PRICING AND HEDGING DERIVATIVE SECURITIES IN INCOMPLETE MARKET: AN EPSILON-ARBITRAGE APPROACH

Operations Research, 49(2001), 372–397.

Dimitris Bertsimas, Leonid Kogan, and Andrew W. Lo

Given a European derivative security with an arbitrary payoff function and a corresponding set of underlying securities on which the derivative security is based, we solve the dynamic replication problem: find a self-financing dynamic portfolio strategy—involving only the underlying securities—that most closely approximates the payoff function at maturity. By applying stochastic dynamic programming to the minimization of a mean-squared-error loss function under Markov state-dynamics, we derive recursive expressions for the optimal-replication strategy that are readily implemented in practice. The approximation error or "epsilon" of the optimal-replication strategy is also given recursively and may be used to quantify the "degree" of market incompleteness. To investigate the practical significance of these epsilon-arbitrage strategies, we consider several numerical examples including path-dependent options and options on assets with stochastic volatility and jumps.

List of Papers Homepage