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The Three P’s of Total Risk Management

Andrew W. Lo

Current risk-management practices are based on probabilities of
extreme dollar losses (e.g., measures like Value at Risk), but these
measures capture only part of the story. Any complete risk-
management system must address two other important factors:
prices and preferences. Together with probabilities, these comprise
the three P’s of Total Risk Management.  This article describes how
the three P’s interact to determine sensible risk profiles for
corporations and for individuals, guidelines for how much risk to
bear and how much to hedge.  By synthesizing existing research in
economics, psychology, and decision sciences, and through an
ambitious research agenda to extend this synthesis into other
disciplines, a complete and systematic approach to rational decision
making in an uncertain world is within reach.

Although rational decision making in the face of uncertainty is by no means a

new aspect of the human condition,1 recent events have helped to renew and

deepen our interest in risk management. Two forces in particular have shaped

this trend: advances in financial technology (models for pricing derivative

instruments and computationally efficient means for implementing them) and

an ever-increasing demand for new and exotic financial-engineering products

(perhaps because of increased market volatility, or simply because of the

growing complexity of the global financial system). These forces, coupled with

such recent calamities as those of Orange County, Gibson Greetings,

Metallgesellschaft, Procter & Gamble, and Barings, provide more than

sufficient motivation for a thriving risk-management industry.
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Current risk-management practices focus almost exclusively on the

statistical aspects of risk. For example, one of the most popular risk-

management tools, Value at Risk (VAR), is described in J.P. Morgan’s (1995)

RiskMetrics system documentation in the following way:

Value at Risk is an estimate, with a predefined confidence interval,
of how much one can lose from holding a position over a set
horizon. Potential horizons may be one day for typical trading
activities or a month or longer for portfolio management. The
methods described in our documentation use historical returns to
forecast volatilities and correlations that are then used to estimate
the market risk. These statistics can be applied across a set of
asset classes covering products used by financial institutions,
corporations, and institutional investors. [p. 2]

While measures like VAR play an important role in quantifying risk exposure,

they comprise only one piece of the risk-management puzzle: probabilities.

Probabilities are an indispensable input into the risk-management process, but

they do not determine how much risk a corporation should bear and how much

risk should be hedged.  In this article, I argue that any complete risk-

management protocol—what might be called “Total Risk Management”2, to

borrow a phrase from the quality control literature—must include two other

pieces: prices and preferences. Together with probabilities, these three P’s form

the basis of a systematic approach to rational decision-making in an uncertain

world. All three P’s are central to Total Risk Management: prices, in considering

how much one must pay for hedging various risks; probabilities, for assessing

                                                                                                                          
1 See, for example, Bernstein’s (1996) lively historical account of risk.
2 I thank Zvi Bodie for suggesting this term.
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the likelihood of those risks; and preferences, for deciding how much risk to

bear and how much to hedge.

Despite the trendy catchphrase, Total Risk Management has deep

intellectual roots in economics, statistics, and mathematics and is based on

research that can be traced back to the very foundations of probability theory

(Ramsey 1926), statistical inference (Savage 1954), and game theory (von

Neumann and Morganstern 1944). Of course, the term “risk management”

never appears in that literature, but the issues that these early pioneers

grappled with are precisely those that concern us today. Indeed, I hope to show

that there is much to be gained by synthesizing and extending the various

disparate strands of research that have grown out of these seminal works;

current risk-management practices have drawn on only one such strand so far.

The Three P’s

To understand the interactions between prices, probabilities, and preferences,

consider the most fundamental principle of economics, namely, the law of

supply and demand. This law states that the market price of any commodity

and the quantity traded are determined by the intersection of supply and

demand curves, where the demand curve represents the schedule of quantities

desired by consumers at various prices and the supply curve represents the

schedule of quantities producers are willing to supply at various prices. The

intersection of these two curves is the price–quantity pair that satisfies both
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consumers and producers; any other price–quantity combination may serve

one group’s interests but not the other’s.

Even in such an elementary description of a market, the three P’s are

present. The demand curve is the aggregation of individual consumers’

demands, each derived from optimizing an individual’s preferences, subject to a

budget constraint that depends on prices and other factors (e.g., income,

savings requirements, and borrowing costs). Similarly, the supply curve is the

aggregation of individual producers’ outputs, each derived from optimizing an

entrepreneur’s production function, subject to a resource constraint that also

depends on prices and other factors (e.g., costs of materials, wages, and trade

credit). And probabilities affect both consumers and producers as they

formulate their consumption and production plans over time and in the face of

uncertainty—uncertain income, uncertain costs, and uncertain business

conditions.

Formal models of asset prices and financial markets, such as those of

Merton (1973b), Lucas (1978), Breeden (1979), and Cox, Ingersoll, and Ross

(1985), show precisely how the three P’s simultaneously determine an

“equilibrium” in which demand equals supply across all markets in an

uncertain world where individuals and corporations act rationally to optimize

their own welfare. Typically, these models imply that a security’s price is equal

to the present value of all future cashflows to which the security’s owner is

entitled.  Two aspects make this calculation unusually challenging: future

cashflows are uncertain, and so are discount rates.   Although pricing
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equations that account for both aspects are often daunting,3 their intuition is

straightforward and follows from the well-known dividend-discount formula:

Today’s price must equal the expected sum of all future dividends multiplied by

discount factors that act as “exchange rates” between dollars today and dollars

at future dates. If prices do not satisfy this condition, then there must be a

misallocation of resources between today and some future date. This situation

would be tantamount to two commodities selling for different prices in two

countries after exchange rates have been taken into account.

What determines the exchange rate? For individuals, it is influenced by

their preferences (the ratio of marginal utilities of consumption, to be precise),

and it is determined in an equilibrium by the aggregation of all the preferences

of individuals in the market through the equalization of supply and demand.

These models show that equilibrium is a powerful concept which

provides a kind of adding-up constraint for the three P’s: In an equilibrium,

any two P’s automatically determine the third. For example, given an

equilibrium in which preferences and probabilities are specified, prices are

determined exactly (this is the central focus of the entire asset-pricing

literature in economics). Alternatively, given an equilibrium in which prices and

                                      
3 For example, the price Pt of any financial security that pays a stream of dividends Dt+1, Dt+2, . .
., must satisfy the following relation:
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probabilities are specified, preferences can be inferred exactly (see, for example,

Bick 1990, He and Leland 1993, Aït-Sahalia and Lo 1998b, and Jackwerth

1998). And given prices and preferences, probabilities can be extracted (see, for

example, Rubinstein 1994 and Jackwerth and Rubinstein 1996).

This functional relationship suggests that the three P’s are inextricably

linked, and even though current risk-management practices tend to focus on

only one or two of them, all three P’s are always present and their interactions

must be considered carefully.  In the sections to follow, I consider each of the

three P’s in turn and describe how each is related to the other two.  Although

all three P’s are crucial for any Total Risk Management system, I will argue that

preferences may be the most fundamental, the least understood, and,

therefore, the most pressing challenge for current risk management research.

Prices

One of the great successes of modern economics is the subfield known as asset

pricing,4 and within asset pricing, surely the crowning achievement in the past

half-century is the development of precise mathematical models for pricing and

hedging derivative securities. The speed with which the ideas of Black and

Scholes (1973) and Merton (1973) were embraced, both in academia and in

                                      
4 My colleague Jiang Wang has observed that the term “asset pricing” implies an inordinate
focus on prices, often to the exclusion of other interesting and, in some cases, equally
important economic phenomena (e.g., quantities). Perhaps this is another manifestation of this
article’s theme: Prices alone cannot provide a complete understanding of the nature of financial
risks and rewards; other aspects of market interactions—probabilities and preferences—must
be considered. Wang has suggested a simple but compelling alternative to asset pricing: “asset
markets” (as in “asset-market models” instead of “asset-pricing models”).
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industry, is unprecedented among the social sciences and this, no doubt, has

contributed to the broad success of risk-management policies and

technologies.

The asset-pricing literature is so deep and rich that there is little need to

expound on the importance of prices for risk management. Nevertheless, even

for this most studied of the three P’s, some subtle links to the other two P’s are

worth explicating.

Perhaps the most important insight of the Black–Scholes–Merton

framework is that under certain conditions, the frequent trading of a small

number of long-lived securities can create new investment opportunities that

would otherwise be unavailable to investors. These conditions—now known

collectively as “dynamic spanning” or “dynamic market completeness”—and the

asset-pricing models on which they are based have generated a rich literature,

and an even richer industry, in which complex financial securities are

synthetically replicated by sophisticated trading strategies involving

considerably simpler instruments.5 This approach lies at the heart of the

celebrated Black–Scholes–Merton option-pricing formula and, more generally,

the no-arbitrage method of pricing and hedging other derivative securities.

The success of derivative-pricing models is central to risk management

for at least two reasons. The first reason is obvious: Complex derivative

securities, on which most risk-management practices are built, can be priced

                                      
5 In addition to Merton’s seminal paper, several other important contributions to the finance
literature are responsible for our current understanding of dynamic spanning. In particular,
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accurately and hedged effectively using the Black–Scholes–Merton methodology

and its extensions.

The second reason is considerably more subtle and can be best

understood through a paradox. The accuracy of derivative-pricing models

seems to be at odds with the framework discussed in the beginning of this

section in which the three P’s were said to be inseparable. In particular, in

typical derivative-pricing models (those based on continuous-time stochastic

processes and the usual partial differential equations), prices and probabilities

are featured prominently, but no mention is made of investors’ preferences.

Indeed, such models are often trumpeted as being “preference free”, being

based solely on arbitrage arguments and not on equilibrium or supply-and-

demand considerations. In fact, the risk preferences of individual investors

never enter into the Black–Scholes formula—as long as the Black–Scholes

assumptions hold (and these assumptions do not restrict preferences in any

way, or so it seems), a retired widow living on social security places the same

value on a call option as a 25-year-old unmarried bond trader! If derivatives are

priced solely by arbitrage, where is the third P in derivative-pricing models?

The answer to this paradox lies in the fact that preferences do enter the

Black–Scholes formula but in a subtle and indirect way. In particular, the

assumption that the underlying asset’s price dynamics are governed by a

particular stochastic process—typically, geometric Brownian motion—restricts

                                                                                                                          
see Cox and Ross (1976), Harrison and Kreps (1979), Huang (1985a, 1985b, 1987), and Duffie
and Huang (1985).
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the type of preferences that are possible (see, for example, Bick 1990 and He

and Leland 1993).

Moreover, the parameters of the stochastic process (e.g., the drift and

diffusion coefficients in geometric Brownian motion) are determined in

equilibrium, not by arbitrage. After all, the drift of the underlying asset’s price

process is the asset’s instantaneous expected return, and one of the basic

tenets of modern finance is that expected returns and risk are jointly

determined by supply and demand (see, in particular, Sharpe 1964 and Merton

1973b). This intuition applies even though the drift does not appear in

derivative-pricing formulas because the drift and diffusion coefficients are

linked (see, for example, Lo and Wang 1995), and it is telling that the original

Black and Scholes derivation used equilibrium arguments to arrive at their

celebrated partial differential equation.6 In more complex derivative-pricing

models such as those in which perfect replication is not possible—the case of

stochastic volatility, for example—equilibrium arguments must be used

explicitly to derive the pricing equation.

Therefore, although derivative-pricing formulas may seem preference

free, they do contain implicit assumptions about preferences and probabilities.

The three P’s are inextricably linked even in arbitrage-based pricing models.

                                      
6 Although Merton (1973a) rederived the Black–Scholes formula using arbitrage arguments
alone, he was able to do so only because of his use of continuous-time stochastic processes.
The links between continuous-time models, arbitrage, and equilibrium are complex and have
given rise to a large and still-growing literature now known as “mathematical finance”. See
Harrison and Kreps, Duffie and Huang, and Merton (1992) for further discussion.
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Probabilities

Through the centuries, researchers have proposed a number of approaches to

modeling and decision making in an uncertain world—astrology, numerology,

and reading animal entrails, to name just a few—but none have enjoyed as

much success as the mathematical theory of probability. The concept of

randomness can be traced back to the Greeks, but formal and numerical

notions of probability did not arise until the 17th century in the context of

games of chance.7 Since then, probability theory has developed into a rich and

deep discipline that has become central to virtually every scientific discipline,

including financial economics and risk management.

As with prices, probabilities are fairly well understood by risk-

management specialists. We are familiar with the algebra of probabilities—the

fact that probabilities are nonnegative and sum to 1, that the probability of two

independent events occurring simultaneously is the product of the two events’

probabilities, and so on. We understand the mathematics of probability

distributions, the critical role that correlation plays in risk management, and

the sensitivity of VAR and other risk-management tools to “tail” probabilities

(the probabilities associated with rare but potentially ruinous events).

But there is one important aspect of probabilities that has been largely

ignored by the risk-management literature: the distinction between “objective”

and “subjective” probabilities, usually attributed to the 18th century

                                      
7 See, for example, Hald (1990, Chapter 3). Also, Bernstein (1996) and Sherden (1998) provide
very entertaining and informative accounts of the checkered history of probability, risk, and
forecasting.
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mathematician James Bernoulli. Objective probabilities—also called

“statistical” or “aleatory” probabilities—are based on the notion of relative

frequencies in repeated experiments (e.g., coin tosses, rolls of the dice). Such

probabilities have clear empirical origins—the probability of rolling a six is 1/6,

and this fact can be verified by rolling a fair die many times and computing the

ratio of sixes to the total number of trials. The probability 1/6 depends on the

nature of the experiment, not on the characteristics of the experimenter, hence

the term “objective” probabilities.

On the other hand, subjective probabilities—also called “personal” or

“epistemic” probabilities—measure “degrees of belief,” which need not be based

on any statistical phenomena such as repeated coin tosses. For example, the

event “There is intelligent life on other planets” cannot be given a relative

frequency interpretation—we cannot conduct repeated trials of this event.

Nevertheless, we can easily imagine an individual possessing a certain level of

conviction about the likelihood of such an event. This level of conviction can be

interpreted as a kind of probability, a subjective one that can differ from one

individual to another. Subjective probability is a powerful concept that extends

the reach of probability theory to a much broader set of applications, many of

which are central to risk management. In particular, one of the most critical

aspects of any risk-management protocol is the ability to assess the likelihood

of and prepare for events that may have never occurred in the past (e.g., the

unprecedented global flight to quality by financial market participants during
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August 1998, and the surprising degree of correlation between yield spreads,

exchange rates, and commodity and stock prices that it created).

The link between subjective probabilities and risk management becomes

even stronger when considered in light of the foundations on which subjective

probabilities are built. The three main architects of this theory—Ramsey

(1926), De Finetti (1937), and Savage (1954)—argued that, despite the

individualistic nature of subjective probabilities, they must still satisfy the

same mathematical laws as objective probabilities, otherwise arbitrage

opportunities will arise.8 For example, consider the basic axiom of objective

probability that the probability of any event H and the probability of its

complement “not H,” denoted by HC, must sum to one—that is,

Prob(H) + Prob(HC) = 1 . (1)

This follows from the fact that H and HC are mutually exclusive and exhaustive;

in other words, only one or the other will occur, and together, these two events

cover all possible outcomes. Equation (1) can be readily verified for objective

probabilities by applying simple arithmetic to relative frequencies, but can it be

“proved” for subjective probabilities as well?  In other words, must individuals’

degrees of belief also satisfy this basic property of objective probabilities?

                                      
8 This surely must be one of the earliest examples of the use of a financial principle—the
absence of arbitrage—to support a mathematical proposition!
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The answer—conjectured by Ramsey (1926) and proved rigorously by De

Finetti (1937) and Savage (1954)—is yes, if arbitrage opportunities or “free

lunches” are ruled out.

To see why, consider an individual who attaches a probability of 50

percent to an event H and 75 percent to its complement HC, clearly a violation

of Equation (1). Such subjective probabilities imply that such an individual

would be willing to take a bet at even odds that H occurs and, at the same

time, would also be willing to take a bet at 3:1 odds that HC occurs. Someone

taking the other side of these two bets—placing $50 on the first bet and $25 on

the second—would have a total stake of $75 but be assured of receiving $100

regardless of the outcome, yielding a riskless profit of $25—an arbitrage! De

Finetti (1937) proved that the only set of odds for which such an arbitrage

cannot be constructed is one in which Equation (1) and the other basic axioms

of probability theory are satisfied. Therefore, despite the fact that subjective

probabilities measure only degrees of belief and are not based on relative

frequencies, they behave like objective probabilities in every respect. This

principle is often called the “Dutch book theorem,” an allusion to a kind of

arbitrage transaction known as a “Dutch book.”

The relationship between subjective probabilities and risk management

is clear: Probability assessments, particularly those of rare events or events

that have never occurred, must be internally consistent; otherwise, prices

derived from such probabilities may be inconsistent, leading to arbitrage

opportunities for others. More importantly, decisions based on inconsistent
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probabilities can lead to significant financial losses and unintended risk

exposures.

The Dutch book theorem also shows that prices and probabilities are

related in a profound way and that neither can be fully understood in isolation

and without reference to the other. But this leaves open the question of how

subjective probabilities are determined.  The answer—proposed by Savage

(1954)—is the third and most important of the three P’s of risk management:

preferences.

Preferences

Models of individual preferences have their historical roots in the school of

social philosophy known as Utilitarianism, a system of ethics proposed in the

late 18th century by Jeremy Bentham and James Mill (father of the political

economist John Stuart Mill) in which the goal of all actions is to maximize

general utility or happiness. Although moral philosophers and political

theorists have debated the merits of Utilitarianism for more than two centuries,

economists were quick to adopt the principle that individuals maximize their

utility subject to a budget constraint, with utility defined as any quantitative

index of happiness satisfying certain basic properties.

The importance of utility to classical economists sprang from their

attempt to define the value of a commodity and to distinguish value from the

commodity’s market price. In making this distinction, Adam Smith (1776)

proposed his now-famous comparison of water and diamonds:
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The word value, it is to be observed, has two different meanings,
and sometimes expresses the utility of some particular object, and
sometimes the power of purchasing other goods which the
possession of that object conveys. The one may be called “value in
use”; the other, “value in exchange.” The things which have the
greatest value in use have frequently little or no value in exchange;
and, on the contrary, those which have the greatest value in
exchange have frequently little or no value in use. Nothing is more
useful than water; but it will purchase scarce any thing; scarce
any thing can be had in exchange for it. A diamond, on the
contrary, has scarce any value in use; but a very great quantity of
other goods may frequently be had in exchange for it. [p. 147]

By distinguishing “value in exchange” (price) from “value in use” (utility), Smith

laid the foundation for the law of supply and demand and the notion of market

equilibrium, perhaps two most important contributions of classical economics.

Moreover, in his Foundations of Economic Analysis, which is largely responsible

for much of what is now standard microeconomics, Samuelson (1947) wrote:9

It so happens that in a wide number of economic problems it is
admissible and even mandatory to regard our equilibrium
equations as maximizing (minimizing) conditions. A large part of
entrepreneurial behavior is directed towards maximization of
profits with certain implications for minimization of expenditure,
etc. Moreover, it is possible to derive operationally meaningful
restrictive hypotheses on consumers’ demand functions from the
assumption that consumers behave so as to maximize an ordinal
preference scale of quantities of consumption goods and services.
(Of course, this does not imply that they behave rationally in any
normative sense.) [pp. 21–22]

                                      
9 See also Samuelson (1983) which is an expanded version of his tour de force that includes an
excellent discussion in Appendix C of more recent developments (as of 1983) in expected utility
theory, mean–variance analysis, and general portfolio theory. And for a fascinating account of
the origins of Foundations, see Samuelson (1998).
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The notion of utility can also be extended to cover uncertain outcomes,

and the first attempt to do so—in 1738 by Daniel Bernoulli—predated

Utilitarianism by almost half a century. Bernoulli’s motivation had little to do

with utility per se; he was attempting to resolve the St. Petersburg paradox. In

this paradox, an individual is offered the following gamble: A fair coin is tossed

until it comes up heads, at which point the individual is paid a prize of $2k,

where k is the number of times the coin is tossed. How much should an

individual pay for such a gamble? Because the probability of tossing heads for

the first time on the kth flip is 1/2k, the expected value of this gamble is

infinite; yet individuals are typically only willing to pay between $2 and $4 to

play, hence the paradox. Bernoulli (1738) resolved this paradox by asserting

that gamblers do not focus on the expected gain of a wager but, rather, on the

expected logarithm of the gain, in which case the “value in use” of the St.

Petersburg gamble is

,42log2)2log(2
1

≈=∑
∞

=

− k

k

k

a value more consonant with casual empirical observation than the expected

value of the gamble.

Although Bernoulli did not present his resolution of the St. Petersburg

paradox in terms of utility, the essence of his proposal is to replace expected

value with expected utility as the gambler’s objective, where utility is defined to
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be the logarithm of the gain. This was a remarkably prescient approach to

decision making under uncertainty, for it anticipated von Neumann and

Morganstern’s (1944) and Savage’s (1954) axiomatic derivation of expected

utility by more than two centuries. In the framework proposed by von

Neumann and Morganstern and Savage, any individual’s preferences can be

represented numerically by a utility function U(X) if those preferences satisfy

certain axioms.10 In other words, under the axioms of expected utility, a utility

function U(X) can be constructed in such a way that the individual’s choices

among various alternatives will coincide with those choices that maximize the

individual’s expected utility, E[U(X)].

Formally, given any two gambles with random payoffs X1 and X2, an

individual satisfying the axioms of expected utility will prefer X1 to X2 if and

only if E[U(X1)] is greater than E[U(X2)] for some function U(∙) that is unique to

each individual. Under these axioms, U(∙) is a complete representation of an

individual’s preferences—all his decisions can be fully delegated to another

party under the simple dictum “maximize my expected utility E[U(X)].” This

powerful representation lies at the heart of virtually every modern approach to

pricing financial assets, including: modern portfolio theory, mean–variance

                                      
10 Briefly, if “!” denotes a preference relationship (that is, A!B means A is preferred or
indifferent to B), then the following axioms are sufficient for expected utility theory to hold:

Completeness. For any two gambles A and B, either A!B, or B!A, or both.
Transitivity. If A!B and B!C, then A!C.
Continuity. If A!B!C, then there exists some λ ∈ [0,1] such that B is indifferent to λA + (1–
λ)C.
Independence. For any two gambles A and B, A!B if and only if λA + (1–λ)C ! λB + (1–λ)C
for all C and λ ∈ (0,1].



18

optimization, the Capital Asset Pricing Model, the Intertemporal Capital Asset

Pricing Model, and the Cox–Ingersoll–Ross term-structure model. Expected

utility is also central to risk management because the final outcome of any

risk-management protocol is a decision about how much risk to bear and how

much to hedge. Although prices and probabilities surely influence this

decision, ultimately, it is determined by preferences.

Of course, utility theory has had its critics, even in the early days of the

Utilitarian school of thought. For example, T. Cliff Leslie (1879), an obscure

19th century legal scholar, wrote:

There is an illusive semblance of simplicity in the Utilitarian
formula . . . . it assumes an unreal concord about the constituents
of happiness and an unreal homogeneity of human minds in point
of sensibility to different pains and pleasures. . . . Nor is it possible
to weigh bodily and mental pleasures and pains one against the
other; no single man can pronounce with certainty about their
relative intensity even for himself, far less for all his fellows. [pp.
45–46]

But even if we willingly suspend our disbelief, as most economists have done,

and adopt utility theory as a useful framework for modeling economic decisions,

there are still some important limitations of expected utility theory that several

experimental studies have uncovered.

One of the earliest challenges to expected utility came from Allais (1953)

and has come to be known as the “Allais paradox.” Consider choosing between

two alternatives, A1 and A2, where

                                                                                                                          
Herstein and Milnor (1953) provide a rigorous treatment of von Neumann and Morganstern’s
derivation. See Fishburn (1970) and Kreps (1988) for a thorough modern exposition of expected
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Now consider another two alternatives, B1 and B2, where
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If, like most individuals who are presented with these two binary choices, you

chose A1 and B1, your preferences are inconsistent with expected utility theory!

To see why, observe that a preference for A1 over A2 implies that the expected

utility of A1 is strictly larger than that of A2; hence,

.)0(01.0)5(10.0)1(11.0or      

)0(01.0)1(89.0)5(10.0)1(

UUU

UUUU

×+×>×

×+×+×>
(4)
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Similarly, a preference for B1 over B2 implies

.)0(01.0)5(10.0)1(11.0or      

)0(89.0)1(11.0)0(90.0)5(10.0

UUU

UUUU

×+×<×

×+×>×+×
(5)

But Equation (5) clearly contradicts Equation (4). To be consistent with

expected utility theory, A1 is preferred to A2 if and only if B2 is preferred to B1.

The fact that many individuals across several studies have violated this

preference ordering poses a serious challenge to the practical relevance of

expected utility theory.11

A more recent example is Kahneman and Tversky’s (1979) alternative to

expected utility called “prospect theory.” They argued that individuals focus

more on “prospects”—gains and losses—than on total wealth, and that the

“reference point” from which gains and losses are calculated can change over

time. Moreover, their experiments with human subjects showed that most

individuals view gains quite differently from losses: They are risk averse when

it comes to gains and risk seeking when it comes to losses. For example,

consider choosing between the following two gambles:

                                      
11 See, for example, Morrison (1967), Raiffa (1968), Moskowitz (1974), and Slovic and Tversky
(1974).
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




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0.25y probabilit  with$1,000,000
 :C

$240,000 of gain Sure  :C

2

1

Despite the fact that C2 has a higher expected value than C1, most individuals

seem to gravitate toward the sure gain, a natural display of risk aversion that

can be characterized by a utility function that is concave.  But now consider

choosing between the following two gambles:





 −

.0.25y probabilit     with          $0   

0.75y probabilit  with000,000,1$
  :D

$750,000 of loss Sure  :D

2

1

In this case, most individuals choose D2 despite the fact that it is clearly a

riskier alternative than D1. Kahneman and Tversky dubbed this behavior “loss

aversion,” and it can be characterized by a utility function that is convex.

This apparent asymmetry in preferences for gains and losses may not

seem particularly problematic for risk management, but compare the combined

outcomes of the most common choices, C1 and D2, with the combined

outcomes of the less popular choices, C2 and D1:
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





−







−

. 0.75y probabilit  with000,750$

  0.25y probabilit  with000,250$
 :D and C

0.75y probabilit  with000,760$

0.25y probabilit  with000,240$
 :D and C

12

21

It is clear that C2 and D1 strictly dominates C1 and D2; in the former case, the

gain is $10,000 greater and the loss is $10,000 smaller (i.e., C2 and D1 is

equivalent to C1 and D2 plus $10,000 for sure). Presented in this way, and

without reference to any auxiliary conditions or information, no rational

individual would choose C1 and D2 over C2 and D1. But when the two binary

choices are offered separately, individuals seem to prefer the inferior choices.

Of course, one objection to this conclusion is that the two binary choices

were offered sequentially, not simultaneously. While this objection is well

taken, the circumstances in this example are not nearly as contrived as they

might seem—the London office of a multinational corporation may be faced

with choices C1 and C2, while its Tokyo office is faced with choices D1 and D2.

Although locally, there may not appear to be a right or wrong decision, the

globally consolidated book will tell a different story.  Indeed, the propensity for

investors to close out winning positions too early and close out losing positions

too late is well known among experienced traders—one of the first lessons one

learns on a trading desk is to “cut your losses and ride your gains.” And the

tendency for traders to increase their positions in the face of mounting losses—

often called “doubling down”—is another symptom of loss aversion, one whose
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implications were all too real for Barings Securities and several other financial

institutions that have suffered large trading losses recently.

Another well-known challenge to expected utility is the Ellsberg (1961)

paradox, in which two statistically equivalent gambles seem to be viewed very

differently by the typical individual.12 In gamble E1, you are asked to choose a

color, red or black, after which you draw a single ball from an urn containing

100 balls, 50 red and 50 black. If you draw a ball of your color, you receive a

prize of $10,000, otherwise you receive nothing. The terms of gamble E2 are

identical except that you draw a ball from a different urn, one containing 100

red and black balls but in unknown proportion—it may contain 100 red balls

and no black balls, or 100 black balls and no red balls, or any proportion in

between. What is the maximum you would pay for gamble E1?  And for gamble

E2? Alternatively, if both gambles cost the same—say, $5,000—and you must

choose one, which would you choose?

For most of us, gamble E2 appears to be significantly less attractive than

gamble E1, despite the fact that the probability of picking either color is the

identical in both gambles: 0.50. To check that the probability is indeed the

same, denote by p2 the proportion of red balls in gamble E2 and note that p2

can take on 101 distinct values: 0/100, 1/100, . . . , 100/100. Now, because

we have no reason to favor any one proportion, the “expected” proportion can

be computed by taking a weighted average of all 101 possibilities and weighting

each possibility equally, which yields
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Alternatively, a less formal argument is to ask what the probability could

possibly be if not 50/100—in the absence of any information regarding the

relative proportion, 50/100 is clearly the most natural hypothesis. Despite

these arguments, many surveys have shown that individuals are willing to pay

much less for gamble E2 than for gamble E1, and when forced to choose one

gamble or another at the same price, the choice is almost always E1.

Now there may well be rational reasons for preferring E1 to E2 in other

contexts, but in the simplified context in which these gambles are typically

presented, it is difficult to make a compelling argument for one or the other.

This is not to say that individuals who express a preference for E1 are

irrational, but rather that they must be incorporating other information,

hypotheses, biases, or heuristics into this decision. Whether or not it is rational

to include such auxiliary considerations in one’s decision-making process

depends, of course, on how relevant the material is to the specific context in

which the decision is to be made. Because no single decision rule can be

optimal for all circumstances, it should come as no surprise that learned

responses that are nearly optimal in one context can be far from optimal in

another. The value of thought experiments like the Ellsberg paradox is in

                                                                                                                          
12 The following is a slightly modified version of Ellsberg’s (1961) original thought experiment,
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illuminating certain aspects of our learned responses so we are better able to

judge their efficacy for specific purposes such as risk management.

In particular, the Ellsberg paradox suggests that individuals have a

preference regarding the uncertainty of risk. The apparent circularity of this

statement (Roget’s International Thesaurus lists risk and uncertainty as

synonyms) may be resolved by recalling Knight’s (1921) distinction between

risk and uncertainty: Risk is the kind of randomness that can be modeled

adequately by quantitative methods (e.g., mortality rates, casino gambling,

equipment failure rates); the rest is uncertainty.13 While Knight used this

distinction to explain the seemingly disproportionate profits that accrue to

entrepreneurs (they bear uncertainty which, according to Knight’s theory,

carries a much greater reward than simply bearing risk), it also has significant

implications for risk management. Indeed, the Ellsberg paradox illustrates

succinctly the importance of all three P’s of risk management: how much one is

willing to pay for each gamble (prices), the odds of drawing red or black

(probabilities), and which gamble to take and why (preferences).

Putting the Three P’s Together

The challenge that lies ahead for risk-management practice is, of course, to

integrate the three P’s into a single and complete risk-management protocol.

This is a daunting but essential process that is a prerequisite to the growth

                                                                                                                          
modified to simplify the exposition.
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and health of financial markets and institutions in the next century. The global

financial system is becoming more complex each year, with linkages and

interdependencies that develop and mutate day by day. Risk-management

technologies must evolve in tandem.

Although the lofty goal of Total Risk Management has not yet been

realized, I would like to propose two broad research agendas that show great

promise for moving us closer. By their nature, these agendas are highly

speculative, subjective, and somewhat less concrete than finished research,

but the potential benefits of stimulating new ways of thinking about risk

management seem well worth the hazard of making a few promises that go

unfulfilled.

Preferences Revisited.  The first research agenda involves revisiting the

well-plowed field of preferences. Among the three P’s, preferences are clearly

the most fundamental and least understood aspect of risk management.

Several large bodies of research have developed around these issues—in

economics and finance, psychology, operations research (also known as

“decision sciences”) and recently, brain and cognitive sciences—and many new

insights can be gleaned from synthesizing these different strands of research

into a more complete understanding of how individuals make decisions.14 For

                                                                                                                          
13 In fact, Ellsberg (1961, p. 653) acknowledged that Knight (1921) proposed the same thought
experiment of an individual choosing between two urns, one with a known proportion of red
and black balls and another with an unknown proportion.
14 Simon’s 1982 contributions to this literature are still remarkably timely, and their
implications have yet to be fully explored. For more recent contributions, see Kahneman,
Slovic, and Tversky (1982); Hogarth and Reder (1986); Gigerenzer and Murray (1987); Dawes
(1988); Fishburn (1988); Keeney and Raiffa (1993); Plous (1993); Sargent (1993); Thaler (1993);
Damasio (1994); Arrow et al. (1996); Picard (1997); Pinker (1997); and Rubinstein (1998).
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example, are there reliable methods for measuring risk preferences

quantitatively? How are risk preferences related to other aspects of personality

and temperament, and can they be measured in the same ways (e.g., through

surveys and psychological profiles)? What is the role of memory in determining

risk-taking behavior? What can certain neurological pathologies tell us about

rational decision-making capabilities and their neurophysiological origins? How

do individuals learn from their own experience and from interactions with

others in economic contexts? Is it possible to construct an operational

definition of rationality in the context of decision-making under uncertainty?

Are risk aversion and loss aversion learned traits that are acquired along the

path to adulthood, or do infants exhibit these same tendencies?

Such questions lead naturally to a broader view of economic science, one

based on the principles of ecology and evolutionary biology. Unlike much of

neoclassical economics and the rational expectations counterrevolution, both of

which have the “look and feel” of the physical sciences, the messy empirical

history of markets and economic interactions suggests a more organic

interpretation. Financial markets and institutions are created, altered, and

destroyed through the random and sometimes inexplicable actions of many

individuals, some acting in concert, others acting independently, each acting to

further his own goals whatever they may be.  In other words, economic systems

allocate scarce resources by mutating, adapting, and evolving. In the end,

economic institutions and conventions are merely another set of adaptations
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that evolution has given us, a metaphysical opposable thumb that has

dramatically improved our chances for survival.

These ideas are not new—they owe their parentage to Edward O. Wilson’s

1975 brainchild, “sociobiology”—but their application to economics and, more

specifically, to financial markets has yet to be fully developed.15 If we are to

understand the roots of risk preferences, it must be in the context of the

survival instinct and how that has shaped economic institutions. Although this

may seem too far afield to be of any practical value, recent advances in

“behavioral ecology” suggest otherwise: Dynamic optimization techniques have

revealed the logic of many behavioral adaptations in a variety of organisms by

appealing to evolutionary principles (see, for example, Mangel and Clark 1988).

Moreover, the emerging field of “evolutionary psychology”—the heir apparent to

sociobiology—may also contain important insights for the origins of economic

interactions. Evolutionary psychologists have proposed compelling evolutionary

arguments for a broad range of social and cultural phenomena such as

altruism, kin selection, language, mate selection, abstract thought, religion,

                                      
15 Students of the history of economic thought will no doubt recall that Thomas Malthus used
biological arguments—the fact that populations increase at geometric rates whereas natural
resources increase only arithmetically—to draw economic implications, and that both Darwin
and Wallace were influenced by these arguments (see Hirshleifer 1977 for further details). Also,
Joseph Schumpeter’s view of business cycles, entrepreneurs, and capitalism have an
evolutionary flavor to them; in fact, his notions of “creative destruction” and “bursts” of
entrepreneurial activity are similar in spirit to natural selection and punctuated equilibria.
Recently, economists and biologists have begun to explore these connections in several
directions: direct extensions of sociobiology to economics (Becker 1976; Hirshleifer 1977;
Tullock 1979), evolutionary game theory (Smith 1982; Weibull 1995), evolutionary economics
(Nelson and Winter 1982; Andersen 1994; Englund 1994), and economics as a complex system
(Anderson, Arrow, and Pines 1988). See also Hodgson (1995) for a collection of studies on
economics and biology.
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morality, and ethics.16 Perhaps similar explanations may reveal the true nature

of risk preferences and help separate those aspects that are learned from those

that are inherent in our nature and nearly impossible to change. What kinds of

risk preferences yield evolutionary advantages? How have evolutionary

pressures influenced risk preferences? Will those pressures change over time

as the nature of economic interactions changes?

But it is the recent rapprochement between evolutionary biology and

molecular genetics, evidenced so eloquently by Wilson’s (1994, Chapter 12)

personal chronicle, that points to the most exciting and ambitious goal of all:

determining the genetic basis for risk preferences. The fact that natural

selection leaves its footprints in our DNA gives us a powerful tool to trace the

origin of behavioral adaptations. Already there has been some progress along

these lines, giving rise to a new discipline known as “behavioral genetics” and

populated by both cognitive scientists and molecular biologists. Using the

latest techniques in DNA sequencing and computational genomics, scientists

have begun to explore in earnest the heritability of behavioral traits such as

anger, addiction, aggression, thrill seeking, sexual orientation, mania,

depression, schizophrenia, and other aspects of temperament and

personality.17

                                      
16 See Pinker (1993, 1997), Barkow, Cosmides, and Tooby (1992), and Crawford and Krebs
(1998).
17 See Hamer and Copeland (1998) for an excellent and up-to-date survey of behavioral
genetics. Other recent surveys include Plomin (1990), Steen (1996), Barondes (1998), and
Wright (1998). Skeptics might argue that the entire field of behavioral genetics rests on one
side of the age-old nature-versus-nurture debate (for a recent study that weighs in on the other
side, see Harris 1995, 1998). However, as research progresses in both genetics and psychology,
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The starting point for these studies is typically a neurochemical link to

certain behavioral patterns; for example, levels of the neurotransmitter

dopamine in the brain seem to be correlated with thrill-seeking behavior. Once

such a link is established, a genetic analysis of the corresponding

neurophysiology can be conducted (e.g., identify and sequence the gene or

genes related to dopamine receptors in the brain).18

Although the field of behavioral genetics is still in its infancy, its

potential for the social sciences, and risk management in particular, is obvious.

Are risk preferences simply a manifestation of a combination of other

behavioral patterns, such as thrill-seeking and aggression, with different

weights producing different risk tolerances, or do they have a more

fundamental genetic basis? What regions of the brain are most relevant for

processing risk preferences, and are these the same regions that engage in

computation and quantitative reasoning? Can differences in risk preferences

between two individuals be determined through genetic comparisons, and if so,

what might the implications be for risk management, both private and social?

Risk in Broader Contexts. The second research agenda is motivated by

the fact that risk is a common feature of many human endeavors, hence much

can be gained from considering how other disciplines deal with risk

measurement and management. For example, risk assessment is an integral

                                                                                                                          
this debate is becoming less heated in some respects. Nature and nurture seem to work
together to determine behavior, and the more relevant question is how?
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component of chemical, aeronautical, astronautical, and nuclear engineering,

epidemiology and public health policy, biomedical technology, and the

insurance industries. In each of these fields, academic research is intimately

tied to industry applications, yielding practical risk-management policies that

may contain novel insights for financial risk management. And recent

innovations in financial risk management may provide new ways of thinking

about risk in nonfinancial contexts. In either case, it is clear that risk is a

universal phenomenon and may be better understood by studying it in a broad

framework.

Such a framework is hinted at in the influential work of sociologist

Charles Perrow (1984) in which he argued that certain catastrophes are

unavoidable consequences of systems that are simply too complex and too

unforgiving. He described in great detail the pathologies of the Three Mile

Island nuclear reactor breach, aircraft and air-traffic-control accidents, various

petrochemical plant explosions, and a host of other man-made disasters, and

made a compelling case that these accidents are not pathological at all, but are

“normal” for organizations of such complexity. By identifying specific

organizational features that are likely to generate “normal accidents,” Perrow

provides useful guidelines for thinking about risk management in a broad

context. In particular, he categorizes systems along two dimensions—the

degree to which the individual components can interact with each other, and

the reliance of one component’s functionality on another’s. Systems in which

                                                                                                                          
18 See Benjamin et al. (1996) for the specific example of thrill seeking and dopamine receptors.
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individual components can interact in complex ways (systems that exhibit

“interactive complexity”) and in which the functions of many components are

highly dependent on those of other components (systems that exhibit “tight

coupling”) are prime candidates for normal accidents.

These ideas, and the industrial accidents that inspired them, have had a

significant impact on the way industries and policymakers view risks, and are

responsible for at least two new journals and a burgeoning literature on “high

reliability organizations” and the management of enterprise-wide risks.19

Although much of this literature is descriptive and qualitative, its relevance for

financial risk management is clear: Accidents are normal in industrial systems

so complex and nonlinear that small and unpredictable errors in human

judgment can often cascade quickly and inexorably into major catastrophes.

The challenge that lies before us is to quantify the notions of interactive

complexity and tight coupling so that intelligent trade-offs between risk and

reward can be properly made, in both financial and nonfinancial contexts.

Perhaps the new mathematics of “nonlinear dynamical systems”—deterministic

nonlinear equations that exhibit extraordinarily complex behavior—can play a

role in defining these trade-offs.

The Future of Risk Management

                                                                                                                          
Plomin, Owen, and McGuffin (1994) provide a detailed survey of this burgeoning literature.
19 See, in particular, the Industrial Crisis Quarterly, the Journal of Contingencies and Crisis
Management, and Sagan (1993), Perrow (1994), La Porte (1996), Rochlin (1996), and Reason
(1997).
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If the two research agendas outlined above seem too far removed from the daily

focus of risk-management practices, consider the fact that the centerpiece of

each of the most prominent failures of financial risk-management systems in

the past few years—Procter & Gamble, Gibson Greetings, Orange County, and

Barings—is human judgment and risk preferences. Alternatively, street-smart

traders often attribute the ebb and flow of financial fortunes to just two factors:

fear and greed. Although connecting these aspects of human behavior with

biology may require a stretch of the imagination, the distance is shrinking day

by day.

Consilience. The fact that the two research agendas proposed cut across

so many different disciplines—economics and finance, statistics, biology, and

the brain and cognitive sciences—may well be part of a growing trend, a

manifestation of Wilson’s (1998) notion of consilience: “literally a ‘jumping

together’ of knowledge by the linking of facts and fact-based theory across

disciplines to create a common groundwork of explanation.” (p. 8) In

considering the state of the social sciences, Wilson writes:

The full understanding of utility will come from biology and
psychology by reduction to the elements of human behavior
followed by bottom-up synthesis, not from the social sciences by
top-down inference and guesswork based on intuitive knowledge. It
is in biology and psychology that economists and other social
scientists will find the premises needed to fashion more predictive
models, just as it was in physics and chemistry that researchers
found premises that upgraded biology. [p. 206]
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If financial economics is to graduate to the level of a true scientific discipline, a

promising starting point might be the sociobiological foundations of the three

P’s of risk management.

A Total Risk Management Protocol. Despite the fact that the two

research agendas outlined above contain a series of concrete issues to be

investigated, it is easy to lose sight of the ultimate goal of a fully integrated

Total Risk Management protocol.  What would such a protocol look like upon

completion of the research proposed?

A TRM protocol for an institution might consist of the following five

phases. The first phase is an analysis of the organization’s structure to

determine its susceptibility to normal accidents (i.e., a quantitative analysis of

its interactive complexity and tightness of coupling). Such an analysis can be

performed without reference to any of the three P’s because the focus is on the

system and the limitations embedded in its structure, not on the likelihood or

impact of encountering such limitations.

The second phase—probabilities—is a risk-assessment process in which

the probabilities of various events and scenarios are either postulated or

estimated. The distinction between objective and subjective probabilities

should be clarified at this stage, and all probabilities should be checked for

mutual consistency. Preferences and prices might also play a role here to the

extent that they can be used or restricted in some fashion to estimate

probabilities more accurately (see, for example, Shimko 1993, Rubinstein

1994, Jackwerth and Rubinstein, and Aït-Sahalia and Lo 1998a).
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The third phase—prices—involves determining the economic

consequences of various events and scenarios, either by using market prices or

by computing equilibrium prices (which would require preferences and

probabilities) for nonmarketed or illiquid instruments.

The fourth phase—preferences—consists of a comprehensive risk-

attitudes inventory of all the relevant decision makers and a determination of

the overall business objectives of the enterprise. Individual preferences can be

determined through several means: psychological and risk profiles

(questionnaires), historical performance records, and perhaps even

physiological (blood levels of testosterone and cortisol) and genetic analysis

(genetic predisposition for risk-processing abilities).20 Once the major decision

makers’ risk preferences and the corporate objectives have been determined, it

will be possible to analyze risk preferences in light of various compensation

structures to check that the possible interactions are consistent with those

objectives. For example, if an individual is risk neutral and his compensation

consists primarily of warrants on the company’s stock, his behavior might not

be consistent with the maximization of shareholder wealth.21 Such

considerations could be used not only to redesign compensation packages but

                                      
20 These last two possibilities are no doubt the most controversial, and they raise a number of
challenging issues regarding individual privacy, social policy, and ethics. Such issues are not
new, but they have received even greater attention in the wake of recent breakthroughs in
biotechnology (see, for example, Weiss and Straughan 1996). Although a simple resolution of
these issues in the near future may be too much to hope for, the sheer volume of biotechnology
applications currently being developed will require clear guidelines to be established soon.
21 In particular, he will have incentives to take on more risk, in some cases, even at the
expense of corporate profits.
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also to screen for employees with risk preferences that are consistent with

existing compensation structures and corporate objectives.

And the fifth and final phase involves the development and

implementation of an automated, real-time risk-monitoring system that can

keep track of any significant changes in the three P’s, including changes in key

decision makers’ compensation levels and, consequently, their wealth (which

might affect their preferences), changes in institutional structure, and changes

in business conditions. Although this might seem out of reach today, recent

advances in expert systems, natural language processing, computational

learning algorithms, and computing power might allow us to build such

systems in the not-too-distant future.

Such a Total Risk Management protocol can also be easily adapted to an

individual’s decision-making process, and this might be the most important

application of all. Because of the shift from defined-benefit to defined-

contribution pension plans in the majority of corporations today, individuals

are being charged with the awesome responsibility of planning for their own

retirement. If we can truly integrate prices, probabilities, and preferences in a

framework that enables individuals and institutions to manage their respective

risks systematically and successfully, we will have achieved the ultimate

Utilitarian mandate: the greatest good for the greatest number.
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