OPTIMAL CONTROL OF EXECUTION COSTS FOR PORTFOLIOS

Computing in Science & Engineering 1(2000), 40–53.

Dimitris Bertsimas, Paul Hummel, and Andrew W. Lo

The dramatic growth in institutionally managed assets, coupled with the advent of internet trading and electronic brokerage for retail investors, has led to a surge in the size and volume of trading. At the same time, competition in the asset management industry has increased to the point where fractions of a percent in performance can separate the top funds from those in the next tier. In this environment, portfolio managers have begun to explore active management of trading costs as a means of boosting returns. Controlling execution cost can be viewed as a stochastic dynamic optimization problem because trading takes time, stock prices exhibit random fluctuations, and execution prices depend on trade size, order flow, and market conditions. In this paper, we apply stochastic dynamic programming to derive trading strategies that minimize the expected cost of executing a portfolio of securities over a fixed period of time, i.e., we derive the optimal sequence of trades as a function of prices, quantitites, and other market conditions. To illustrate the practical relevance of our methods, we apply them to a hypothetical portfolio of 25 stocks by estimating their price-impact functions using historical trade data from 1996 and deriving the optimal execution strategies. We also perform several Monte Carlo simulation experiments to compare the performance of the optimal strategy to several alternatives.

List of Papers Homepage