an
error e with a prescribed probability 67’
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Sample Complexity and Learning Rates

The above requirements are asymptotic.

A more practical question is, how fast does the error decay?
This can be expressed as

P{I[f,] — [[£.]} < e(n, )} > 1 — 4.

Sample Complexity

Or equivalently, ‘how many point do we need to achieve an
error e with a prescribed probability 6?’
This can expressed as

P{I[fs] — [f.] < e} >1—0,

for n = n(e, 9).
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Empirical risk and Generalization

How do we design learning algorithms that work? One of the
most natural ideas is ERM... J
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Empirical risk and Generalization

How do we design learning algorithms that work? One of the
most natural ideas is ERM...

| A

Empirical Risk
The empirical risk is a natural proxy (how good?) for the
expected risk

Inlf] = %Z V(f(xi), i)-
i=1
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Empirical risk and Generalization

How do we design learning algorithms that work? One of the
most natural ideas is ERM...

Empirical Risk

The empirical risk is a natural proxy (how good?) for the
expected risk

Inlf] = %Z V(f(xi), i)-
i=1

Generalization Error

The effectiveness of such an approximation error is captured by
the generalization error,

P{|/[fo] — Inlfo]| < €} =1 =34,

for n = n(e, 9).
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Some (Theoretical and Practical) Questions

@ How do we go from data to an actual algorithm or class of
algorithms?
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Some (Theoretical and Practical) Questions

@ How do we go from data to an actual algorithm or class of
algorithms?

@ Is minimizing error on the data a good idea?
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Some (Theoretical and Practical) Questions

@ How do we go from data to an actual algorithm or class of
algorithms?

@ Is minimizing error on the data a good idea?

@ Are there fundamental limitations in what we can and
cannot learn?
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@ Part I: Basic Concepts and Notation
e Part II: Foundational Results
@ Part Ill: Algorithms
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No Free Lunch Theorem Devroye et al.

Universal Consistency

Since classical statistics worries so much about consistency let
us start here even if it is not the practically important concept.
Can we learn consistently any problem? Or equivalently do
universally consistent algorithms exist?
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No Free Lunch Theorem Devroye et al.

Universal Consistency

Since classical statistics worries so much about consistency let
us start here even if it is not the practically important concept.
Can we learn consistently any problem? Or equivalently do
universally consistent algorithms exist?

YES! Neareast neighbors, Histogram rules, SVM with (so
called) universal kernels...
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No Free Lunch Theorem Devroye et al.
Universal Consistency

Since classical statistics worries so much about consistency let
us start here even if it is not the practically important concept.
Can we learn consistently any problem? Or equivalently do
universally consistent algorithms exist?

YES! Neareast neighbors, Histogram rules, SVM with (so
called) universal kernels...

No Free Lunch Theorem

Given a number of points (and a confidence), can we always
achieve a prescribed error?
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No Free Lunch Theorem Devroye et al.
Universal Consistency

Since classical statistics worries so much about consistency let
us start here even if it is not the practically important concept.
Can we learn consistently any problem? Or equivalently do
universally consistent algorithms exist?

YES! Neareast neighbors, Histogram rules, SVM with (so
called) universal kernels...

No Free Lunch Theorem

Given a number of points (and a confidence), can we always
achieve a prescribed error?
NO!

The last statement can be interpreted as follows: inference
from finite samples can effectively performed if and only if the
problem satisfies some a priori condition.

Tomaso Poggio The Learning Problem and Regularization




Hypotheses Space

Learning does not happen in void. In statistical learning a first
prior assumption amounts to choosing a suitable space of
hypotheses H.
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Hypotheses Space

Learning does not happen in void. In statistical learning a first
prior assumption amounts to choosing a suitable space of
hypotheses H.

The hypothesis space 7 is the space of functions that we
allow our algorithm to “look at”. For many algorithms (such as
optimization algorithms) it is the space the algorithm is allowed
to search. As we will see in future classes, it is often important
to choose the hypothesis space as a function of the amount of
data n available.
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Hypotheses Space

Examples: linear functions, polynomial, RBFs, Sobolev
Spaces...
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Hypotheses Space

Examples: linear functions, polynomial, RBFs, Sobolev
Spaces...

Learning algorithm
A learning algorithm A is then a map from the data space to H,
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Empirical Risk Minimization

How do we choose H? How do we design A?

A prototype algorithm in statistical learning theory is Empirical
Risk Minimization:

min I,[f].
feH
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Reminder: Expected error, empirical error

Given a function f, a loss function V, and a probability
distribution i over Z, the expected or true error of f is:

1] = B, V[, 2] = / V(f, 2)du(2)
V4

which is the expected loss on a new example drawn at random
from p.

We would like to make /[f] small, but in general we do not know
.

Given a function f, a loss function V, and a training set S
consisting of n data points, the empirical error of f is:

sl = 13" vit.2)
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Reminder: Generalization

A natural requirement for fg is distribution independent
generalization

nlim |Is[fs] — I[fs]| = O in probability

This is equivalent to saying that for each n there exists a ¢, and
a d(e) such that

P{lls,fs,] = Mlfs,]| = en} < d(en), (1)

with e, and § going to zero for n — oc.

In other words, the training error for the solution must converge
to the expected error and thus be a “proxy” for it. Otherwise the
solution would not be “predictive”.

A desirable additional requirement is consistency

>0 lim P {l[fs] — int 1[f] > g} —0.
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A learning algorithm should be well-posed, eg stable

In addition to the key property of generalization, a “good”
learning algorithm should also be stable: fs should depend
continuously on the training set S. In particular, changing one
of the training points should affect less and less the solution as
n goes to infinity. Stability is a good requirement for the learning
problem and, in fact, for any mathematical problem. We open
here a small parenthesis on stability and well-posedness.
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General definition of Well-Posed and lll-Posed
problems

A problem is well-posed if its solution:
@ exists
@ is unique
@ depends continuously on the data (e.g. it is stable)

A problem is ill-posed if it is not well-posed. In the context of
this class, well-posedness is mainly used to mean stability of
the solution.
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More on well-posed and ill-posed problems

Hadamard introduced the definition of ill-posedness. Ill-posed
problems are typically inverse problems.

As an example, assume g is a function in Y and v is a function
in X, with Y and X Hilbert spaces. Then given the linear,
continuous operator L, consider the equation

g=Lu.

The direct problem is is to compute g given u; the inverse
problem is to compute u given the data g. In the learning case
L is somewhat similar to a “sampling” operation and the inverse
problem becomes the problem of finding a function that takes
the values

f(X,') =Y, i = 1,..n
The inverse problem of finding v is well-posed when

@ the solution exists,
@ is unique and
@ is stable, that is depends continuously on the initial data g-
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ERM

Given a training set S and a function space H, empirical risk
minimization as we have seen is the class of algorithms that
look at S and select fs as

fg = argmin Ig[f
S gmin s[f]

For example linear regression is ERM when V(z) = (f(x) — y)?
and H is space of linear functions f = ax.
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Generalization and Well-posedness of Empirical Risk

Minimization

For ERM to represent a “good” class of learning algorithms, the
solution should

@ generalize

@ exist, be unique and — especially — be stable
(well-posedness), according to some definition of stability.
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ERM and generalization: given a certain number of

samples...
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...suppose this is the “true” solution...
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... but suppose ERM gives this solution.
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Under which conditions the ERM solution converges
with increasing number of examples to the true

solution? In other words...what are the conditions for
generalization of ERM?
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ERM and stability: given 10 samples...

X x
0.8 ~
0.7 ~
06 ~
x
05 x ~
0.4 ~
03 x q

0.2 ~
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...we can find the smoothest interpolating polynomial

(which degree?).

1 r ‘ ™
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But if we perturb the points slightly...

08f © & |
0.7 |
06F R
0.5 L B
04F R
03F |

0.2 ~
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...the solution changes a lot!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1




If we restrict ourselves to degree two polynomials...

09 A
081\ X * .
y

N Y,
o7l O\ e

05 ~—_ - x B

041 g

0.2 ~

0.1 4
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...the solution varies only a small amount under a

small perturbation.

09[% A
/
TN & s
AN /
0.7F AN /,/
061 A e ]
05 TS — 0 1

04 —

0.2 ~
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ERM: conditions for well-posedness (stability) and

predictivity (generalization)

Since Tikhonoy, it is well-known that a generally ill-posed
problem such as ERM, can be guaranteed to be well-posed
and therefore stable by an appropriate choice of H. For
example, compactness of H guarantees stability.

It seems intriguing that the classical conditions for consistency
of ERM — thus quite a different property — consist of
appropriately restricting H. It seems that the same restrictions
that make the approximation of the data stable, may provide
solutions that generalize...
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ERM: conditions for well-posedness (stability) and

predictivity (generalization)

We would like to have a hypothesis space that yields
generalization. Loosely speaking this would be a H for which
the solution of ERM, say fs is such that |/s[fs] — /[fs]| converges
to zero in probability for nincreasing.

Note that the above requirement is NOT the law of large
numbers; the requirement for a fixed f that |/s[f] — /[f]|
converges to zero in probability for n increasing IS the law of
large numbers.
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ERM: conditions for well-posedness (stability) and
predictivity (generalization) in the case of regression

and classification

Theorem [Vapnik and Cervonenkis (71), Alon et al (97),
Dudley, Giné, and Zinn (91)]

A (necessary) and sufficient condition for generalization (and
consistency) of ERM is that H is uGC.

Definition

H is a (weak) uniform Glivenko-Cantelli (uGC) class

if

Ve >0 lim supPg {sup |1[f] — Is[f]] > 5} =0.
n=00 fer
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ERM: conditions for well-posedness (stability) and
predictivity (generalization) in the case of regression

and classification

@ The theorem (Vapnik et al.) says that a proper choice of
the hypothesis space H ensures generalization of ERM
(and consistency since for ERM generalization is
necessary and sufficient for consistency and viceversa).
Other results characterize uGC classes in terms of measures of
complexity or capacity of H (such as VC dimension).

@ A separate theorem (Niyogi, Poggio et al.) guarantees also
stability (defined in a specific way) of ERM (for supervised
learning). Thus with the appropriate definition of stability,
stability and generalization are equivalent for ERM.

Thus the two desirable conditions for a supervised learning
algorithm — generalization and stability — are equivalent (and
they correspond to the same constraints on H).
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Key Theorem(s) lllustrated

— ERM —
/ 4 H is \\":::__ ﬁ> //CV\W \

i stability

— e%“‘ \

/RI% /\ -
\anrmsfency mem‘ Sl Gznemlll@
- rithms JI\_ .
%\\ — / Ek,,ﬁeebL / .
_,J> sfubillty |
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Key Theorem(s)

Uniform Glivenko-Cantelli Classes

We say that H is a uniform Glivenko-Cantelli (uGC) class, if for
all p,

Ve >0 lim P{sup\/[f] — In[f]]| > e} =0.
n=oo \ fen

Tomaso Poggio The Learning Problem and Regularization



Key Theorem(s)

Uniform Glivenko-Cantelli Classes

We say that H is a uniform Glivenko-Cantelli (uGC) class, if for
all p,

Ve >0 lim P{sup\l[f] — In[f]]| > e} =0.
n=oo \ fen

A necessary and sufficient condition for consistency of ERM is
that’H is uGC.

See: [Vapnik and Cervonenkis (71), Alon et al (97), Dudley, Giné, and
Zinn (91)].

In turns the UGC property is equivalent to requiring H to have
finite capacity: V., dimension in general and VC dimension in
classification.
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Stability

z=(x,y)

S=2z,..,2n

S'=2z4,..,2i_1,2i41,..-Zn

CV Stability

A learning algorithm Ais CV/,, stability if for each n there

exists a 5 and a 5% such that for all p

P{|Vlfg21) — V(fs,2)| < 850} > 1 - 65,

with ﬁ(cn& and 6(0”\3 going to zero for n — oc.
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Key Theorem(s) lllustrated

— ERM —
/ 4 H is \\":::__ ﬁ> //CV\W \

i stability

— e%“‘ \

/RI% /\ -
\anrmsfency mem‘ Sl Gznemlll@
- rithms JI\_ .
%\\ — / Ek,,ﬁeebL / .
_,J> sfubillty |
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ERM and ill-posedness

Il posed problems often arise if one tries to infer general laws
from few data

@ the hypothesis space is too large
@ there are not enough data

In general ERM leads to
ill-posed solutions because

@ the solution may be too ne 2
complex

@ it may be not unique .

, , )
@ it may change radically when \A ¢
leaving one sample out Po
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Regularization

Regularization is the classical way to restore well posedness
(and ensure generalization). Regularization (originally
introduced by Tikhonov independently of the learning problem)
ensures well-posedness and (because of the above argument)
generalization of ERM by constraining the hypothesis space H.
The direct way — minimize the empirical error subject to f in a
ball in an appropriate H — is called Ivanov regularization. The
indirect way is Tikhonov regularization (which is not strictly
ERM).
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lvanov and Tikhonov Regularizatio

ERM finds the function in (7¢) which minimizes
1 n
= ST VI(x), vi)
ni=

which in general — for arbitrary hypothesis space H — is ill-posed.
@ vanov regularizes by finding the function that minimizes
1 n
= > VIF(x), vi)
i3
while satisfying R(f) < A.

@ Tikhonov regularization minimizes over the hypothesis space H, for a fixed positive parameter ~, the
regularized functional

n
LS VU0, ) + R0 @
i=1

R(f) is the regulirizer, a penalization on f. In this course we will mainly discuss the case R(f) = Hle( where || fl\f(
is the norm in the Reproducing Kernel Hilbert Space (RKHS) H, defined by the kernel K.
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Tikhonov Regularization

As we will see in future classes

@ Tikhonov regularization ensures well-posedness eg
existence, uniqueness and especially stability (in a very
strong form) of the solution

@ Tikhonov regularization ensures generalization

@ Tikhonov regularization is closely related to — but different
from — lvanov regularization, eg ERM on a hypothesis
space H which is a ball in a RKHS.
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Remarks on Foundations of Learning Theory

Intelligent behavior (at least learning) consists of optimizing
under constraints. Constraints are key for solving
computational problems; constraints are key for prediction.
Constraints may correspond to rather general symmetry
properties of the problem (eg time invariance, space invariance,
invariance to physical units (pai theorem), universality of
numbers and metrics implying normalization, etc.)

@ Key questions at the core of learning theory:
e generalization and predictivity not explanation
e probabilities are unknown, only data are given
e which constraints are needed to ensure generalization
(therefore which hypotheses spaces)?
e regularization techniques result usually in computationally
“nice” and well-posed optimization problems
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Statistical Learning Theory and Bayes

The Bayesian approach tends to ignore

@ the issue of generalization (following the tradition in
statistics of explanatory statistics);

@ that probabilities are not known and that only data are
known: assuming a specific distribution is a very strong —
unconstrained by any Bayesian theory — seat-of-the-pants
guess;

@ the question of which priors are needed to ensure
generalization;

@ that the resulting optimization problems are often
computationally intractable and possibly ill-posed
optimization problems (for instance not unique).

The last point may be quite devastating for Bayesonomics: Montecarlo techniques etc. may just hide hopeless
exponential computational complexity for the Bayesian approach to real-life problems, like exhastive search did

initially for Al. A possibly interesting conjecture suggested by our stability results and the last point above, is that
ill-posed optimization problems or their ill-conditioned approximative solutions may not be predictive!
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@ Part I: Basic Concepts and Notation

@ Part II: Foundational Results

e Part lll: Algorithms
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Hypotheses Space

We are going to look at hypotheses spaces which are
reproducing kernel Hilbert spaces.

@ RKHS are Hilbert spaces of point-wise defined
functions.
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Hypotheses Space

We are going to look at hypotheses spaces which are
reproducing kernel Hilbert spaces.

@ RKHS are Hilbert spaces of point-wise defined
functions.

@ They can be defined via a reproducing kernel, which is a
symmetric positive definite function.

n
Z ciciK (i, t) > 0
=

forany n € N and choice of t4, ..., t, € X and ¢4, ...,ch € R.
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Hypotheses Space

We are going to look at hypotheses spaces which are
reproducing kernel Hilbert spaces.

@ RKHS are Hilbert spaces of point-wise defined
functions.

@ They can be defined via a reproducing kernel, which is a
symmetric positive definite function.

n
Z ciciK (i, t) > 0
ij=1
forany n € N and choice of t4, ..., t, € X and ¢4, ...,ch € R.
@ functions in the space are (the completion of) linear

combinations
p

f(x) =Y K(x, x)ci.

i=1
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Hypotheses Space

We are going to look at hypotheses spaces which are
reproducing kernel Hilbert spaces.

@ RKHS are Hilbert spaces of point-wise defined
functions.

@ They can be defined via a reproducing kernel, which is a
symmetric positive definite function.

n
Z ciciK (i, t) > 0
ij=1
forany n € N and choice of t4, ..., t, € X and ¢4, ...,ch € R.
@ functions in the space are (the completion of) linear

combinations ,

f(x) =Y K(x, x)ci.

i=1

@ the norm in the space is a natural measure of complexity
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Examples of pd kernels

Very common examples of symmetric pd kernels are

e Linear kernel

K(x,x')=x-x

e Gaussian kernel

!
X2

K(x,x)=e 2 | c>0
e Polynomial kernel
Kx,x)=(x-x+1)9  deN

For specific applications, designing an effective kernel is a
challenging problem.
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Kernel and Features

Often times kernels, are defined through a dictionary of features
D={¢, i=1,...,p|¢j: X =R, Vj}
setting

p
K(x,x') = Z oi(x)B5(X).
i=1
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lvanov regularization

We can regularize by explicitly restricting the hypotheses space
'H — for example to a ball of radius R.

Ivanov regularization

min 1 i V(f(X,'),y,')
i=1

feH N 4

subject to

If1% < R.

The above algorithm corresponds to a constrained optimization
problem.
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Tikhonov regularization

Regularization can also be done implicitly via penalization

Tikhonov regularizarion

1 2
argmin ; V(F(xi), yi) + A IFll5 -

A is the regularization parameter trading-off between the two
terms.

The above algorithm can be seen as the Lagrangian
formulation of a constrained optimization problem.
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The Representer Theorem

An important result

The minimizer over the RKHS H, fg, of the regularized
empirical functional

Is[f] + Allf 1%,

can be represented by the expression

fo(x) = En: ciK(xi, x),
i=1

for some (cy,...,cn) € R.

Hence, minimizing over the (possibly infinite dimensional)
Hilbert space, boils down to minimizing over R".
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SVM and RLS

The way the coefficients ¢ = (cq, ..., c,) are computed depend
on the loss function choice.

@ RLS: LetLety = (y1,...,¥n) and K; ; = K(x;, x;) then
c = (K+An)y.

"o~ 1aTQa
max Y10 — 0 Qo

otk
subjectto: S, yia; =0
0<a,<C  i=1...n
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SVM and RLS

The way the coefficients ¢ = (cq, ..., c,) are computed depend
on the loss function choice.

@ RLS: LetLety = (y1,...,¥n) and K; ; = K(x;, x;) then
c = (K+An)y.
@ SVM: Let a; = y;c; and Q;; = yiK(X;, X;)y;

"o~ 1aTQa
max Y10 — 0 Qo

otk
subjectto: S, yia; =0
0<a,<C  i=1...n
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Bayes Interpretation

@ Empirical risk minimization is ML.

p(Y|f,X) oc =3 Zita ri=f(x))?

@ Linear RLS is MAP.

@ Kernel RLS is also MAP.

p(Y.f1X) x e~z Zim0i—f(0)? | g=31f1%,
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Regularization approach

More generally we can consider:
In(f) + AR(f)

where, R(f) is a regularizing functional.

@ Sparsity based methods
@ Manifold learning

@ Multiclass

° ..
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@ statistical learning as framework to deal with uncertainty in
data.

@ non free lunch and key theorem: no prior, no learning.

@ regularization as a fundamental tool for enforcing a prior
and ensure stability and generalization
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Kernel and Data Representation

In the above reasoning the kernel and the hypotheses space
define a representation/parameterization of the problem and
hence play a special role.

Where do they come from? |

Tomaso Poggio The Learning Problem and Regularization



Kernel and Data Representation

In the above reasoning the kernel and the hypotheses space
define a representation/parameterization of the problem and
hence play a special role.

Where do they come from? |

@ There are a few off the shelf choices (Gaussian,
polynomial etc.)
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Kernel and Data Representation

In the above reasoning the kernel and the hypotheses space
define a representation/parameterization of the problem and
hence play a special role.

Where do they come from? |

@ There are a few off the shelf choices (Gaussian,
polynomial etc.)
@ Often they are the product of problem specific engineering.
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Kernel and Data Representation

In the above reasoning the kernel and the hypotheses space
define a representation/parameterization of the problem and
hence play a special role.

Where do they come from? J

@ There are a few off the shelf choices (Gaussian,
polynomial etc.)

@ Often they are the product of problem specific engineering.

Are there principles— applicable in a wide range of situations—
to design effective data representation?
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