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Abstract

One of the fastest growing areas of scienti�c computing is in the �nancial industry. Many of
the most basic problems in �nancial analysis are still unsolved, and are surprisingly resilient
to the onslaught of legions of talented researchers from many diverse disciplines. In this
article, we hope to give readers a sense of these challenges by describing a relatively simple
problem that all investors face|managing a portfolio of �nancial securities over time to
optimize a particular objective function|and showing how complex such a problem can
become as real-world considerations such as taxes, preferences, and portfolio constraints are
incorporated into its formulation.
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1 Introduction

One of the fastest growing areas of scienti�c computing is in the �nancial industry. Two

decades ago, terms such as \�nancial engineering", \computational �nance", and \�nancial

mathematics" did not exist in common usage, yet today these areas are regarded as distinct

and enormously popular academic disciplines, with their own journals, conferences, and

professional societies.

One explanation for the remarkable growth in this area and the impressive array of

mathematicians, computer scientists, physicists, and economists that have been drawn to

quantitative �nance is the formidable intellectual challenges that are intrinsic to �nancial

markets. Many of the most basic problems in �nancial analysis are still unsolved, and are

surprisingly resilient to the onslaught of legions of researchers from diverse disciplines.

In this article, we hope to give readers a sense of these challenges by describing a relatively

simple problem that all investors face|managing a portfolio of �nancial securities over time

to optimize a particular objective function|and showing how complicated such a problem

can become as real-world considerations are incorporated into its formulation. We present the

basic dynamic portfolio optimization problem in Section 2, and then consider three aspects

of the problem in Sections 3{5: taxes, investor's preferences, and portfolio constraints.1 We

conclude in Section 6 by reviewing one of the most promising class of methods for solving

these types of problems.

2 The Portfolio Optimization Problem

Portfolio optimization problems are among the most well-studied problems in modern �-

nance,2 yet they continue to occupy the attention of �nancial academics and industry pro-

fessionals, both because of their practical relevance and their computational intractabilities.

The basic dynamic portfolio optimization problem consists of an individual investor's deci-

sions for allocating wealth among various expenditures and investment opportunities over

time so as to maximize some objective function|typically the investor's expected lifetime

1These three issues are by no means exhaustive, but are merely illustrative examples of the kinds of

challenges faced by �nancial engineers today. See Haliassos and Michaelides (2000) and Haugh and Lo

(2001) for examples of other computational issues in portfolio optimization.
2See for example Merton (1990).
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utility|given the prices and price dynamics of goods and �nancial securities he purchases,

and any constraints such as tax liabilities, loan repayment provisions, income payments, and

other cash in
ows and out
ows that determine the investor's overall budget.

For expositional clarity, we start with a simple framework in which there are only two

assets available to the investor: a bond that yields a riskless rate of return and a stock that

yields a random return of either 10% or �10% with probability p and 1�p, respectively.

Denote by Bt and St the prices of the bond and stock at date t, respectively. Without loss

of generality and for notational simplicity, we assume that S0 = $1 and the riskless rate of

interest is 0% hence Bt=1 for all t � 0. Finally, suppose that the investor's horizon spans

only three dates, t=0; 1; and 2, so that the possible paths for the stock price process St are

given in Figure 1. Of course, in practice, an investor has many assets to choose from over

many dates and where the price of each asset can take on many values. But for illustrative

purposes, this simpler speci�cation is ideal because it contains all the essential features of

the dynamic portfolio optimization problem in a very basic setting. Nevertheless, even in

this simple framework, it will become apparent that practical considerations such as taxes,

investor preferences, and portfolio constraints can create surprisingly di�cult computational

challenges.
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Figure 1: Stock Price Evolution
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Let Ct denote the consumption expenditures of the investor at date t and let Wt denote

the investor's wealth just prior to date-t consumption. We assume that the investor has

a lifetime utility function U(C0; C1; C2) de�ned over each consumption path fC0; C1; C2g

that summarizes how much he values the entire path of consumption expenditures. Then,

absent market frictions and assuming that the investor's utility function is time-additive and

time-homogeneous, i.e.,

U(C0; C1; C2) = u(C0) + u(C1) + u(C2) (1)

the investor's dynamic portfolio optimization problem at t=0 is given by:

V0(W0) = Max
C0;C1;C2

E0[u(C0) + u(C1) + u(C2)] (2)

subject to

Wt � Ct = xtSt + ytBt ; t = 0; 1; 2 (3a)

Wt+1 = xtSt+1 + ytBt+1 ; t = 0; 1 (3b)

Ct � 0 ; t = 0; 1; 2 (3c)

xt; yt 2 Z
+

; t = 0; 1; 2 (3d)

x2 = y2 = 0 (3e)

where Z+ denotes the non-negative integers, and xt and yt are the number of shares of

stocks and bonds, respectively, that the investor holds in his portfolio immediately after

date t.3 The requirement that xt and yt are non-negative means that borrowing and short

sales are not allowed, a constraint that many investors face. That xt and yt are required to be

non-negative integers simply re
ects the fact that it is not possible to purchase a fractional

number of stocks or bonds. The constraint (3b) states that Wt+1 is equal to Wt multiplied

by the gross return on the portfolio between dates t and t+1.

This problem is easily solved numerically using the standard technique of stochastic

3Of course xt and yt may depend only on the information available at time t, a restriction that we impose

throughout this article.
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dynamic programming.4 In particular, since V2(W2)=u(W2), we can then compute V1(W1)

using the Bellman equation so that

V1(W1) = Max
C1

�
u(C1) + E1[V2(W2)]

�
(4)

subject to the constraints in (3). An aspect of (4) that makes it particularly easy to solve is

the fact that the value function V1(�) depends on only one state variable, W1. This enables

us to solve (4) numerically without too many computations. Suppose, for example, that

W0 = $1;000. Then, since xt; yt 2 Z
+, there are only 1;100 possible values that W1 can

take, so the right side of (4) must be evaluated for only these 1;100 values. In contrast, when

there are market frictions or when the investor has a more complex utility function, we will

see how the computational requirements increase dramatically, re
ecting Bellman's \curse

of dimensionality".

3 Taxes

Most seasoned investors are painfully aware of the substantial impact that taxes can have

on the performance of their investment portfolio, hence taxes play a major role in most

dynamic portfolio optimization problems.5 To see how taxes can increase the computational

complexity of such problems, let trading pro�ts in the stock be subject to a capital gains tax

in the simple model of Section 2. Because this model has only two future periods, we do not

distinguish between short-term and long-term capital gains, and for expositional simplicity

we also assume that capital losses from one period cannot be used to o�set gains from

a later period. Even though these simplifying assumptions do make the problem easier to

solve, nevertheless, it will be apparent that the computations are considerably more involved

than in the no-tax case.

To solve the dynamic portfolio optimization problem with taxes, we use dynamic pro-

gramming as before. However, the value function is now no longer only a function of wealth,

but also depends on past stock prices and the number of shares of stock purchased at each of

4See, for example, Bertsekas (1995).
5See, for example, Bertsimas, Lo and Mourtzinou (1998), Dybvig and Koo (1996), and Constantinides

(1983).
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those prices. In other words, the value function is now path-dependent. If we use Ns;t to de-

note the number of shares of stock that was purchased at date s � t and still in the investor's

portfolio immediately after trading at date t, then the portfolio optimization problem may

be expressed as:

V0(W0) = Max
C0;C1;C2

E0 [ u(C0) + u(C1) + u(C2) ] (5)

subject to

Wt � Ct � Max

�
0 ;

t�1X
s=0

�(St � Ss)(Ns;t�1 �Ns;t)

�
=

xtSt + ytBt ; t = 0; 1; 2 (6a)

Wt+1 = xtSt+1 + ytBt+1 ; t = 0; 1 (6b)

xt =
tX

s=0

Ns;t ; t = 0; 1; 2 (6c)

Ct � 0 ; t = 0; 1; 2 (6d)

N0;0 � N0;1 � N0;2 � 0 (6e)

N1;1 � N1;2 � 0 (6f)

xt ; yt 2 Z
+

; t = 0; 1; 2 (6g)

x2 = y2 = 0 : (6h)

where � is the capital gains tax rate. When t=2, the value function depends on (W2; S1; S2; N0;1; N1;1)

and we obtain the relation:

V2(W2; S1; S2; N0;1; N1;1) = u

 
W2 �Maxf0;

1X
s=0

�(S2 � Ss)Ns;1g

!
(7)

so that date-2 consumption is simply W2 less any capital gains taxes that must be paid. At

t=1, the value function depends on (W1; S1; N0;0) and we can write the Bellman equation

as

V1(W1; S1; N0;0) = Max
C1

�
u(C1) + E1[V2(W2; S1; S2; N0;1; N1;1)]

�
: (8)
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If we compare (8) with (4), it is apparent that the presence of taxes has made the dynamic

portfolio optimization problem considerably more di�cult. Speci�cally, in solving (4) nu-

merically, V1(�) is computed for only 1;100 possible values of W1. In contrast, solving (8)

numerically requires the evaluation of V1(�) for all possible combinations of fW1; S1; N0;0g, of

which there are 1;001;000!6 Even in a simple two-period two-asset model, the portfolio opti-

mization problem with taxes becomes considerably more complex. Indeed, in the T -period

N -asset case, it is easy to see that by date T , there are O(NT ) state variables, and if each

state variable can take on m distinct values, then there will be O(mNT ) possible states at

date T . For an investor with a 20-year horizon, an annual trading interval, and a choice of

25 assets at the start, and assuming that the state variables take on only 4 distinct values at

the end of the horizon,7 the number of possible states at the end will be of the order 10301.

4 Preferences

Another important aspect of portfolio optimization problems is the objective function that

represents the investor's preferences. Traditionally, these preferences have been represented

by time-additive time-homogeneous utility functions, which yields important computational

advantages because it implies that the value function at date t does not depend on the

investor's consumption choices prior to date t.

Unfortunately, the assumptions of time-additivity and time-homogeneity seem to be in-

consistent with the empirical evidence on the consumption and portfolio choices of investors.

For example, it is well known that individuals tend to grow accustomed to their level of con-

sumption over a period of time, implying that preferences depend not only on today's con-

6This can be veri�ed by noting the one-to-one correspondence between fW1; S1; N0;0g and fC0; S1; N0;0g,
and counting the possible combinations of fC0; S1; N0;0g. Assuming, as before, that W0 = $1;000, we see

that there are 1;001 possible choices for C0. If C0= i, then there are 1;000�i possible values for N0;0. For

each combination of (C0; N0;0), there are 2 possible values of S1. This means that in total, there are

2

1;000X
i=0

(1;000�i) = 1;001;000

combinations of fW1; S1; N0;0g.
7The number of distinct values that a state variable can take on depends, of course, on the precise nature

of the state variable. For example, for a binomial state variable that is not \recombining", the number of

distinct values it can take on is 2T ; if it is recombining, this is reduced to T+1. We use 4 only for illustrative

purposes; in most practical applications, the number is considerably larger.
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sumption level but also on levels of past consumption.8 Commonly known as \habit forma-

tion", such preferences imply that the value function Vt(�) is a function of (C0; C1; : : : ; Ct�1)

in addition to any other relevant state variables. As in the case with taxes, these problems

quickly become intractable as the number of time periods increases. Of course, there do

exist a few highly parametrized models of habit formation in which closed-form solutions

are available,9 but in general these models must be solved numerically as in Heaton (1995).

There are many other empirical regularities of investors' preferences that can induce path

dependence in the value function, and for each of these cases, the computational demands

quickly become intractable.

5 Portfolio Constraints

When constraints are imposed on a portfolio optimization problem, their impact on the com-

putational complexity of the problem is not obvious. On the one hand, some unconstrained

problems that admit closed-form solutions fail to do so once constraints are added. In prac-

tice, however, closed-form solutions are rarely available for realistic portfolio optimization

problems, with or without portfolio constraints. Such problems must be solved numerically,

in which case, imposing constraints can sometimes reduce the number of computations since

they limit the feasible region over which the value function must be evaluated. An example

of this is the impact of the constraints in (3) on the basic portfolio optimization problem de-

scribed in Section 2. In that case, we imposed the constraint that xt and yt are non-negative

integers, eliminating the possibility of borrowing or shortselling. This implies that only a

�nite number of values for W1 are possible, and as a result, the number of computations

needed to evaluate V1(W1) is greatly reduced.

On the other hand, in some cases constraints can greatly increase the number of com-

putations, despite the fact that they limit the feasible set. This typically occurs when the

constraints increase the dimensionality of the problem. For example, in the basic portfolio

optimization problem of Section 2, consider imposing the additional constraint that the cu-

mulative number of shares transacted|both purchased and sold|up to date t is bounded

8See Kahneman, Slovic, and Tversky (1982) for other examples of preferences that account for the foibles

of individual behavior.
9For example, see Constantinides (1990).
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by some function, f(t).10 In practice, these types of constraints are often imposed on in-

vestment funds so as to reduce transactions costs and the risk of \churning". When such a

constraint is imposed, the value function is no longer a function of only Wt, but also of the

cumulative number of shares transacted up to date t. By creating path dependence in the

value function, constraints can substantially increase the computational complexity of even

the simplest portfolio optimization problems.

6 Possible Solution Techniques

As discussed in Section 2, the most natural technique for solving dynamic portfolio optimiza-

tion problems is stochastic dynamic programming. However, this approach is often compro-

mised by several factors such as the curse of dimensionality when too many state variables

are involved, as in Sections 3{5. In general, practical considerations such as taxes, transac-

tions costs, indivisibilities and integer constraints, non-time-additive utility functions, and

other institutional features of �nancial markets tend to create path dependencies in portfolio

optimization problems, which increases the number of state variables in the value function.

Such problems are very di�cult to solve in all but the simplest cases, with computational

demands that become prohibitive as the number of time periods and assets increase.

In this section, we brie
y outline an alternative that may produce good approximate

solutions to otherwise intractable portfolio optimization problems. This approach, called

\approximate dynamic programming", \neuro-dynamic programming", or \reinforcement

learning", has had much success recently in solving challenging dynamic optimization prob-

lems in several contexts, and is described in more detail in Bertsekas and Tsitsiklis (1996).

The method has already been applied successfully in one �nancial context by Longsta�

and Schwartz (2001), who use the technique to price high-dimensional American options.

Although there are many di�erent algorithms that may be categorized as \approximate dy-

namic programming", we con�ne our attention in this section to just one such algorithm:

approximate value iteration.

Suppose the optimal value function at date t of a T -period dynamic optimization problem

is given by Vt(X
1
t ; : : : ; X

n
t ) where (X

1
t ; : : : ; X

n
t ) are state variables. We assume that because

10If 500 shares were purchased at t=0 and 200 shares were sold at t=1, the cumulative number of shares

transacted as of date t=1 is 700.
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of the computational intractabilities, it is impossible to determine Vt(�) exactly. Therefore,

we de�ne a parametrized class of functions

� e
Vt(X

1

t ; : : : ; X
n
t ; �t) : �t 2 R

p

�
(9)

which we call the approximation architecture. We then select our estimate eVt(X1
t ; : : : ; X

n
t ; �̂t)

of Vt from this class of functions by selecting �̂t.

Now suppose that we have applied the backward recursion of the Bellman equation

to obtain estimators eVt+1; : : : ; eVT . Then we can use an approximate Bellman equation to

compute an estimator of the value function at time t so that

bVt(X1

t ; : : : ; X
n
t ) = Max Et[ eVt+1(X1

t+1; : : : ; X
n
t+1; �̂t+1)] (10)

where the maximization is with respect to the decision variables, which have been suppressed

for notational simplicity. Computing bVt(�) will often entail extensive Monte Carlo simulations

since it is generally not possible to compute expectations over a high-dimensional space. In

these cases, we estimate b
Vt(�) at a �xed number of \training points" (P1; : : : ; Pm), where

each Pi 2 R
n represents a possible realization of the state vector at date t. Once we have

estimated bVt(Pi) for i = 1; : : : ; m, we obtain eVt by solving the following least squares problem:

b
�t = argMin

�t

mX
i=1

� b
Vt(P

t
i )�

e
Vt(P

t
i ; �t)

�2
: (11)

With eVt now determined, we then proceed to compute eVt�1 in a similar fashion, and continue

in this manner of approximate value iteration until we have found eV0.
Once an approximate dynamic programming algorithm has been implemented, an esti-

mator f eVtg of the value function is obtained. The natural question that follows is whether or

not this estimator is \good". While there are some theoretical results that provide a partial

answer to this question,11 it is often very di�cult in practice to determine the accuracy of

an approximate solution to a particular problem. One possibility is to attempt to derive

lower and upper bounds on the true value function, Vt. Deriving a lower bound is typically

11See, for example, Bertsekas and Tsitsiklis (1996).
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straightforward|the sequence f eVt : t = 1; : : : ; Tg de�nes a feasible trading strategy and

therefore the value of this strategy, which can be estimated via simulation, is a lower bound

for V0. However, deriving an upper bound for V0 is generally not so straightforward, but

one possibility is to apply stochastic duality theory, which has already been studied exten-

sively in the context of portfolio optimization.12 In addition, Haugh and Kogan (2001) have

successfully employed duality theory in conjunction with approximate dynamic program-

ming to construct lower and upper bounds on the prices of American options. It is possible

that a similar approach might also work for portfolio optimization problems, which we are

investigating in ongoing research.

There are many other approximate dynamic programming solutions, including algorithms

based on approximate policy iteration and on Q-learning.13 These approaches generally share

the common feature of resorting to function approximation and simulation techniques to deal

with computational intractabilities. As computing power continues its remarkable growth,

we believe that these techniques will become increasingly important in addressing many of

the challenges of �nancial computing over the next few decades.

12See, in particular, Karatzas and Shreve (1998).
13See Bertsekas and Tsitsiklis (1996).

10



References

Bertsekas, D., 1995, Dynamic Programming and Optimal Control, Vol. I. Belmont, MA:
Athena Scienti�c.

Bertsekas, D. and J. Tsitsiklis, 1996, Neuro-Dynamic Programming, Belmont, Massachusetts:
Athena Scienti�c.

Bertsimas, D., A. W. Lo and G. Mourtzinou, 1998, \Tax-Aware Multiperiod Portfolio
Optimization", unpublished working paper, MIT Sloan School of Management.

Constantinides, G. M., 1983, \Capital Market Equilibrium with Personal Tax", Economet-
rica 51, 611{636.

Constantinides, G. M., 1990, \Habit Formation: A Resolution of the Equity Premium
Puzzle", Journal of Political Economy 98, 519{543.

Dybvig, P. H. and H. K. Koo, 1996, \Investment with Taxes", unpublished working paper,
Olin School, Washington University in St Louis.

Haliassos, M. and A. Michaelides, 2000, \Calibration and Computation of Household Port-
folio Models", forthcoming in L. Guiso, M. Haliassos and T. Japelli, eds., Household
Portfolios. Cambridge, MA: MIT Press.

Haugh, M. and L. Kogan, 2001, \Pricing American Options: A Duality Approach", unpub-
lished working paper, the Wharton School, University of Pennsylvania.

Haugh, M. and A. Lo, 2001, \Asset Allocation and Derivatives", Quantitative Finance 1,
42{75.

Heaton, J., 1995, \An Empirical Investigation of Asset Pricing with Temporally Dependent
Preference Speci�cations", Econometrica 63, 681{717.

Kahneman, D., Slovic, P. and A. Tversky, 1982, Judgment Under Uncertainty: Heuristics
and Biases. Cambridge, UK: Cambridge University Press.

Karatzas, I. and S. Shreve, 1998, Methods of Mathematical Finance. New York: Springer
Verlag.

Longsta�, F. and E. Schwartz, \Valuing American Options By Simulation: A Simple Least
Squares Approach", forthcoming in Review of Financial Studies.

Merton, R., 1990, Continuous-Time Finance. Oxford, UK:Basil Blackwell.

11


