9.65 October 24, 2001 LEARNING: Handout

Assigned: One chapter (2) and part of Chapter 3 from J. R. Anderson (2000). *Learning and memory: 2nd Edition*. New York: Wiley. Note: you may omit pp. 45-48; read pp. 49-57 to pick up the general ideas about conditioning; and study the rest of the chapter (including the beginning sections, 39-44).

Outline:	_				
	111	+1:	n	\sim	•
	JU	ш	11	u	_

Elementary principles of learning

- A. Contiguity
- B. Frequency
- C. Contingencies and blocking

Learning vs. memory

Pavlov's dogs now link up with computational modelling and even with Bayesian reasoning.

A. CONTIGUITY

The principle of association by contiguity in time [and space]:

E.g., flashbulb memories

Why form an	association only wh	en objects or events	s are in close tempora	al [and spatial]
proximity?				

Constraints on learning:

Is simple contiguity sufficient for learning?

Preparedness: Seligman (1970) (also called associative bias)

For example, a rat can readily associate a sound or light with a shock (and learn what to do to avoid it), or can learn to avoid a food or liquid with a certain taste to avoid becoming nauseated, but has great difficulty associating the taste with shock or the sound or light with nausea (Garcia, Hawkins, & Rusiniak, 1974)

In rats and other animals, the association between a foodstuff and getting sick may be made even though the sickness does not begin until hours after the food has been eaten (the Garcia effect).

This "long-distance" association is more readily made if the food the animal has eaten is different from the animal's usual diet.

Humans: (in one study, root-beer Lifesavers), that food becomes a scapegoat: the patient is *less* likely to develop aversions to ordinary foods eaten at the same pre-treatment meal. (Bernstein, Webster, & Bernstein, 1982)

B. Second fundamental principle of learning is FREQUENCY

This supplementary principle increases the likelihood that valid associations (such as causal relationships) will be strengthened at the expense of chance associations that do not reflect regularities in the world.

Other principles of learning and memory are also relevant: attention, elaborative processing

E.g., chein-dog

C. CONTI	NGENCY LEARNING AND BLOCKING
	and frequency are not sufficient for learning: you need contingency between the associating:
to A+B, the	eflects not only positive pairing, but also failures of pairing: that is, if you are expose likelihood that you will learn A>B depends not only on the frequency of A+B, bequency of 0+B and A+0. In effect, A has to predict B more often than not-A does
Partial rei	nforcement

Blocking : If you already "know" that it is a light that predicts shock, adding in a tone that is also correlated with the shock will not lead to learning that tone>shock.
T. D W. D.
The Rescorla-Wagner Rule delta V = alpha (lambda - V)
Compound stimuli and competitive learning
Application to blocking
Conditioned inhibition

Delta Rule in neural-net learning
Relation to Bayes' Theorem
Summing up:

Modifications of Rescorla-Wagner