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Abstract

We develop and estimate an econometric model of limit-order execution times using
survival analysis and actual limit-order data. We estimate versions for time-to-first-fill and
time-to-completion for both buy and sell limit orders, and incorporate the effects of
explanatory variables such as the limit price, limit size, bid/offer spread, and market volatility.
Execution times are very sensitive to the limit price, but are not sensitive to limit size.
Hypothetical limit-order executions, constructed either theoretically from first-passage times
or empirically from transactions data, are very poor proxies for actual limit-order executions.
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1. Introduction

One of the most important tools for trading equity securities is the limit order,
which is an order to transact a prespecified number of shares at a prespecified price.
Indeed, limit orders constitute a significant fraction of stock market trading activity,
accounting for approximately 45% of total NYSE orders (Harris and Hasbrouck,
1996). The primary advantage of a limit order is the absence of price risk—a
transaction occurs only if the limit price is attained. However, this advantage does
not come without a cost: execution is not guaranteed, and the time-to-execution is a
random function of many factors, such as the limit price, the number of shares,
market conditions, and private information. For some trades, the uncertainty in
execution time is unimportant, but for others, the opportunity cost of waiting can be
significant.

If immediacy is critical, the market order is the appropriate instrument to use.
However, market orders can be subject to significant price risk, particularly for large
orders and in volatile markets. In practice, traders submit both market and limit
orders, with an eye towards balancing the risks of delaying execution against the
risks associated with immediate execution.! A prerequisite for any quantitative
approach to making such tradeoffs is an econometric model of limit-order execution
times and the associated execution probabilities.

Limit orders play another important role in determining trading costs: they
influence bid/offer quotes and, therefore, spreads. Chung et al. (1997) estimate that
21% of the quotes in their sample originate from limit orders on both the bid and
offer sides without any direct participation from the specialist. Therefore, limit-order
execution times affect the frequency with which quotes are updated and are likely to
be a major factor in the dynamics of bid/offer spreads. Moreover, limit-order
execution times have been used to measure the overall quality of equity markets (e.g.,
Battalio et al., 1999; SEC, 1997), hence their determinants can have important
implications for the economic consequences of market fragmentation, the practice of
“preferencing’’, and the relative merits of specialist vs. multiple-dealer market
structures.

In this paper, we propose and estimate an econometric model of limit-order
execution times using actual historical limit-order data. Using survival analysis,
which is a well-known statistical technique for modeling failure times and other
nonnegative random variables, we are able to estimate the conditional distribution of
limit-order execution times as a function of economic variables such as the limit
price, order size, and current market conditions. Because limit-order execution times
can be interpreted quite naturally as failure times—they are nonnegative, random,
and temporally ordered—survival analysis is the most appropriate method for
modeling their evolution.

''See, for example, Cohen et al. (1981), O’Hara and Oldfield (1986), Glosten (1989, 1994), Easley and
O’Hara (1991), Parlour (1998), Chakravarty and Holden (1995), Keim and Madhavan (1995), Belonsky
(1996), Harris and Hasbrouck (1996), Kavajecz (1998), Rock (1996), and Seppi (1997).
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Moreover, survival analysis can accommodate an important feature of limit-order
execution times that existing models have ignored: censored observations, i.e., limit
orders that expire or are canceled before they are executed. There is great temptation
to ignore censored observations since they seem to provide little information about
execution times. However, the fact that a limit order is canceled after, say, 30
minutes yields a piece of useful information: the limit order ““survived” for at least 30
minutes. Therefore, censored observations do affect the conditional distribution of
execution times despite the fact that they are not executions. Ignoring censored
observations can dramatically bias the estimator of the conditional distribution of
execution times.

Using a sample of limit orders for the 100 largest stocks in the S&P 500 from
August 1994 to August 1995, we construct models of limit-order execution times
based on survival analysis and show that they fit the data remarkably well. In
particular, we estimate separate models for time-to-first-fill and time-to-completion
for both buy and sell limit orders, hence four models in all. Each of these four models
yields a conditional distribution that closely matches the data’s and passes several
diagnostic tests of goodness-of-fit. The parameter estimates show that execution
times can be quite sensitive to certain explanatory variables, such as market depth,
the spread between the limit price and the quote midpoint, and market volatility,
implying that the kind of strategic order-placement strategies described by Angel
(1994), Foucault (1996), Harris (1994), Hollifield et al. (1999), Kumar and Seppi
(1993), and Parlour (1998) could well be feasible in practice. Limit-order execution
times can be accurately modeled, hence controlled.

In Section 2 we review the literature on limit orders, and in Section 3 we discuss
some of the institutional features of limit orders and describe our limit-order dataset.
We present a simple but powerful application of this dataset in Section 4 in which
we compare actual limit-order execution times to their hypothetical counterpart,
constructed theoretically (from the first-passage times of Brownian motion)
and empirically (from transactions data). We present a brief review of survival
analysis in Section 5 and turn to our empirical analysis in Section 6. We conclude in
Section 7.

2. Literature review

There is a large and growing theoretical literature that considers the economic role
of limit orders in the price discovery process. Foucault (1993), Glosten (1989, 1994),
Easley and O’Hara (1991), Parlour (1998), Chakravarty and Holden (1995),
Kavajecz (1998), Rock (1996), Sandas (1999), and Seppi (1997) are just a few recent
examples. The general focus of these papers is the effect of limit orders on the
market, the interaction between limit and market orders, and the role of the market
maker. None of these studies is set in a continuous-trading environment, hence they
provide little direct guidance for modeling limit-order execution times.

However, several other studies explore the probability of limit-order execution.
For example, under a number of rather strong assumptions, Angel (1994) derives an
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analytical expression for the probability of limit-order execution, conditional upon
an investor’s information set. His result applies to batch trading of one round lot of
the stock for informed traders, assuming that traders know the entire limit-order
book. Within his analytical framework, Angel also conducts some simulations for
continuous-trading environments.

Hollifield et al. (1999) build a structural model of a pure limit-order market. The
model captures the tradeoff between order price and probability of execution. They
estimate their model nonparametrically and derive implications for traders’ order-
submission strategies.

A number of studies compare the use of market orders to limit orders empirically.
In particular, using the NYSE transactions, orders, and quotes (TORQ) data,
Petersen and Fialkowski (1994) find that limit orders placed at the quote outperform
market orders in markets that quote in $1/8 increments, but underperform market
orders in wider markets. Harris and Hasbrouck (1996) use the TORQ data to
compare the profitability of order-submission strategies using limit orders vs. market
orders. They find that in some cases the use of limit orders can reduce execution
costs. Handa and Schwartz (1996) assess the profitability of limit-order trading
by comparing unconditional expected returns of market orders vs. limit orders.
Their analysis is based on hypothetical limit-order executions, or fictitious execu-
tions constructed from transactions data (see Section 4 for further discussion
and an empirical critique). Biais et al. (1995) present an empirical analysis of
the order flow of the Paris Bourse which is a pure limit-order market. They find
that traders’ strategies vary with market conditions, with more limit orders at
times when spreads are wide and more market orders at times when spreads are
narrow.

Other empirical studies have focused on the role of limit orders in determining
execution costs and overall market quality. Keim and Madhavan (1995) examine a
unique dataset containing information for 62,000 equity orders (each order
generating one or more trades) by 21 institutional investors from January 1991 to
March 1993, and one of the many issues they consider is the selection of order type
(limit order, market order, working order, or crossing network). McInish and Wood
(1995) argue that there are “hidden” limit orders on the NYSE, orders that would
improve the posted quotes but which are not always displayed by specialists. Using
the NYSE TORQ data, Chung et al. (1997) find that bid/offer spreads are heavily
influenced by limit orders—posted spreads are widest when there is no competition
from the limit-order book, and narrowest when the quotes originate exclusively from
the limit-order book. Battalio et al. (1999) compare limit-order fill rates and
execution times of primary and regional exchanges to gauge execution quality across
markets. The SEC (1997) performs a similar analysis. And Belonsky (1996) provides
an extensive cross-sectional analysis of limit orders submitted to the NYSE during
the month of February 1994 for all common stocks with SuperDOT activity and
prices between $1.00 and $150.00.

Although none of these papers attempts to model the determinants of limit-order
execution times, it is apparent that such a model might provide important insights
into each of the issues they address.
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3. Limit-order data

Although limit orders differ slightly in their institutional features from one
exchange to another, we shall focus on those characteristics that are common to the
largest exchanges, e.g., the New York and American Stock Exchanges. Upon
submission to a designated exchange, a limit order enters the specialist’s display
book, known as the order book or the queue. The queue gives top priority to the
highest limit buy price and to the lowest limit sell price. Limit orders with the same
limit price are prioritized by time of submission, with the oldest order given the
highest priority.> An order’s execution often involves several partial fills before it is
completed, but partial fills do not change the time priority. A limit order is not
binding—it can be canceled or corrected at any time. Correcting an order does not
imply that a mistake has been made, but merely that the original limit order has been
revised—either in price or size or both—and resubmitted (and, as a result, has lost its
time priority).

When a limit order is submitted, a number of parameters must be specified,
including the limit price, whether the order is to buy or to sell, the order size (in
shares), the designated exchange, and the time-in-force. The time-in-force is the
period during which a limit order can be filled. For example, a day-order is a limit
order that can be filled anytime until the market closes; a good-till-canceled order is a
limit that can be filled anytime prior to cancellation. The majority of limit orders—
82% of the NYSE’s TORQ database considered by Harris and Hasbrouck (1996)—
are day-orders, although the number of good-till-canceled limit orders is also
substantial, about 17% in the same sample.

In addition to the parameters of the order, we would expect the time-to-execution
to depend on current market conditions for the stock itself as well as for the market
as a whole. Thus, in modeling the time-to-execution it is necessary to specify relevant
measures to capture any interaction with market conditions. (We shall return to
these issues in Section 6.)

The limit-order data used in this study were provided by Investment Technology
Group (ITG), an institutional brokerage firm that provides technology-based equity
trading services such as POSIT (an electronic crossing system), QuantEX (a decision-
support and routing system), and a full-service trading desk. The ITG limit-order
dataset consists of all limit orders submitted through the ITG trading desk from
August 1, 1994 to August 31, 1995 for the 100 largest stocks (in market capitalization
as of the end of September 1995) in the S&P 500. This dataset is unique in several
respects. Each limit order is time-stamped and tracked from submission to
termination. After submission, a limit order can be partially or completely filled,
canceled or corrected by its initiator, or it can expire if its time-in-force is reached.

20n the NYSE, time priority applies only to orders in the limit-order book; an order given to a floor
broker may trade ahead of a pre-existing limit-order. Also, time priority is given only to the first order at a
given price—after that, all members in the crowd have equal time priority, and the limit-order book may
be considered a single floor trader. We are grateful to the referee for pointing out this interesting aspect of
the NYSE order-handling rules.
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Every action relating to the order during its life is time-stamped, reported, and
recorded in the dataset. The submission time is the time when the order departs
electronically from its submitter, usually an Exchange-member firm, to the
designated exchange. For example, the order can be submitted to the NYSE via
the NYSE SuperDOT System. The order is transmitted from the submitter to the
exchange almost instantaneously, with a typical delay of less than a second. Once the
order is received by the specialist, it is placed in the queue, ready for execution. When
the specialist fills the order, a time-stamped report is sent to the submitter. This time
stamp is the report time and considered the time of execution. When the investor
requests cancellation or correction of an order, the submitter informs the exchange
and the exchange sends back a cancellation report and the time of cancellation is
recorded.

To illustrate the dynamics of typical limit orders, Fig. 1 provides two examples of
paths a limit order can follow from submission to termination using data for AT&T.
The first panel follows the path of a buy order on December 29, 1994. The order is
first submitted at a limit price of $51.250 and then canceled. It is resubmitted at
$51.375, corrected, and resubmitted again at $51.500. It is executed at this price. Our
analysis treats this sequence as three observations: limit orders at $51.250 and
$51.375 that are not executed and a limit order at $51.500 that is executed. The
second panel presents the path of a sell order on November 11, 1994. The order is
submitted at a limit price $54.750, corrected and resubmitted at $54.625, and then
executed. Our analysis treats this sequence as two observations, one at $54.750 that
is not executed and one at $54.625 that is filled.

These examples illustrate three possible execution times that we shall distinguish in
our subsequent analysis: (1) time-to-cancellation/correction, (2) time-to-first-fill, and
(3) time-to-completion. We shall develop separate models for the second and third—
they have markedly different properties—and incorporate the first into our
estimation procedures for both models.

In addition to presenting aggregate results for the entire sample of 100 stocks, we
also provide detailed results for the following 16 individual stocks: Abbott Labs
(ABT), American Express Co (AXP), Anheuser Busch Cos Inc (BUD), Chrysler
Corp (C), Colgate Palmolive Co (CL), Dean Witter Discover (DWD), General Elec
Co (GE), General Mtrs Corp (GM), International Business Machines (IBM), JP
Morgan & Co Inc (JPM), Mobil Corp (MOB), Pacific Telesis Group (PAC), Procter
& Gamble Co (PG), Sara Lee Corp (SLE), Seagram Ltd (VO), and Xerox Corp
(XRX). These 16 stocks will be identified by their ticker symbols hereafter, and we
shall refer to the pooled sample of 100 stocks as “POOL”.

3.1. TORQ vs. ITG

Because our limit-order dataset comes from a single source, ITG, it might contain
certain biases that are not present in the TORQ dataset.® For example, ITG’s clients
are almost exclusively institutional investors and other broker/dealers, hence its

3We are grateful to the referee for some of these observations.
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Fig. 1. Sample paths for two particular limit orders. The first panel shows a buy limit order on December
29, 1994 for AT&T and the second panel shows a sell limit order on November 11, 1994 for AT&T. In the
upper panel, a buy limit order is submitted at 511, canceled, resubmitted at 51%, corrected and resubmitted
at 51%, and executed at 51%. In the lower panel, a sell limit order is submitted at 543, corrected and
resubmitted at 543, and executed at 54,

trading desk sees few retail orders (e.g., small or odd lots). Therefore, the ITG limit-
order data reflect this institutional focus which, in turn, affects the econometric
models estimated from the data.



38 A.W. Lo et al. | Journal of Financial Economics 65 (2002) 31-71

Also, ITG’s trading platform, QuantEX, is a real-time event-driven interface to
multiple sources of liquidity, such as SuperDOT, POSIT, and Instinet. A common
function of the ITG trading desk is to handle residual (unfilled) trades from some of
these liquidity sources—for example, orders that were unfilled in a POSIT match—
hence a portion of the orders in the ITG limit-order dataset arise from an absence of
liquidity.

QuantEX also provides data and analytics to support order-routing and order-
handling decisions; it is an ‘“‘expert system’ that allows portfolio managers to
program trading rules and optimization algorithms to fully automate their trading
decisions. Therefore, the conditioning information behind an ITG limit order is
likely to be richer than the typical TORQ limit order.

Despite these factors, ITG’s limit-order dataset is likely to be an important one,
particularly for institutional investors, since virtually every major institution uses
POSIT to some degree. Nevertheless, this dataset is only one of many possible
datasets, each reflecting the style and customs of a particular set of traders. We hope
to show that our application of survival analysis to limit-order execution times is
promising enough to motivate others to apply the same techniques to their own
datasets, and to compare their findings to ours. We conducted a preliminary
comparison of the ITG and TORQ datasets but quickly decided that it was unlikely
to be very informative because of the difference in time periods (the TORQ dataset
spans November 1, 1990 to January 31, 1991).

3.2. Summary statistics

Summary statistics for the limit-order dataset are reported in Table 1. The number
of limit orders per stock ranges from 1,160 (DWD) to 11,298 (GE), and is almost
evenly split between buy orders (52.42%) and sell orders (48.58%) for the pooled
sample of 375,998 limit orders. Among the sell orders, short sales account for the
majority (32.83%). Because shortsale orders are subject to the up-tick rule (whereby
a short sale can be executed only if it occurs at a price higher than the preceding
transaction at a different price), we expect their dynamics to differ from pure sell
orders. For this reason, we omit them from our empirical analysis. Hereafter, by
“sell order” we shall mean pure sell orders only.

Once an order is submitted, it can be partially filled, completely filled, or not filled
at all due to cancellation or correction (we do not distinguish between these last two
conditions). The last three columns of Table 1 report the percentage of orders that
are partially filled, completely filled in the first fill, and completely filled, respectively.
The orders not included in the ‘““partially filled”” category either expire or are
canceled. Approximately half the orders are at least partially filled and 37% are
completely filled. About 30% are completely filled on the first fill.

Although most of the completed limit orders are completed with the first fill, a
number require multiple fills. Table 2 reports the percentage of completed limit
orders that are completed with a given number of fills. Over 80% of completed
orders are completed with the first fill, and only 1% require seven or more fills.
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Table 1
Summary statistics for limit-order data from August 1994 to August 1995 for a pooled sample of 100
stocks (POOL) and for 16 individual stocks listed by ticker symbol.

Stock Number of % Buy % Sell % Short % Partially % Completed % Completed

observations  orders  orders  sales filled one fill multiple fills
POOL 375,998 52.42 14.75 32.83 53.85 30.51 37.47
ABT 4,208 52.23 17.21 30.56 55.44 34.74 41.24
AXP 3,600 49.44 16.31 34.25 51.08 31.81 37.98
BUD 2,640 50.98 16.93 32.08 49.97 31.62 38.32
C 5,606 48.59 12.67 38.74 46.83 23.01 29.32
CL 4,544 51.74 8.19 40.07 43.74 29.38 34.67
DWD 1,160 56.98 32.16 10.86 73.60 35.20 45.84
GE 11,298 50.24 10.28 39.48 48.25 22.44 27.98
GM 6,284 51.00 13.88 35.12 55.70 27.15 34.04
IBM 8,331 55.80 10.89 33.31 52.00 28.29 35.78
JPM 5,485 43.92 20.42 35.66 62.26 35.59 44.15
MOB 6,524 54.52 10.06 35.42 48.94 34.18 39.09
PAC 1,457 56.62 33.70 9.68 70.06 38.60 47.80
PG 6,619 52.97 9.13 37.91 47.74 26.76 33.09
SLE 2,207 60.13 17.90 21.98 58.30 28.16 34.79
VO 1,618 49.94 11.25 38.81 48.69 30.20 36.46
XRX 8,646 54.73 3.19 42.08 33.83 23.92 27.66

Table 2

Percentage breakdown of the total number of completed orders by the number of fills required for
completion, for a pooled sample of 100 stocks (POOL) and for 16 individual stocks. The sample period of
the data is August 1994 to August 1995.

Stock Number of fills to completion

1 2 3 4 5 6 =7
POOL 81.42 10.79 3.64 1.66 0.92 0.51 1.05
ABT 84.23 8.96 3.15 1.66 0.66 0.33 1.00
AXP 83.76 8.68 3.34 1.89 1.00 0.89 0.44
BUD 82.53 11.79 3.20 1.02 0.58 0.58 0.29
C 78.45 10.92 4.27 2.38 1.39 0.89 1.69
CL 84.75 10.28 2.75 1.38 0.21 0.21 0.42
DWD 76.79 13.08 5.06 1.90 0.63 1.05 1.48
GE 80.19 9.51 3.66 1.78 1.05 1.20 2.61
GM 79.76 10.37 3.53 1.51 1.51 0.94 2.38
IBM 79.07 11.72 4.48 2.21 1.11 0.40 1.01
JPM 80.62 11.17 3.98 2.12 0.83 0.64 0.64
MOB 87.43 8.14 2.49 1.03 0.36 0.24 0.30
PAC 80.76 10.33 3.18 2.38 1.75 0.95 0.64
PG 80.88 10.00 3.38 2.50 1.18 0.81 1.25
SLE 80.97 8.51 3.67 1.00 2.00 0.50 3.34
VO 82.83 10.80 3.60 1.66 0.55 0.28 0.28

XRX 86.50 10.25 2.02 0.79 0.14 0.14 0.14
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Summary statistics for time-to-execution and time-to-censoring are reported in
Tables 3a and b. The buy orders are separated from the sell orders. Table 3a reports
the mean and standard deviation for time-to-first-fill and time-to-completion and
Table 3b reports the mean and standard deviation for time-to-censoring. The mean
time-to-execution varies considerably across stocks. The average time-to-first-fill and
time-to-completion of PG buy orders is 36.54 and 37.88 minutes, respectively. (Note
that more observations are used to calculate the first fill numbers since they include
partially filled orders; one should thus be cautious comparing the two times.) For PG
sell orders the average times are 10.51 and 10.75 minutes. The PG numbers are
representative, although there is some variability. The mean time-to-first-fill for the
entire sample of buy orders is 29.22 minutes and for sell orders it is 11.37 minutes.
The corresponding completion averages are 30.40 and 12.37 minutes.

The means and standard deviations for time until expiration or cancellation in
Table 3b are presented for the orders not included in the time-to-execution statistics.
The “no fills” columns consist of orders not executed at all and the “partial fills”
columns consist of orders that are partially but not completely filled. As would be
expected, the time-to-expiration or time-to-cancellation of the non-executed orders is
longer than the fill times. For example, for PG, the average time-to-expiration or
time-to-cancellation is 61.2 minutes for buy orders vs. an average time of 36.54
minutes to first fill. One consistent trend is that the average time for a buy limit order
to be executed (first fill or completion) is longer than that for a sell order. An
examination of the limit order dataset explains this result. As we shall see, on average
sell limit orders are submitted closer to the bid price than are buy orders to the ask
price. This order submission pattern is consistent with sellers being more concerned
about immediacy than buyers.

4. Hypothetical limit orders

Before turning to our econometric analysis of limit-order data in Sections 5 and 6,
we explore the prospect of studying limit-order execution times indirectly via
theoretical and empirical methods for constructing hypothetical limit-order execu-
tions. In our theoretical approach, we model stock prices as a geometric Brownian
motion and capture limit-order execution times as the first-passage time to the limit-
price “‘boundary”. The corresponding empirical approach, first proposed by Handa
and Schwartz (1996), is based on the same principle but uses transactions data to
determine when the limit-price boundary is hit. Although both methods have the
virtue of simplicity, a comparison with actual limit-order data reveals some severe
biases that make hypothetical limit-order executions unreliable indicators of actual
execution times.

4.1. A theoretical approach: first-passage times

From a purely statistical perspective, the execution time of a limit order can be
modeled as a “first-passage time” of the stock price process P(f), i.c., the first time
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Table 3

(a) Summary statistics for limit-order execution times for a pooled sample of 100 stocks (POOL) and for
16 individual stocks, for the sample period from August 1994 to August 1995. Columns labeled ““First fill”
report statistics for the time-to-first-fill (in minutes) for limit orders with at least one fill. Columns labeled
“Completions” report statistics for the time-to-completion (in minutes) for completed limit orders.

First fill Completions
Stock Buy orders Sell orders Buy orders Sell orders
Mean S.D. Mean S.D. Mean S.D. Mean S.D.
POOL 27.92 54.91 11.30 26.84 29.07 55.59 12.29 28.10
ABT 25.39 55.84 8.66 16.11 25.79 56.18 9.98 21.00
AXP 29.61 61.58 15.47 37.20 31.42 62.09 16.57 38.58
BUD 28.48 49.02 11.21 23.39 29.38 49.20 12.76 24.78
C 27.99 54.01 13.66 33.76 29.52 55.06 14.50 35.88
CL 31.84 56.42 9.25 17.81 32.84 56.97 10.81 21.17
DWD 9.71 16.29 13.79 27.24 11.27 18.78 15.71 30.64
GE 39.41 65.75 9.47 20.87 40.31 65.72 10.93 22.80
GM 32.98 56.17 12.01 27.56 34.58 57.29 12.69 28.26
IBM 23.41 50.48 6.25 17.09 24.27 51.07 6.51 17.35
JPM 27.11 54.86 7.51 18.56 28.52 55.67 8.99 22.39
MOB 34.50 64.32 7.25 17.23 34.79 63.97 7.92 17.90
PAC 12.25 30.62 11.69 24.65 14.33 31.28 12.22 25.58
PG 36.42 59.94 10.10 28.51 37.64 60.00 10.33 24.74
SLE 21.14 37.32 16.83 34.51 23.28 38.39 20.42 42.34
VO 40.88 73.97 14.28 32.21 42.84 75.00 16.85 36.24
XRX 51.90 67.23 6.43 13.94 53.10 67.37 7.23 15.72

(b) Summary statistics for limit-order time-to-censoring for a pooled sample of 100 stocks (POOL) and for
16 individual stocks, for the sample period from August 1994 to August 1995. Columns labeled “No fills”
report statistics for the time-to-censoring (in minutes) for limit orders without any fills. Columns labeled
“Partial fills” report statistics for the time-to-censoring (in minutes) for limit orders partially but not
completely filled.

No fills Partial fills
Stock Buy orders Sell orders Buy orders Sell orders
Mean S.D. Mean S.D. Mean S.D. Mean S.D.
POOL 46.92 72.31 34.15 53.94 41.14 55.65 49.16 65.71
ABT 44.50 71.33 3543 48.06 63.57 75.54 17.92 2493
AXP 32.34 52.71 47.92 66.82 28.19 22.25 36.63 37.00
BUD 62.04 83.26 39.93 63.61 57.65 86.04 29.38 26.21
C 60.29 80.34 41.13 60.46 33.27 60.83 24.33 21.23
CL 45.57 70.20 21.45 38.43 19.31 13.43 54.10 60.58
DWD 30.78 38.71 40.07 59.78 33.85 24.82 72.06 63.79
GE 31.55 62.27 22.13 36.27 39.46 54.88 49.64 79.32
GM 63.99 88.62 39.93 59.49 49.36 63.33 99.54 65.14
IBM 48.88 77.51 16.82 27.72 32.67 50.93 6.23 5.56
JPM 36.40 62.89 29.61 47.86 31.74 44.38 51.01 55.56
MOB 52.89 77.26 23.10 37.11 80.55 103.36 38.55 39.72

PAC 36.13 46.44 49.70 65.21 23.82 20.55 64.18 73.19
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Table 3 (continued)

No fills Partial fills
Stock Buy orders Sell orders Buy orders Sell orders
Mean S.D. Mean S.D. Mean S.D. Mean S.D.
PG 71.41 9391 37.76 65.70 42.52 70.44 48.90 100.54
SLE 41.92 70.81 36.66 50.77 47.55 38.69 43.04 10.43
VO 48.45 65.97 45.00 57.74 29.33 22.09 65.14 77.39
XRX 51.48 78.14 32.31 55.71 43.82 71.24 35.95 40.12

the transaction price reaches or crosses the limit price.* By placing structure on the
stochastic process for transaction prices, the statistical properties of execution times
can be derived explicitly.

In particular, let the dynamics of P(¢) be given by the leading continuous-time
specification for stock prices, i.e., geometric Brownian motion with drift:

dP(t) = aP(t) dt + ¢ P(H) AW (1), @.1)

where W(f) is a standard Brownian motion and o and ¢ are constants. Let zy denote
the current time and P, denote the current stock price. Let P, denote the lowest
price observed in the time interval [z, Zo + 7], so that ¢ is the length of the interval.

We assume that a buy limit order with limit price P; will be executed in the interval
[?0, 20 + 7] if and only if Py, is less than or equal to P;. Thus, the probability of a
limit-order execution is simply the probability that P, is less than or equal to P; in
[t0, 2o + 1], i.c., the probability that the first passage of P(f) to P; occurs within
[?0, 2o + 7]. By modifying a formula given in Harrison (1990, p. 14), this probability
can be derived exactly under Eq. (4.1) and is given by

log(Po/P)) + m)

o/t

. <i>zu/0 (p(log(Pl/Po)—‘r,lU)’ P/<Py. (42)
Py o/t

where u=o— %02, &() is the standard normal cumulative distribution
function (CDF), and the limit buy price P; is less than or equal to P, the
current price. A similar expression can be obtained for sell limit orders in the same
manner.

Now if we denote by T the limit-order execution time—a nonnegative real-valued
random variable—then (4.2) yields the CDF, F(¢), for T, i.c.,

Pr(Pmin < P|P(ty)) = Py) =1 — q&(

4Related financial applications of first-passage times include Gottlieb and Kalay (1985), Marsh and
Rosenfeld (1986), Ball (1988), Cho and Frees (1988), and Harris (1990).
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F(1) = Pr(T <1IP(to) = Py, P1y 1,0) = Pr(Pmin<P;) (limit buys),

F(t) = Pr(T <t P(ty) = Py, P1, it,0) = Pr(Ppmax = P;)  (limit sells).

The performance of the first-passage time (FPT) model of limit-order executions can
then be evaluated by comparing the theoretical CDF, F(¢), with the empirical
distribution of actual limit-order execution times from our limit-order dataset.

In particular, if actual limit-order execution times 7; are distributed according to
(4.2) with CDF F(-), then the random variables F(7;) must be uniformly distributed
on the unit interval [0, 1]. Therefore, by tabulating the frequency counts of F(T;)
within, say, each of the deciles of the uniform distribution on [0,1], i.e.,
[0,0.10),[0.10,0.20), ...,[0.90, 1], we can see how closely the empirical behavior of
limit-order execution times matches the theoretical predictions of the FPT model.

To do this, we require estimates of the parameters of F(¢), i.e., u and o.
These parameters can be ecasily estimated from historical data via maximum
likelihood:

=13 ézziiw (4.3)
K Nt P N & T ’ ’

where N is the number of observations in the sample, r; = log P; — log P;_; is the
continuously compounded stock return over a time interval of 7 units, and 7 is a fixed
sampling interval. Over the estimation period from August 1, 1994 to August 31,
1995, and for each of the 16 stocks in our individual-stock sample (see Table 1), we
divide each trading day into 13 half-hour trading intervals and calculate the
continuously compounded return r; = log P; — log P;_; over each interval j, j =
1, ...,13, where P; is the average of the bid and ask prices at the end of the jth
interval. Then for each stock we calculate the maximum likelihood estimators of u
and ¢2, scaled by 30 to yield per-minute parameter estimates.

By inserting /i and 67 into (4.2), we obtain an estimate of the first-passage time
CDF F(t) as a function of ¢, Py, and P;. Therefore, for each limit order in our
dataset that is executed, we insert its parameters 7;, Py, and P; into F to obtain a
random variable u; that contributes towards the frequency count of one of the ten
uniform deciles. We use only time-to-first-fill for the FPT model since this most
closely matches the notion of a first-passage time. This underscores an important
shortcoming of the FPT model: the inability to distinguish among time-to-first-fill,
time-to-completion, and time-to-censoring.

But what about the many limit orders that are not executed, i.e., those that are
canceled or corrected (see Table 3b)? Eliminating them from our frequency count
would clearly bias the empirical distribution towards shorter execution times
(because we are discarding limit orders that have “survived’), but since they are
unexecuted, we cannot evaluate the CDF for these censored observations.
Fortunately, a well-known technique for handling censored observations has been
developed by Kaplan and Meier (1958), now known as the Kaplan-Meier estimator,
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and we use this procedure to incorporate limit-order cancellation/correction times
into our decile counts.’

Table 4 reports the percentage frequency counts of each of the ten uniform deciles
for the limit orders of the 16 individual stocks in our sample. It is apparent from the
entries in the last column—the tenth decile—that the limit-order data fit the FPT
model very poorly. For example, 41.0% of the limit-order execution times of ABT
fall into the tenth decile of the FPT model; if the FPT model were correct, this value
should be close to 10%. For PG, the empirical value of the tenth decile is even higher
at 74.6%. Even the smallest entry in this column—26.4% for GE—is still over twice
the theoretical value of 10%, and all of the entries are statistically significantly
different from 10%.°

The fact that there is a far higher proportion of execution times in the tenth decile
than predicted by the FPT distribution (and a correspondingly lower proportion of
execution times in the lower deciles) implies that the FPT model vastly under-
estimates limit-order execution times. In fact, what the FPT model predicts as the
90th percentile of execution times is less than the empirical median execution time for
DWD, PAC, PG, and SLE limit orders.

Of course, the FPT model (4.2) is predicated on the geometric Brownian motion
specification (4.1) for stock prices, and if this specification is not appropriate, it can
lead to the kind of inconsistencies documented in Table 4. If, for example,
stock prices exhibit short-term mean reversion, e.g., an Ornstein-Uhlenbeck
process (see Lo and Wang, 1995), execution times will be longer than predicted
by geometric Brownian motion. Unfortunately, explicit expressions for the
distribution of first-passage times are unavailable for these more interesting
stochastic processes.

The FPT model suffers from several other important limitations. It allows no
explicit role for price discreteness, it does not accommodate the impact of limit-order
size, it cannot accommodate time priority, it makes no distinction between time-to-
first-fill, time-to-completion, and time-to-censoring, and it cannot easily incorporate
the effects of explanatory variables such as price volatility, spreads, and market
conditions. Therefore, although the FPT model is a natural theoretical framework in
which to model limit-order executions, it leaves much to be desired from a practical
point of view.

>The Kaplan-Meier estimator is a nonparametric method of redistributing the probability mass of
censored observations. Specifically, a censored observation indicates that the corresponding uncensored
observation must lie to its right, but how far to the right is unknown due to the censoring. The Kaplan-
Meier estimator redistributes the probability mass of the censored observation evenly over the portion of
the empirical distribution function to the right of the censored observation. In the case of no censoring, the
Kaplan-Meier estimator coincides with the conventional empirical distribution function, which assigns a
mass of 1/n to each observation. See Kaplan and Meier (1958) and Miller (1981) for further discussion.

SThe asymptotic z-statistics in Table 4 are calculated under the null hypothesis that the FPT model
correctly describes the data. In that case, each of the percentage frequency counts 7; is a consistent
estimator of the value 10%, and N x #; is a binomial random variable with mean N x 10% and variance
N x 10% x 90% where N is the sample size. Therefore, the z-statistic \/N(ﬁj — 10%)/+/10% x 90% is
asymptotically standard normal.
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Table 4

Goodness-of-fit diagnostics for the first-passage time (FPT) model for a sample of 16 individual stocks, for
the sample period from August 1994 to August 1995. For each stock, the percentage of execution times
that fall within each of the ten theoretical deciles of the FPT model are tabulated. If the FPT model is
correct, the expected percentage falling in each decile is 10%. Test statistics that are asymptotically
standard normal under the FPT model are given in parentheses.

Stock Decile
1 2 3 4 5 6 7 8 9 10
ABT 10.0 5.6 5.9 6.5 6.2 6.5 6.1 6.1 57 41.0
0.1) (=82 (=7.3) (=6.1) (=6.7) (=6.1) (=69 (=69 (=79 (26.9)
AXP 11.1 6.0 7.0 6.0 6.2 6.0 6.0 5.8 5.6 403
(1.3)  (=6.6) (=47 (=6.6) (—=6.1) (=6.5) (=6.6) (=7.0) (=74) (4.0
BUD 10.6 7.7 6.0 6.3 5.6 6.4 6.5 5.2 5.4 394
0.7 (-2.8) (=54 (-49) (-6.1) (-48) (-4.6) (=69 (-6.5 (19.2)
C 5.6 4.6 4.7 53 5.4 7.0 8.3 8.7 7.5 429
(-6.9) (-92) (-9.1) (=76) (=73) (-43) (-23) (-1.6) (=34 (4.0
CL 5.0 52 5.7 7.1 7.4 8.5 9.1 9.3 9.4 33.3
(-10.2)  (=9.6) (-8.2) (=500 (=45 (-23) (=14 (-L.1) (=09 (1.9
DWD 5.9 1.8 3.0 33 4.1 4.8 3.5 33 2.9 66.9
(=3.8) (—13.0)0 (-89 (-81) (=64 (-52) (=7.5 (-80) (-9.0) (259
GE 12.1 7.9 8.4 7.7 8.0 8.2 7.2 7.1 70 264
4.00 (=47 (=3.6) (=53) (-46) (-4.0) (=67 (=700 (=74 (3.1
GM 11.2 6.5 6.1 6.5 5.7 6.6 6.9 6.5 6.0 38.2
(1.6) (=6.1) (=7.0)0 (=6.2) (=8.1) (=6.0) (=52) (=6.0) (=7.2) (24.9)
IBM 8.6 5.8 5.9 6.5 6.8 6.9 6.8 6.2 6.4 402
(=2.6) (=9.6) (-9.3) (=75 (-6.8) (=64 (=67 (=83) (=79 (325
JPM 9.0 6.0 6.6 6.3 5.4 5.4 5.6 5.5 5.1 45.1
(=1.5)  (=7.3) (=59) (-6.6) (—88) (—88) (=82 (-84 (-9.6) (304
MOB 10.3 6.7 7.1 6.3 6.9 6.3 7.1 7.2 7.3 34.8
0.6) (—6.6) (=57) (=75 (-6.2) (=75 (-56) (-53) (-52) (259
PAC 7.0 2.3 2.2 2.1 3.2 3.2 2.6 2.9 2.5 71.9
(=2.9) (—12.7) (=12.8) (=134 (-9.3) (-9.3) (=115 (-10.3) (=119 (33.5)
PG 0.0 0.0 0.3 0.5 1.1 1.6 2.4 4.6 13.8 74.6
(—) (—)  (—82.1) (—66.6) (—42.2) (—33.3) (—25.0) (—12.8) (54) (734
SLE 7.6 6.4 5.5 54 5.6 5.5 4.9 4.7 5.0  49.1
(=29) (=47 (-64) (-6.6) (=6.1) (—=63) (=7.6) (=80) (=74 (250)
VO 9.2 7.7 6.0 8.5 5.4 6.7 6.7 6.0 6.3 36.9
(-0.8) (-22) (-44) (-14) (-53) (=35 (=34 (44 (-40) (146
XRX 7.2 6.1 6.7 7.6 9.1 9.3 10.3 10.3 11.1 22.3

(=57 (=8.7) (=7.0) (-48) (=1.6) (~-12)  (0.6) (04  (1.8) (15.6)

4.2. An empirical approach: transactions data

The empirical counterpart to the FPT model is based on first-passage times
determined by the historical time series of transactions data. For example, consider a
stock XYZ that trades at $50.875 at 10:37 a.m. on April 19, 1995, and suppose that a
buy limit order for XYZ is submitted at that time at a limit price of $50.500. The first
time after 10:37 a.m. that a transaction is observed at a price of $50.500 or lower, the
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limit order is considered executed, and the time between this transaction and 10:37
a.m. is considered the limit-order execution time. This approach has been used by
Angel (1994), Handa and Schwartz (1996), Battalio et al. (1999), and others.

The primary advantage of such hypothetical limit-order executions over the
FPT model is the fact that executions are determined by the historical time series
of transactions data, not by geometric Brownian motion. Therefore, if the stochas-
tic process for stock prices exhibits mean reversion or more complex forms of
temporal dependence and heterogeneity, this will be incorporated into the empirical
model.

To compare actual limit orders with hypothetical ones generated by the empirical
model, we apply the following procedure to the limit orders of the 16 individual
stocks from August 1994 to August 1995. For every buy limit order in our limit-
order database that has at least one fill, we create a matching hypothetical limit, i.e.,
the submission time and limit price are set to equal those of the actual limit order.
The time-to-execution of the hypothetical order is determined by the transaction and
quotation (TAQ) database distributed by the NYSE, and involves searching for the
first time after submission when the transaction price is less than or equal to the limit
buy price. The difference between this time and the submission time is recorded as
the time-to-execution for the hypothetical limit order. This time-to-execution will
obviously be a lower bound for the actual time-to-execution, hence we shall refer to
it as the lower-bound execution time. It will equal the actual execution time only if the
actual limit order is at the top of the queue or close enough to the top that it is filled
with the first incoming sell order. However, Handa and Schwartz (1996) treat this
lower bound as the execution time itself.

If we continue to track the stock price after its first-passage time, we can obtain an
upper bound to the execution time. The upper-bound execution time is either the first
time during the day when the transaction price falls below the limit buy price or the
last time of the day the market price is equal to the limit buy price. This last
condition will lead to a downward bias in the upper bound. However, given that it
applies less than one percent of the time, any bias will be negligible. If neither of
these two conditions is met, we treat the observation as missing.

The means and standard deviations of the lower-bound and upper-bound
execution times, as well as those of the actual limit-order execution times (time-to-
first-fill), are reported in Table 5. Histograms of the times are presented in Figs. 2a
and b. Together, they provide conclusive evidence that lower-bound and upper-
bound execution times are poor proxies for actual limit-order execution times. In
particular, the distance between bounds is large and the mean actual execution time
is not consistently close to either bound. For example, ABT’s lower-bound mean is
15.58 minutes and its upper-bound mean is 60.12 minutes, yet its actual mean is
25.39 minutes. The standard deviations also disagree: ABT’s lower-bound standard
deviation is 50.61 minutes and its upper-bound standard deviation is 83.37 minutes,
but the actual standard deviation is 55.84 minutes. Even for a very liquid stock such
as IBM, the differences between the moments of hypothetical and actual execution
times are substantial: its lower-bound mean is 16.80 minutes, its upper-bound mean
is 43.26 minutes, and its actual mean is 23.41 minutes.
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Table 5

Comparison of hypothetical time-to-first-fill (lower and upper bounds, in minutes) for limit orders
simulated using TAQ data with actual time-to-first-fill for limit orders for 16 stocks, for the sample period
from August 1994 to August 1995. The ““Actual minus TAQ” column reports the difference between the
actual time-to-first-fill and the TAQ lower bound. The z-statistics are asymptotically standard normal
under the null hypothesis that the expected difference is zero.

Stock TAQ hypothetical
Lower bound Upper bound Actual Actual minus TAQ
Mean S.D. Mean S.D. Mean S.D. Mean S.D. z

ABT 15.58 50.61 60.12 83.37 25.39 55.84 9.81 22.88 12.18
AXP 18.21 57.34 66.12 89.05 29.61 61.58 11.41 23.42 13.21
BUD 18.04 41.34 67.69 85.99 28.48 49.02 10.44 23.68 9.34
C 18.44 48.59 56.48 82.54 27.99 54.01 9.55 24.90 9.94
CL 25.88 51.51 66.71 77.51 31.84 56.42 5.96 19.31 8.44
DWD 5.05 10.49 44.33 61.65 9.71 16.29 4.66 12.35 6.52
GE 24.27 57.46 65.08 82.44 39.41 65.75 15.14 31.93 18.18
GM 19.97 49.47 55.56 74.76 32.98 56.17 13.02 26.95 14.95
IBM 16.80 44.57 43.26 72.17 23.41 50.48 6.61 20.37 12.52
JPM 20.27 49.31 55.41 77.27 27.11 54.86 6.84 22.35 9.67
MOB 28.49 61.53 61.38 83.18 34.50 64.32 6.01 21.94 9.40
PAC 1.82 4.82 57.09 81.41 12.25 30.62 10.43 28.64 7.83
PG 27.65 55.10 66.32 81.25 36.42 59.94 8.77 24.80 11.35
SLE 6.21 24.02 67.25 86.86 21.14 37.32 14.94 27.22 12.25
VO 32.64 70.98 89.32 100.99 40.88 73.97 8.24 23.29 5.93
XRX 44.47 66.47 70.81 80.69 51.90 67.23 7.43 13.46 8.84

Table 5 also reports more formal statistical inferences in the last three columns in
which the significance of the difference between the actual-time and lower-bound
means is evaluated. The differences are strongly significant for all 16 stocks as
shown by the asymptotically standard normal z-statistics—they range from 5.93
(VO) to 18.18 (GE). A similar test using differences between the upper-bound and
actual-time means also yields strong rejections, hence we omit them to conserve
space.

Figs. 2a and b plot the entire distributions of the lower-bound, upper-bound, and
actual execution times of four of the 16, and a comparison of these three
distributions reveals that they differ not only in one or two moments but over their
entire support. In fact, we have attempted to “shift” the distributions of the
hypothetical execution times by using “‘nth-passage’ times in place of first-passage
times (as n increases, the mean of the hypothetical execution time also increases).
That is, instead of determining the execution time as the first time the transaction
price reaches the limit price, let it be the nth time that the transaction price reaches
the limit price. This is tantamount to assuming a lower position in the queue, and
yields intermediate executions to the lower-bound (top of the queue) and upper-
bound (bottom of the queue) cases. But even selecting an n that minimizes the
difference between the mean hypothetical execution time and the mean actual time
does not yield similar distributions.
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Fig. 2. (a) Histograms of time-to-execution for limit orders for four stocks: ABT, AXP, BUD, and C.
“TAQ-UB” and “TAQ-LB” are the upper and lower bounds determined using transaction data, and
“Actual” is the actual time to execution.

These results underscore several important weaknesses of the empirical model, the
most obvious being the assumption that the hypothetical limit order is executed
when the limit price is first attained. Such an assumption implicitly presumes that
there are no other limit orders with the same limit price and higher time priority, i.e.,
the hypothetical limit order is assumed to be at the “top of the queue”. However,
even intermediate hypothetical execution times such as the nth-passage time and
lower-bound models cannot match the empirical distribution of actual limit-order
execution times. Moreover, as in the theoretical FPT model, the empirical model
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Fig. 2. (continued) (b) Histograms of time-to-execution for limit orders for four stocks: ABT, AXP, BUD,
and C. “TAQ-UB” and “TAQ-LB” are the upper and lower bounds determined using transaction data,
and “Actual” is the actual time to execution.

cannot easily handle varying limit-order sizes, explanatory variables, and the
distinction between time-to-first-fill, time-to-completion, and time-to-censoring.

In summary, hypothetical limit-order execution times are very poor substitutes for
actual limit-order data.

5. Survival analysis

To develop an econometric model of limit-order execution times, it is important
not only to distinguish between the various execution possibilities, but to incorporate
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all the characteristics of the order and capture the influence of market conditions.
We accomplish this through the application of a well-known statistical technique
called survival analysis.

Since a limit order can require multiple fills, we must distinguish between time-to-
first-fill and time-to-completion. Recognizing this distinction, we estimate two
separate models, one for first fills and one for completions. Moreover, since market
conditions can affect execution times differently for buy limit orders and sell limit
orders, we also estimate separate models for buy orders and sell orders. Thus, we
estimate four separate models in all.

For each model, we seek to estimate the following conditional probability,
essentially the CDF of the execution time 7} of the kth limit order:

Pr(Ti <t Xk, Pi, S Ir), (5.1)

where Xy is a vector of “‘explanatory” variables that captures market conditions and
other conditioning information at the time of submission for the kth limit order, and
Py, Sk, and I are the limit-order price, size (in shares), and side indicator (buy or
sell), respectively, of the kth limit order.

5.1. A brief review of survival analysis

Survival analysis is a statistical technique for analyzing positive-valued random
variables such as lifetimes, failure times, or, in our case, time-to-execution. It is
particularly useful for modeling the time-to-execution of limit orders because
censored observations (orders terminated prior to execution) can be easily and
correctly accommodated. In this section we present a brief review of survival
analysis; readers interested in a more detailed exposition should consult Cox and
Oakes (1984), Kalbfleisch and Prentice (1980), and Miller (1981).

Let T denote a nonnegative random variable that represents the lifetime of an
item, also known as the failure time—in our application, it is a limit-order execution
time. Let f(z) and F(¢) denote the probability density function (PDF) and CDF,
respectively, of T. The instantaneous failure rate or hazard rate of T at time f,
denoted by /(t), is defined as

h([) - f(—t)
1—F()
since /() dz is the probability that an item that has survived through time 7 will fail in
the interval [t,7+ df). Alternatively, we can define the survivor function, S(¢) =
1 — F(¢), which is the probability that an item’s lifetime will be at least z. Any one of
these four quantities—the PDF, the CDF, the hazard rate, and the survival
function—uniquely determines the other three, and all are the focus of survival
analysis.

There are two general approaches to estimating these functions: parametric and
nonparametric. Parametric survival analysis, described below, assumes a specific
parametric family for the distribution of failure times, such as the generalized
gamma distribution. Given the distributional assumption, maximum likelihood
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estimation can be performed. Nonparametric survival analysis involves estimating
the survival function without resorting to any parametric assumptions. In this paper,
we use the parametric approach. Its dominance over the nonparametric approach for
this application is shown in Lo et al. (1999).

The parametric approach to survival analysis begins with the specification of the
distribution of the random variable 7T, from which the likelihood function is
obtained. Let (7q, ...,1,) denote a sequence of n realizations of T, possibly with
censoring. We assume that we know which observations have been censored (limit-
order cancellations and corrections are reported) and let (64, ..., d,) denote censoring
indicators:

(5.2)

5 1 if observation i is censored,
i = . . ..
0 if observation i is not censored.

If the pairs (¢, ;) are statistically independent, then the likelihood function for the
data is given by

[ r@sa)' = =] r@ IT S, (5.3)
i=1 U C

where U and C denote the indexes of the uncensored and censored observations,
respectively. Given the likelihood function (5.3), the parameters of the distribution of
T can be estimated via maximum likelihood.

The assumption of independence of (¢;,d;) is a restrictive one for limit-order
execution times. Therefore, it is useful to note that the likelihood function (5.3) is
appropriate under more general assumptions for the dependence structure of the
data. In particular, as long as the censoring mechanism for each observation (¢;, ;) is
independent of the probability that the limit order is executed (conditional on a
vector of explanatory variables X;), the likelihood function of the sample is given by

ﬁ S XS X)' ™ = [ eXo I St Xo). (5.4)
P U c

Therefore, execution times #; can be dependent and related to X;, but at any time ¢
and for a given X, the censoring mechanism must be independent of the likelihood
that the limit order is executed. This type of censoring, known as independent
censoring, includes cases in which the censoring mechanism depends on previous
execution times, previous censoring times, or on the explanatory variables X;.
However, censoring as a result of prices moving away from the limit price would be a
violation of the underlying assumption since prices at the time of censoring are not
included in X;. Kalbfleisch and Prentice (1980, Chapter 3.2) provide a detailed
discussion of the role that explanatory variables play in survival analysis including
the specific assumptions underlying (5.4).

There are several widely used distributions for failure times, such as the
exponential, gamma, Weibull, lognormal, and inverse Gaussian (e.g., Cox and
Oakes, 1984, Table 2.1). We choose the generalized gamma distribution, which nests
a number of other distributions as special cases. Given this nesting, we can test the
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restrictions imposed on the generalized gamma specification by the simpler cases to
see if the other specifications are adequate.

The generalized gamma distribution has three parameters: two shape parameters
and p, and one scale parameter A. Its PDF is

Al (A0 exp(— (A1) K)
J() =
I'(x)
and the corresponding survival function is

) TG, (A)'x) /T () if p<0,
S0 = 1 — I'(k, (At)’x)/T () if p >0, (56)

(5.5)

where I'(a, b) denotes the incomplete gamma function and I'(a) denotes the complete
gamma function.

When x = 1, the generalized gamma distribution reduces to a Weibull distribu-
tion, which has PDF

f() = Apl(a0y" exp(=(20)"). (5.7)

When x=1 and p =1, the generalized gamma reduces to an exponential
distribution, and when x = 0, it reduces to a lognormal distribution.

5.2. Incorporating explanatory variables

As we have noted, the incorporation of explanatory variables into the likelihood
function (5.4) poses no difficulties, and allows execution times to be dependent as
long as restrictions are placed on the censoring mechanism. The dependence of
failure times on explanatory variables is addressed by assuming that the effect can be
captured by rescaling time. This formulation is commonly called the accelerated
failure time specification, and an exponential factor is often used to rescale time.’

Specifically, an accelerated failure time model has the form

T = eXPT,,

where T is the time-to-execution, X is a vector of explanatory variables, B is a
parameter vector, and T is called the baseline failure time and its distribution the
baseline distribution. The time-to-execution 7 is then a scaled transformation of the
baseline time T, where the explanatory variables and coefficients determine the

7 Another popular alternative is to assume that the hazard rate /(z) satisfies
h(t:X) = ho(e X",

where /y(¢) is called the baseline hazard rate. For obvious reasons, this is known as the proportional hazard
rate specification. In most applications, the functional form of /y(f) can be estimated nonparametrically,
hence the proportional hazard rate specification falls within the nonparametric framework. Lo et al. (1999)
report estimates of this proportional hazard rate specification and conclude that it does not fit the data as
well as the generalized gamma model with an accelerated failure time specification. For example, in
contrast to the Q—Q plots of Fig. 3 for the generalized gamma model (see below), the corresponding Q-Q
plots for the nonparametric specification in Lo et al. show significant deviations from a 45° line, implying
model misspecification.
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scaling. Because the baseline distribution is typically specified parametrically, the
accelerated failure time approach falls within the parametric framework. We next
investigate this specification empirically.

6. Empirical analysis

We now turn to the empirical analysis of our limit-order data using the generalized
gamma model described above. We first define the explanatory variables, and then
present the parameter estimates. To evaluate the specifications, we consider several
measures of goodness-of-fit. Finally, we discuss the economic significance of our
estimates.

6.1. Explanatory variables

The dependence of time-to-execution on the limit order’s characteristics and on
current market conditions is captured through the inclusion of explanatory variables.
These variables measure the limit order’s price relative to the most recent market
price and quotes, the size of the limit order, market depth, and other stock-specific
characteristics relating to volatility and liquidity. In particular, let P = market price
(most recent transaction), P; = limit price, P, = bid price, P, = offer price, P, =
mid-quote price, S, = offer size, S; = bid size, S; = limit-order size.

Then the following are the explanatory variables included in the buy limit-order
models (all variables are measured at the time of submission):

MQLP = P, — P,

1 if prior trade occurred above P,
BSID=<¢ 0 if prior trade occurred at Py,
—1 if prior trade occurred below P,

1+ P, — P)logsS, if P;<Py,
MKDI — (14 Py — Pplog S, 1 1 <Py
0 if P;> Py,
(P — P)MKDI if P>P,,
MKDI1X = .
if P< P,
logS,/(1+ P, — P if P,>=P,
MKD2 — J 108So/(1+ Do ’
log S, if P,<P,

log(Sl)(1+Pu_P/) if P0>P],
SZSD = < log(S; — S,) if P, =P; and S;>S,,
0 otherwise,
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STKV = # trades last half hour/# trades last one hour,

TURN = log(# trades last one hour),

LSO = log(previous month-end shares outstanding,in thousands),
LPR = log(previous month’s average daily closing price),

LVO = log(previous month’s average daily share volume).

The first eight variables accommodate the dynamic nature of the marketplace by
capturing current market conditions. These are updated on a real-time basis. In
contrast, the last three variables facilitate differences across stocks and are updated
monthly.

The variable MQLP measures the distance between the limit buy price and the
current quote midpoint. BSID is an indicator to measure whether the prior
transaction was buyer-initiated or seller-initiated (see, e.g., Hausman et al., 1992).
MKD1 is a measure of the minimum number of shares that have higher priority for
execution scaled by the distance between the limit buy price and the bid price. The
variable MKDI1X is an interactive term to capture nonlinearities between market
depth and the market price relative to the limit buy price. MKD?2 is a measure of the
liquidity available from the selling side of the market. The measure is constructed to
decline as the limit buy price decreases below the offer price. SZSD is a measure of
liquidity demanded by the limit order scaled by the distance between the limit buy
price and the offer price. STKV is a short-term measure capturing shifts in trading
activity; it proxies for high-frequency changes in volatility. TURN is a trading
activity measure providing an absolute measure of volatility. LSO is the logarithm of
the number of shares outstanding, LPR is the logarithm of share price, and LVO is
the logarithm of average daily volume. These are primitive variables included to
capture differences across stocks. They can be combined to form a number of
measures one might consider including. For example, the log of price plus the log of
shares outstanding is the log of market value, the log of volume minus the log of
shares outstanding is the log of turnover, and the log of price plus the log of volume
is approximately the log of dollar volume.

Four of the explanatory variables are redefined for the sell limit-order models. The
definitions are altered so that the underlying economic interpretation of these
variables is retained (although the direction of the effect may be reversed). The
redefined variables are listed below:

(1+P;— Pylogs, if Pi=P,,
if P;<P,,

MKDI1 =

(P — P)MKDI1 if P<P,,
MKDIX =

if P> Py,
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MKD? — ]Ong/(1+P[—P0) lf P,< P,
log Sy if P,> Py,
log(S))(1 + Py — Py) if P> Py,
SZSD = log(Sl — Sb) if P, =Py, and S;> S,
0 otherwise.

Summary statistics and correlation matrices for the explanatory variables are
available in Lo et al. (1999), but for completeness we provide a brief overview here.
For the 100 stocks in aggregate, there is considerable variation in the explanatory
variables as well as differences across buy and sell orders. For example, consider the
variable MQLP. On average, the limit buy price is almost one-quarter below the
quote midpoint. However, there is substantial variation: the standard deviation for
this variable is over one-quarter. In contrast, the mean of MQLP for sell orders is
—0.0373, indicating that the limit sell price is only slightly above the quote midpoint
on average. Also, there is much less variation for sell limit orders: this variable has a
standard deviation of only 0.0847. Similar observations hold for the other
explanatory variables.

The cross-correlations of the explanatory variables are generally relatively small,
with most being less than 30% in magnitude. For example, the highest correlation
between the variable STKV, which captures changing volatility, and the variables
related to the limit order is 8.6%. A similar observation holds for TURN, the other
volatility-related variable. Exceptions to the low correlation are market-depth
variables, which are more highly correlated with each other. For example, the
correlation between MKD1 and MKD?2 is 59.1% for sell limit orders. Most of the
results are similar across buy and sell limit orders, with the exception of the
correlation of BSID with the other market-depth variables, which is much higher in
magnitude for sells than for buys.

6.2. Parameter estimates

We now present estimation results using our limit-order data. The generalized
gamma distribution is used for the baseline distribution and the explanatory
variables are incorporated using the accelerated failure time approach.

Recall that we estimate four different models: time-to-first-fill for buy limit orders,
time-to-first-fill for sell limit orders, time-to-completion for buy limit orders, and
time-to-completion for sell limit orders. We estimate each model using the pooled
sample of 100 stocks, and we perform specification checks for both the pooled
sample as well as for the 16 individual stocks (see below). The specification check
using the individual stocks allows us to assess how well the models capture cross-
sectional differences in execution times.

As discussed earlier, the accelerated failure time specification assumes that the
effect of explanatory variables on the time-to-execution is to rescale the failure time
itself. The sign of the coefficient of an individual explanatory variable indicates the
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direction of the (partial) effect of that variable on the conditional probability of
executing the limit order and on the expected time-to-execution. With this
specification, the time-to-execution has a generalized gamma distribution and the
maximum likelihood approach is used for estimation.

Using the accelerated failure time specification and the generalized gamma for the
baseline distribution, we obtain f(z;X), S(z;X), and the likelihood function by
replacing A by exp(—X’'p) in (5.5), (5.6), and (5.3). The density function is given by

exp(—X'B)lpli* (exp(—X'B)1y" ' exp(—(exp(—X'B)1Y )
(i) '

f() = (6.8)
Under this specification the model has two parameters in addition to the parameter
vector B: k and p. In our estimation procedure, we reparametrize the model with
k= 1/v* and p = v/o, and estimate it by maximizing the likelihood in (5.3). This
reparametrization entails no loss of generality and is purely an artifact of the SAS
procedure LIFEREG.?

Given the parameter values, we can easily calculate implications of the model for
the time-to-execution. For example, the conditional mean of time-to-execution is

ST(Ov2+ovh
_ / 27\(a/v)
EITIX] = exp(X B0 = (6.9)
and the tth conditional quantile ¢, is given by
¢: = exp(X' B0 NG (v ) (6.10)

for v> 0 (for v<0, replace t by 1 — 7 on the right side of (6.10)), where G~'(z,v~2) is
the tth quantile of a gamma-distributed random variable with parameter v=2. We
shall make use of these formulas below.

Table 6 reports the estimated parameters, along with their corresponding standard
errors. The estimates of the parameters associated with the conditioning variables,
with only one exception, have the expected signs and generally are statistically
significant for all four of the models.

The coefficient on the variable of MQLP is positive with z-statistics of 197 and 190
for the buy models. This indicates that the larger the gap between the mid-quote
price and the limit buy price, the longer is the expected time-to-execution. The
positive sign on the variable of BSID for buy orders indicates that if the prior
transaction has been seller-initiated, a shorter time-to-execution is expected. The
positive sign of the estimated coefficient of MKDI1 is consistent with the expected
time-to-execution increasing with the order size and decreasing with the limit-order
price. The negative sign on the variable of MKD?2, on the other hand, indicates that
the greater the depth of the opposite side of the market and the closer the limit buy
price is to the offer, the shorter is the expected time-to-execution. The variable of
MKDI1X captures a nonlinear relation between time-to-execution and the market
price and its depth. The coefficient of SZSD is positive and statistically significant in
three of the four models. In the first-fill buy model the coefficient is negative, but not

8The LIFEREG procedure fits parametric models to failure time data.



A.W. Lo et al. | Journal of Financial Economics 65 (2002) 31-71 57

Table 6

Parameter estimates of the accelerated failure time specification of limit-order executions under the
generalized gamma distribution for limit orders of a pooled sample of 100 stocks from August 1994 to
August 1995. The variable “INTCP” denotes the intercept and the definitions of the remaining
explanatory variables are given in the text. z-statistics are asymptotically standard normal under the null
hypothesis that the corresponding coefficient is zero.

Variable Buy limit order model Sell limit order model
Estimate S.E. z Estimate S.E. z

Time-to-first-fill

INTCP 6.507 0.207 31.365 4.979 0.308 16.181
MQLP 8.989 0.046 197.180 —13.674 0.161 —85.034
BSID -5.613 0.076 —74.168 6.852 0.154 44.543
MKD1 0.641 0.005 127.608 0.476 0.008 59.106
MDDI1X —0.920 0.012 —79.882 0.903 0.058 15.464
MKD?2 —0.353 0.005 —66.409 —0.171 0.008 —22.617
SZSD —0.015 0.005 —3.250 0.091 0.007 13.308
STKV -0.414 0.052 —7.984 —0.563 0.080 —7.048
TURN —0.252 0.012 -21.217 —0.331 0.018 —18.757
LSO 0.278 0.014 19.969 0.187 0.021 8.939
LPR —0.529 0.019 —28.101 —0.272 0.028 -9.872
LVO —0.082 0.015 —5.563 —0.000 0.021 —0.022
SCALE 1.927 0.006 344.736 1.804 0.008 224.781
SHAPE —0.404 0.012 —33.781 —0.526 0.018 —29.574

Time-to-completion

INTCP 6.468 0.212 30.560 5.052 0.317 15.959
MQLP 8.744 0.046 189.979 —13.307 0.163 —81.713
BSID —5.517 0.077 —71.582 6.766 0.158 42.892
MKD1 0.620 0.005 121.052 0.457 0.008 55.189
MDDIX —0.895 0.012 —76.409 0.943 0.060 15.708
MKD2 —0.334 0.005 —61.798 —0.148 0.008 —19.122
SZSD 0.069 0.005 14.581 0.186 0.007 25974
STKV —0.394 0.053 —7.451 —0.568 0.082 —6.911
TURN —0.259 0.012 —21.409 —0.327 0.018 —18.045
LSO 0.281 0.014 19.787 0.181 0.022 8.427
LPR —0.498 0.019 —25.950 —0.229 0.028 —8.069
LVO —0.092 0.015 —6.139 —0.021 0.022 —0.940
SCALE 1.960 0.006 338.053 1.854 0.008 221.060
SHAPE —0.410 0.012 —32.965 —0.566 0.018 —30.901

large in magnitude. This is not surprising, since in the case of first fills, we would
expect the order size to be less important. The negative signs for the variables STKV
and TURN imply that a shorter time-to-execution is expected when market
conditions are more active and volatile.

The importance of the three variables included to capture cross-sectional
differences is not consistent. This is not of concern, however, since these primitive
variables are included to capture a number of composite cross-sectional effects
including market value, turnover, and dollar volume. As far as the primitive
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variables are concerned, the log of share price is the most important. Its coefficient is
consistently strongly negative. This is to be expected since higher priced stocks tend
to be more liquid. We go beyond the statistical significance of the estimates below,
when we consider the economic significance.

Simplifications of the generalized gamma to the Weibull or exponential
distribution are strongly rejected. In Table 6, the estimated shape parameter for
all models is more than two standard errors from one, the value consistent with the
simpler distributions. For example, with the first-fill buy model, the estimate for the
shape parameter is —0.404 with a standard error of 0.012. Thus, the estimate is more
than 117 standard errors from one. Given the strength of this result, we proceed
using the generalized gamma.

The survival function can be easily estimated given the parameters of the model.
For the generalized gamma, the estimate of the survival function is

S(t; X) =1 —I'(%,(Ay’®)/T(R) if the estimated p is positive, (6.11)

S(1; X) = I'(&, (AY’®)/T(R) if the estimated p is negative, (6.12)

where 4 = exp(—X’ﬁ) for a given X. We shall present diagnostics for each of these
specifications below. Overall, the estimates for the generalized gamma accelerated
failure time model are in line with our expectations.

6.3. Assessing goodness-of-fit

To check the goodness-of-fit of the versions of the generalized gamma model
estimated above, we use two diagnostic measures: a graphical diagnostic (Q—Q plot)
and a numerical diagnostic (decile statistics). Both suggest that the generalized
gamma model does a good job of capturing the empirical properties of the limit-
order data.

6.3.1. O-Q plots for pooled data

If S(#; X) is the true survival function of the random variable T, then S(T’; X), with
S as a function of the random variable 7, must be uniformly distributed on [0, 1].
This implies that —log S(7'; X) has an exponential distribution with density e’ for
t>0, hence we can regard {n; = —log S(#;;X;)} as a sequence of realizations (with
censoring) of an exponential random variable. Therefore, testing whether {r;} is
drawn from an exponential distribution represents one test of whether S(¢; X) is the
true survival function.

Since the survival function depends on unknown parameters, we cannot work with
it directly. Instead, we substitute the sample estimates for the unknown parameters
and use the estimated survival function for the analysis. If the model is correctly
specified, the estimated survival function S will be close to the true survival function,
and the sequence {7j; = —log S(t[, X;)} should have properties similar to {z;}. That is,
we can consider {7j;} as a (censored) sample from an exponential distribution,
provided that the model is correctly specified. The sequence {7} is called the
generalized residuals (see Cox and Oakes, 1984).
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To check this hypothesis, we use Q—Q plots of the negative logarithm of the
empirical survival function of the sample {7j;} against the negative logarithm of the
theoretical survival function (—loge™" = ). If the model is correctly specified, the
plot should be a straight line with a unit slope. Because the generalized residuals can
be censored (in particular, whenever the original survival time is censored), we use
the Kaplan-Meier estimator. For the gamma model, 7; = —log S(t:,X;) for S given in
(6.11).

Since the empirical survival function is subject to sampling variation, we do not
expect to see an exact straight line; however, if the model is correctly specified, the
plot should show points closely clustered about the 45° line. Q—Q plots that deviate
from the 45° line are an indication of model misspecification. Fig. 3 contains the Q-
Q plots for the generalized gamma model, and from the relatively straight Q—Q plots
for all four of the gamma models, it is apparent that the model is a good fit.

Although the Q—Q plots indicate that the generalized gamma model fits the pooled
data quite well, this says little about the performance of the model from stock to
stock. Q—Q plots of the time-to-first-fill generalized gamma models for buy and sell
limit orders, respectively, using limit-order data for the 16 individual stocks listed in
Table 1, show that although there is some variation in the goodness-of-fit of the
generalized gamma model across stocks, the pooled model also fits individual limit-
order data quite well. The only stock to exhibit a poor fit for both models is GE; for
practical purposes it might be worthwhile to estimate a separate model for this one
stock. Nevertheless, the generalized gamma model performs admirably stock by
stock (plots available upon request). Note that the generalized gamma models are
estimated with the pooled data, not with individual stock data. The Q—-Q plots are
constructed stock-by-stock by calculating generalized residuals for each stock using
the pooled model and stock-specific limit-order data.

6.3.2. The first-passage time model revisited

For comparison, Fig. 4 contains the estimated survival functions of the theoretical
first-passage model (see Section 4.1) for the first four of the 16 individual stocks
listed in Table 1—ABT, AXP, BUD, and C. These functions are evaluated at two
randomly selected limit orders for each of the four stocks, yielding the eight panels in
Fig. 4. For purposes of comparison, the estimated survival function of the
generalized gamma model (evaluated for the same two randomly selected limit
orders) for the time-to-first-fill of buy limit orders is also plotted. The results for the
other 12 stocks are similar (we omit them to conserve space). In contrast to the
generalized gamma model estimated on the entire pooled sample, the survival
function is estimated individually based on each of the four stocks’ estimated drift
and diffusion coefficients.

Fig. 4 shows that when the limit buy price is close to or at the market price, the
theoretical model underpredicts the time-to-execution. The FPT model predicts that
such an order is executed almost immediately and this manifests itself in Fig. 4 as a
horizontal line along the horizontal axis. In practice, such an order is typically not
executed immediately. For example, transactions occurring at the market price could
have been trades on the other side of the market, i.e., sells.
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Fig. 3. Q-Q goodness-of-fit plots for four versions of the limit order model using limit orders from August
1994 to August 1995 for a pooled sample of 100 stocks: the time-to-first-fill model for buy limit orders,
time-to-first-fill model for sell limit orders, the time-to-completion model for buy limit orders, and the
time-to-completion model for sell limit orders.

Moreover, because the generalized gamma model incorporates market informa-
tion into its model of survival probabilities, it yields more realistic execution times
than the FPT model. Interestingly, the two methods have similar predictions when
the limit buy price is one tick below the market. But the predictions from the two

>
Fig. 4. Estimated survival functions, gamma vs. first passage time (FPT). Estimated survival functions for
two models of limit-order execution times: the generalized gamma model with an accelerated failure time
specification, and the first-passage time model based on the assumption that prices follow a geometric
Brownian motion. Plots are presented for two randomly selected limit orders for each of four stocks (ABT,
AXP, BUD, and C).
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models diverge again as the limit price moves away from the market price. The
assumption of a geometric Brownian motion tends to imply smaller price changes
over short intervals than are observed in the data.

6.3.3. Assessing statistical significance

Although the Q-Q plots in Fig. 3 (as well as those for the individual stocks)
suggest that the generalized gamma model is well specified, graphical diagnostics are,
of course, meant to be indicative, not conclusive. To gauge the performance of the
generalized gamma model quantitatively, we follow the same procedure outlined in
Section 4.1 in constructing decile statistics. In particular, we tabulate the frequency
counts of the estimated CDF (evaluated at each of the failure times in our sample)
for each of the deciles of the uniform distribution on [0, 1], i.e., [0,0.10), ...,[0.90, 1].
If the specification is correct, these frequency counts should be close to their
theoretical value of 10%.

We report decile statistics for the 16 individual stocks for the buy and sell time-to-
first-fill models in Tables 7a and b, respectively. Despite the large sample sizes, there
are few decile statistics significantly different from 10% (asymptotic z-statistics are
reported in parentheses). For example, in Table 7a the decile statistics range from
9.1% in decile 10 to 12.0% in decile 2 for ABT, and although the decile 2 statistic is
statistically different from 10% (with a z-statistic of 2.6), the difference between 10%
and 12% is not very meaningful from an economic standpoint. Moreover, when
compared to the decile statistics of Table 4 for the FPT model, the statistics in Table
7 show that the generalized gamma model fits very well indeed. Results for the time-
to-completion models are similar but are omitted to conserve space.

6.4. Implications of the generalized gamma model

In this section, we go beyond the statistical fit of the generalized gamma limit-
order model and consider the implications of the parameter estimates for the
specification for limit-order execution times.

To see if there is much variation in the estimated survival function from one limit
order to another and with changes in X, we plot in Fig. 5 the estimated survival
function S(7) of the buy limit/time-to-completion model for three randomly selected
buy limit orders for each of four stocks: ABT, AXP, BUD, and C. Each plot also
contains the survival function evaluated at the average X (averaged across the X’s for
the three randomly chosen limit orders). From these plots, it is apparent that the
estimated survival functions vary considerably from one observation to the next,
implying that the distribution of execution times is quite sensitive to conditioning
information represented by the explanatory variables.

Figs. 6 and 7 illustrate the sensitivity of the estimated survival function to the limit
price and limit shares, respectively, and Table 8 documents the sensitivity of the
forecast median execution time to the limit price. In Fig. 6, the estimated survival
function is plotted for a single randomly selected limit order for each stock, and the
limit price varies from down two ticks to up two ticks, holding all other explanatory
variables fixed. Fig. 6 shows that, as expected, the higher the limit buy price, the
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Table 7

(a) Goodness-of-fit diagnostics for the accelerated failure time specification of the limit-buy time-to-first-
fill model under the generalized gamma distribution for a sample of 16 individual stocks, for the sample
period from August 1994 to August 1995. For each stock, the percentages of execution times that fall within
each of the ten theoretical deciles of the accelerated failure time specification are tabulated. If this speci-
fication is correct, the expected percentage falling in each decile is 10%. Test statistics which are asympto-
tically standard normal under this specification are given in parentheses

Stock Decile

1 2 3 4 5 6 7 8 9 10

ABT 11.5 12.0 10.4 10.0 10.0 9.2 8.9 9.5 9.6 9.1
(2.0) (2.6) 0.5) (0.0 0.00 (-1.2) (=1.7) (=0.7) (=0.7) (-1.3)

AXP 8.0 10.0 10.2 8.5 10.0 10.8 9.5 11.5 11.1 10.6
(—2.9) (0.1) 0.2) (=2.2) (-0.1) (1.0)  (-0.7) (1.8) (1.3) (0.3)

BUD 8.9 9.4 9.9 10.0 10.2 9.3 10.8 10.3 10.4 10.9
(-1.3) (=0.6) (—=0.2) (-0.0) 0.2) (-0.8) (0.8) 0.3) (0.4) 0.9)

C 7.1 9.1 11.8 9.1 114 10.8 10.2 11.1 9.5 10.0
(—4.1) (-12) (=20 (-1.2) (1.6) 0.9) (0.3) (1.2)  (-0.6) (0.0)

CL 9.0 9.4 8.8 9.5 11.3 10.0 10.0 10.9 10.0 11.0
(=1.5) (=0.9) (=19 (-0.7) (1.9) (=0.0) (-0.0) (1.3) (0.0) (1.4)

DWD 11.0 9.9 9.8 11.6 9.2 9.5 9.3 9.1 10.2 10.4
0.7y  (=0.1) (=0.1) (1.1)  (=0.6) (=0.4) (=0.5 (=0.7) 0.2) (0.3)

GE 10.6 11.2 10.2 11.3 9.9 10.3 9.4 9.5 9.0 8.8
(1.1) (2.3) 0.4) (2.5 (-0.2) 0.6) (-1.2) (=1.1) (=2.2) (=27

GM 9.2 9.7 10.5 10.3 11.2 10.2 104 9.1 9.2 10.3
(-1.3) (=04 0.7) 0.4) (1.6) (0.3) 0.5 (=14 (-1.2) (0.5)

IBM 7.3 10.7 11.8 10.7 10.3 10.8 9.7 9.3 9.3 10.0
(—5.4) (1.2) (2.9) (1.2) 0.4) (1.4 (-0.6) (-1.2) (-1.2) 0.1)

JPM 9.0 11.2 10.9 11.5 11.2 9.9 10.1 9.0 8.7 8.5
(—1.5) (1.7) (1.3) (2.0) (1.6) (-0.1) 0.1) (=15 (=2.00 (-2.3)

MOB 11.1 11.9 10.2 9.6 9.2 8.9 9.2 9.8 10.0 10.0
(1.8) (2.9) 0.4 (-0.6) (-14) (=200 (-13) (-0.3) 0.0) (—0.0)

PAC 10.8 12.1 10.2 10.9 8.5 10.9 9.6 9.2 8.8 9.0
0.7) (1.6) 0.2) 0.7y (-1.3) 0.7 (-04) (-0.7) (-1.1) (=0.9)

PG 11.1 9.0 9.6 10.1 9.9 9.5 10.3 9.6 10.2 10.8
(1.8) (—=1.7) (-0.8) 0.1) (-0.2) (-0.9) 0.5  (-0.8) 0.4) (1.3)

SLE 8.9 9.7 10.4 11.0 10.1 10.7 94 10.6 9.9 9.3
(-1.2) (-0.3) (0.5) (1.0) (0.1) 0.7)  (-0.6) 0.6) (—0.1) (-0.8)

VO 11.3 9.8 10.4 10.5 10.5 9.7 9.3 9.7 9.6 9.1
(1.1)  (-0.2) (0.4) (0.4) 04) (-02) (-0.6) (-0.2) (—-0.4) (-0.8)

XRX 9.4 9.4 8.9 10.1 9.4 10.3 9.9 10.3 10.8 11.6

1.0) (-1.0) (=21)  (02) (L) (05 (=03) (05 (1.3 (26
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Table 7 (continued)

(b) Goodness-of-fit diagnostics for the accelerated failure time specification of the limit-sell time-to-first-
fill model under the generalized gamma distribution for a sample of 16 individual stocks, for the sample
period from August 1994 to August 1995. For each stock, the percentages of execution times that fall within
each of the ten theoretical deciles of the accelerated failure time specification are tabulated. If this specifi-
cation is correct, the expected percentage falling in each decile is 10%. Test statistics which are asympto-
tically standard normal under this specification are given in parentheses

Stock Decile
1 2 3 4 5 6 7 8 9 10
ABT 9.9 10.6 13.1 11.7 10.2 9.6 10.3 9.3 7.2 8.0
(=0.1) 0.4) 2.2) (1.2) 0.2) (-0.3) 0.2) (-0.6) (-2.5 (=17
AXP 7.8 9.8 9.2 9.3 11.0 10.2 8.8 11.8 9.9 12.3
(-1.8) (=0.2) (=0.6) (—0.5 0.7) 0.1) (-0.9) (1.2)  (=0.1) (1.5)
BUD 12.7 9.7 6.4 9.7 11.1 10.2 10.9 9.0 10.4 9.9
(1.5  (-0.2) (=2.7) (-0.2) (0.6) 0.1) 0.6) (-0.6) 0.2) (=0.1)
C 8.8 7.6 12.4 9.4 11.4 8.4 11.6 8.4 10.4 11.6
(=0.9) (-2.0) (1.6) (—0.4) (1.0) (-1.2) (1.1) (-1.3) (0.3) (1.1)
CL 7.2 9.6 10.7 8.8 11.8 9.3 8.9 13.9 11.8 5.7
(-1.8) (=0.2) 0.4) (-0.7) 0.9 (-0.4) (-0.6) (1.8) 0.9) (=3.0)
DWD 11.0 12.7 9.6 7.1 8.7 7.2 11.0 11.4 9.7 11.6
(0.5) (1.3) (=0.2) (=19 (=0.7) (—1.8) (0.5) 0.7) (=0.2) (0.8)
GE 9.0 10.0 10.1 10.7 10.7 11.7 9.8 10.0 9.6 8.4
(-0.8) (-0.0) (0.0) (0.6) (0.6) (1.3)  (=0.1) 0.0) (-0.3) (-1.5)
GM 7.7 9.0 9.5 10.4 9.9 10.1 9.0 10.8 11.9 11.8
(=2.1) (=0.9) (=04 0.4) (=0.1) 0.1) (=09 (0.6) (1.5) (1.4)
IBM 9.4 10.0 11.1 11.6 7.9 10.6 10.6 10.6 8.8 9.4
(—0.6) (0.0) (1.0) (1.4  (=2.1) (0.6) (0.5) 0.5 (=1.1) (-0.6)
JPM 8.4 9.0 8.5 12.9 9.7 10.4 8.9 10.2 11.1 10.8
(=1.6) (=1.00 (-1.5 2.4 (-0.2) 0.4) (-1.0) 0.2) (1.0) 0.7)
MOB 12.0 12.2 10.6 9.6 9.9 9.5 10.6 7.4 9.5 8.7
(1.4) (1.5) 0.4) (-0.3) (=0.1) (-0.4) 0.5) (=2.2) (-04) (-1.1)
PAC 8.0 7.5 8.4 11.3 12.2 9.4 11.0 9.5 11.8 10.9
(=1.5) (=19 (=11 (0.8) (1.3) (=04 0.6) (-0.3) (1.1) (0.6)
PG 12.0 13.5 12.3 10.2 11.1 7.6 10.7 8.0 7.5 7.0
(1.3) (2.2) (1.4) 0.1) 0.7 (-1.8) 0.5) (=1.6) (=2.00 (=24
SLE 12.0 9.7 9.4 9.7 12.5 9.1 10.0 10.7 9.8 5.5
(1.0) (-0.2) (—0.3) (-0.2) (1.2)  (=0.5) (-0.0) 0.3) (=0.1) (=3.1)
VO 9.5 11.2 13.1 6.8 13.4 7.2 11.2 10.8 7.3 9.6
(=0.2) 0.4) (1.1)  (=1.5) 1.1y (-1.2) 0.4) 0.3) (-1.2) (-0.2)
XRX 12.0 12.1 9.2 6.9 11.7 12.3 7.3 10.5 7.4 10.5

0.8) (0.9 (=04) (=1.6) (0.7) (1.0) (=14  (02) (=14 (0.2

higher is the probability of execution over any given time interval. Moreover, the
plots show that the survival time is quite sensitive to the limit price, with survival-
time probabilities doubling or tripling with just a one- or two-tick change in the limit

>
Fig. 5. Sensitivity to market conditions. Estimated survival functions for the time-to-completion model for
buy limit orders. For each of four stocks (ABT, AXP, BUD, and C), four functions are plotted: the
estimated survival function evaluated at three randomly selected limit orders and at the averages of the
explanatory variables.
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Fig. 6. Sensitivity to limit price. Estimated survival functions for the time-to-completion model for buy
limit orders. For each of four stocks (ABT, AXP, BUD, and C), five functions are plotted: the estimated
survival function evaluated at a randomly selected limit order and at four different limit-order prices,
where the four prices are the actual limit-order price plus and minus one and two ticks, respectively.
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Fig. 7. Sensitivity to limit shares. Estimated survival functions for the time-to-completion model for buy
limit orders. For each of four stocks (ABT, AXP, BUD, and C), four functions are plotted: the estimated
survival function evaluated at a randomly selected limit order and at three different limit-order sizes,
where the three sizes are chosen to be two, five, and ten times the actual limit-order size, respectively.



Table 8

Sensitivity of forecasts of median time-to-completion to limit-order price, using one randomly selected buy limit order from the sample of completed limit
orders for each stock. Forecasts are obtained from the accelerated failure time specification of the limit-buy time-to-completion model using the generalized
gamma distribution for a pooled sample of 100 stocks for the sample period from August 1994 to August 1995. Forecasts are reported for the limit-order price
actually submitted (0 Ticks), for the limit-order price minus one and two ticks, and for the limit-order price plus one and two ticks. The completion time is the
actual time-to-completion for the limit order. The order size is in units of round lots (100 shares) and the market conditions used are those at the time the order
was submitted.

Stock Buy limit order Market conditions Conditional median execution time Completion
time
Price Shares Bid Offer Market —2 Ticks —1 Tick 0 Ticks +1 Tick +2 Ticks
ABT 31+3/8 18 31+1/4 31+3/8 31+1/4 100.557 23.144 0.128 0.066 0.013 0.167
AXP 30+1/2 2 30+1/2 30+5/8 30+ 1/2 347.512 111.846 30.434 0.351 0.071 18.150
BUD 50+ 1/4 5 50+ 1/4 50+3/4 50+1/2 3031.245 582.587 111.970  21.520 4.136 30.250
C 47 +7/8 1 47+ 5/8 48 +1/2 48 221.718 43.855 8.074 1.716 0.339 8.133
CL 55+7/8 8 55+3/4 56+1/8 55+7/8 141.439 26.897 5.115 0.973 0.176 11.133
DWD 47+1/8 9 47 47 +3/8 47 +1/8 119.146 22.595 4.285 0.813 0.147 2.983
GE 4943/8 4 49 +3/8 4941/2 49+1/2 224.268 62.424 15.586 0.602 0.121 13.967
GM 46 +3/8 2 46 +5/8 46 +7/8 46 +3/4 369.071 101.893 69.428 47.406 15.670 30.650
IBM 67 +3/4 50 67+5/8 68 +1/8 67+17/8 548.279 99.641 18.108 3.291 0.598 10.350
JPM 60 +5/8 2 60+ 3/4 60+7/8 60+7/8 903.572 242.474 60.485 14.002 0.913 7.867
MOB 80+1/8 19 79+3/4 80+ 1/4 80 21.162 3.861 0.701 0.118 0.024 0.183
PAC 28+3/8 2 28+3/8 28+1/2 284+1/2 256.649 77.549 20.356 0.624 0.126 22.217
PG 5841/8 40 58+1/8 58 +1/4 58+1/4 626.419 195.124 51.723 0.661 0.133 26.883
SLE 254+ 1/4 119 25+1/8 25+ 1/4 25+ 1/4 470.946 139.102 1.472 0.296 0.060 3.483
VO 29417/8 14 29+5/8 29+417/8 29+7/8 100.931 12.559 2.053 0.413 0.083 1.317

XRX 107+ 1/4 1 107+ 1/4 107+ 5/8 107 +1/2 750.138 181.122 41.588 5.480 1.057 60.467
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price. For example, the probability of an ABT buy limit order surviving 20 minutes
drops from about 95% to just over 20% when the limit price changes from one tick
below to one tick above the original limit price. This limit-price sensitivity is
common to most of the limit orders we have examined.

Table 8 contains related results, reporting the sensitivity of the forecast median
execution time to the limit price. This table is based on an actual limit order for each
stock. The median time is reported for the actual limit-order price and for prices
within two ticks in each direction. There can be substantial price sensitivity. For
example, the median time for a buy limit order for ABT submitted at the offer price
of 31% is 0.128 minutes. In contrast, if the buy order is submitted with a limit price of
30%, the median time is 100.557 minutes, dramatically longer. Similar sensitivities
exist across the other orders.

A similar experiment is conducted with limit shares in Fig. 7. the estimated
survival function is plotted for a single randomly selected limit order for each stock,
with the limit shares varying from its original value to ten times the original value,
holding all other explanatory variables fixed. In contrast to the limit-price graphs of
Fig. 6, Fig. 7 shows that the estimated survival functions are much less sensitive to
the limit-shares variable. This somewhat surprising finding is even more striking in
view of the fact that Fig. 7 is based on the time-to-completion model. Common
intuition suggests (and the empirical evidence confirms) that the time-to-first-fill
model is even less sensitive to the magnitude of limit shares. This may have
important practical implications, for it implies that the size of a limit order has
relatively little impact on its time-to-completion (holding other explanatory variables
constant). Therefore, adjusting the size of a limit order is a relatively inefficient
means of controlling execution times.

Alternatively, the insensitivity of execution times to limit size could be a symptom
of a selection bias in our sample: traders might avoid submitting very large limit
orders that they judge to be difficult to complete in a timely manner, choosing
instead to break up large blocks into smaller orders to be submitted sequentially.
Since we are conditioning on limit shares as a regressor, we have no simple way of
accounting for this type of censoring in our dataset. We hope to obtain more refined
data in the near future to be able to distinguish this possible explanation from others.

7. Conclusion

The behavior of limit-order execution times is critical to the price-discovery
process of most market microstructure models, and we have shown that it can be
quantified to a large extent by an econometric model based on survival analysis and
estimated with actual limit-order data using the ITG limit-order dataset. Survival
analysis is designed to model lifetime data and incorporates many of the subtleties
that characterize such data, such as skewness and censoring. We find that the
generalized gamma model with an accelerated failure time specification fits the data
remarkably well, and that execution times are quite sensitive to some explanatory
variables (e.g., limit price) but not to others (e.g., limit shares). Despite the fact that
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we pool the limit orders of 100 stocks to estimate an aggregate model of execution
times, our diagnostics show that such aggregate models fit reasonably well stock by
stock.

We also explore the properties of hypothetical limit-order executions, constructed
theoretically from the first-passage times of geometric Brownian motion and
empirically from transactions data. Although such models have a certain elegance
due to their parsimony, and can be estimated using transactions data alone, they
perform very poorly when confronted with actual limit-order data.

Our findings support the practical feasibility of sophisticated dynamic order-
submission strategies, strategies that trade off the price impact of market orders
against the opportunity costs inherent in limit orders. We hope to explore such
strategies in future research.
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