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Abstract

Ever since the publication in 1565 of Girolamo Cardano's treatise on gambling, Liber

de Ludo Aleae (The Book of Games of Chance), statistics and �nancial markets have

become inextricably linked. Over the past few decades many of these links have become

part of the canon of modern �nance, and it is now impossible to fully appreciate the

workings of �nancial markets without them. This selective survey covers three of the

most important ideas of �nance|e�cient markets, the random walk hypothesis, and

derivative pricing models|that illustrate the enormous research opportunities that lie

at the intersection of �nance and statistics.
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1 Introduction

Ever since the publication in 1565 of Girolamo Cardano's treatise on gambling, Liber de Ludo Aleae

(The Book of Games of Chance), statistics and �nancial markets have become inextricably linked.

Over the past few decades many of these links have become part of the canon of modern �nance,

and it is now impossible to fully appreciate the workings of �nancial markets without them. In

this brief survey, I hope to illustrate the enormous research opportunities at the intersection of

�nance and statistics by reviewing three of the most important ideas of modern �nance: e�cient

markets, the random walk hypothesis, and derivative pricing models. While it is impossible to

provide a thorough exposition of any of these ideas in this brief essay, my less ambitious goal

is to communicate the excitement of �nancial research to statisticians and to stimulate further

collaboration between these two highly complementary disciplines. It is also impossible to provide

an exhaustive bibliography for each of these topics|that would exceed the page limit of this entire

article|hence my citations will be selective, focusing on more recent developments and those that

are most relevant for the readers of this journal. For a highly readable and entertaining account of

the recent history of modern �nance, see Bernstein (1992).

To develop some context for the three topics I have chosen, consider one of the most fundamental

ideas of economics, the principle of supply and demand. This principle states that the price of any

commodity and the quantity traded are determined by the intersection of supply and demand

curves, where the demand curve represents the schedule of quantities desired by consumers at

various prices and the supply curve represents the schedule of quantities producers are willing to

supply at various prices. The intersection of these two curves determines an \equilibrium", a price-

quantity pair that satis�es both consumers and producers simultaneously. Any other price-quantity

pair may serve one group's interests, but not the other's.

Even in this simple description of a market, all the elements of modern �nance are present.

The demand curve is the aggregation of many individual consumers' desires, each derived from

optimizing an individual's preferences subject to a budget constraint that depends on prices and

other factors (e.g., income, savings requirements, and borrowing costs). Similarly, the supply

curve is the aggregation of many individual producers' outputs, each derived from optimizing an

entrepreneur's preferences subject to a resource constraint that also depends on prices and other

factors (e.g., costs of materials, wages, and trade credit). And probabilities a�ect both consumers
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and producers as they formulate their consumption and production plans through time and in the

face of uncertainty|uncertain income, uncertain costs, and uncertain business conditions.

It is the interaction between prices, preferences, and probabilities|sometimes called the \three

P's of Total Risk Management" (see Lo (1999))|that gives �nance its richness and depth. Formal

models of �nancial asset prices such as those of Merton (1973a), Lucas (1978), and Breeden (1979),

show precisely how the three P's simultaneously determine a \general equilibrium" in which demand

equals supply across all markets in an uncertain world where individuals and corporations act

rationally to optimize their own welfare. Typically, these models imply that a security's price

is equal to the present value of all future cashows to which the security's owner is entitled.

Several aspects make this calculation unusually challenging: individual preferences must be modeled

quantitatively, future cashows are uncertain, and so are discount rates. Pricing equations that

account for such aspects are often of the form:

Pt = Et

� 1X
k=1

t;t+kDt+k

�
(1)

and their intuition is straightforward: today's price must equal the expected sum of all future

payments Dt+k multiplied by discount factors t;t+k that act as \exchange rates" between dollars

today and dollars at future dates. If prices do not satisfy this condition, this implies a misallocation

of resources between today and some future date, not unlike a situation in which two commodities

sell for di�erent prices in two countries even after exchange rates and shipping costs have been

taken into account (a happy situation for some enterprising arbitrageurs, but not likely to last very

long).

What determines the discount factors t;t+k? They are determined through the equalization

of supply and demand which, in turn, is driven by the preferences, resources, and expectations

of all market participants, i.e., they are determined in general equilibrium. It is this notion of

equilibrium, and all of the corresponding ingredients on which it is based, that lie at the heart of

�nancial modeling.

2 E�cient Markets

There is an old joke, widely told among economists, about an economist strolling down the street

with a companion when they come upon a $100 bill lying on the ground. As the companion reaches
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down to pick it up, the economist says \Don't bother|if it were a real $100 bill, someone else

would have already picked it up".

This humorous example of economic logic gone awry strikes dangerously close to home for pro-

ponents of the e�cient markets hypothess, one of the most controversial and well-studied proposi-

tions in all the social sciences. It is disarmingly simple to state, has far-reaching consequences for

academic pursuits and business practice, and yet is surprisingly resilient to empirical proof or refuta-

tion. Even after three decades of research and literally hundreds of journal articles, economists have

not yet reached a consensus about whether markets|particularly �nancial markets|are e�cient

or not.

As with so many of the ideas of modern economics, the origins of the e�cient markets hypoth-

esis can be traced back to Paul Samuelson (1965), whose contribution is neatly summarized by the

title of his article: \Proof that Properly Anticipated Prices Fluctuate Randomly". In an infor-

mationally e�cient market, price changes must be unforecastable if they are properly anticipated,

i.e., if they fully incorporate the expectations and information of all market participants. In the

context of the basic pricing equation (1), the conditional expectation operator Et[ � ] � E[ � j
t] is

de�ned with respect to a certain set of information 
t, hence elements of this set cannot be used

to forecast future price changes because they have already been impounded into current prices.

Fama (1970) operationalizes this hypothesis|summarized in his well-known epithet \prices fully

reect all available information"|by specifying the elements of the information set 
t available to

market participants, e.g., past prices, or all publicly available information, or all public and private

information.

This concept of informational e�ciency has a wonderfully counter-intuitive and Zen-like quality

to it: the more e�cient the market, the more random the sequence of price changes generated by

such a market, and the most e�cient market of all is one in which price changes are completely

random and unpredictable. In contrast to the passive motivation that inspires randomness in phys-

ical and biological systems, randomness in �nancial systems is not an implication of the Principle

of Insu�cient Reason, but is instead the outcome of many active participants attempting to pro�t

from their information. Motivated by unbridled greed, speculators aggressively pounce on even

the smallest informational advantages at their disposal, and in doing so, they incorporate their

information into market prices and quickly eliminate the pro�t opportunities that gave rise to their

speculation. If this occurs instantaneously, which it must in an idealized world of \frictionless"
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markets and costless trading, then prices must always fully reect all available information and no

pro�ts can be garnered from information-based trading (because such pro�ts have already been

captured).

Such compelling motivation for randomness is unique among the social sciences and is remi-

niscent of the role that uncertainty plays in quantum mechanics. Just as Heisenberg's uncertainty

principle places a limit on what we can know about an electron's position and momentum if quan-

tum mechanics holds, this version of the e�cient markets hypothesis places a limit on what we can

know about future price changes if the forces of �nancial self-interest are at work.

However, one of the central tenets of modern �nance is the necessity of some trade-o� between

risk and expected returns, and whether or not predictability in security prices is ine�cient can

only be answered by weighing it against the risks inherent in exploiting such predictabilities. In

particular, if a security's price changes are predictable to some degree, this may be just the reward

needed to attract investors to hold the asset and bear the associated risks (see, for example, Lucas

(1978)). Indeed, if an investor is su�ciently risk averse, he might gladly pay to avoid holding a

security that has unforecastable returns.

Despite the eminent plausibility of such a trade-o�|after all, investors must be rewarded to

induce them to bear more risk|operationalizing it has proven to be a formidable challenge to both

�nance academics and investment professionals. De�ning the appropriate measures of risk and

reward, determining how they might be linked through fundamental principles of economics and

psychology, and then estimating such links empirically using historical data and performing proper

statistical inference are issues that have occupied much of the �nance literature for the past half-

century, beginning with Markowitz's (1952) development of portfolio theory and including Sharpe's

(1964) Capital Asset Pricing Model (CAPM), Merton's (1973a) Intertemporal CAPM, Ross's (1976)

Arbitrage Pricing Theory, and the many empirical tests of these models. Moreover, recent advances

in methods of statistical inference, coupled with corresponding advances in computational power

and availability of large amounts of data, have created an exciting renaissance in the empirical

analysis of e�cient markets, both inside and outside the halls of academia|see Lo (1997) for an

overview and a more complete bibliography of this literature.
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3 The Random Walk

Quite apart from whether or not �nancial markets are e�cient, one of the most enduring questions

of modern �nance is whether �nancial asset price changes are forecastable. Perhaps because of

the obvious analogy between �nancial investments and games of chance, mathematical models of

�nancial markets have an unusually rich history that pre-dates virtually every other aspect of eco-

nomic analysis. The vast number of prominent mathematicians, statisticians, and other scientists

who have plied their considerable skills to forecasting �nancial security prices is a testament to the

fascination and the challenges that this problem poses.

Much of the early �nance literature revolved around the random walk hypothesis and the

martingale model, two statistical descriptions of unforecastable price changes that were (incorrectly)

taken to be implications of e�cient markets. One of the �rst tests of the random walk was devised

by Cowles and Jones (1937), who compared the frequency of sequences and reversals in historical

stock returns, where the former are pairs of consecutive returns with the same sign, and the latter

are pairs of consecutive returns with opposite sign. Many others performed similar tests of the

random walk (see Lo (1997) and Lo and MacKinlay (1999) for a survey of this literature), and with

the exception of Cowles and Jones (who subsequently acknowledged an error in their analysis), all

of them reported general support for the random walk using historical stock price data.

However, some recent research has sharply contradicted these �ndings. Using a statistical com-

parison of variances across di�erent investment horizons applied to the weekly returns of a portfolio

of stocks from 1962 to 1985, Lo and MacKinlay (1988) �nd that the random walk hypothesis can

be rejected with great statistical con�dence (well in excess of 0.999). In fact, the weekly returns

of a portfolio containing an equal dollar amount invested in each security traded on the New York

and American Stock Exchanges (called an equal-weighted portfolio) exhibit a striking relation from

one week to the next: a �rst-order autocorrelation coe�cient of 0.30.

An autocorrelation of 0.30 implies that approximately 9% of the variability of next week's re-

turn is explained by this week's return. An equally weighted portfolio containing only the stocks of

\smaller" companies, companies with market capitalization in the lowest quintile, has a autocor-

relation coe�cient of 0.42 during the 1962 to 1985 sample period, implying that about 18% of the

variability in next week's return can be explained by this week's return. Although numbers such

as 9% and 18% may seem small, it should be kept in mind that 100% predictability yields astro-
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nomically large investment returns; a very tiny fraction of such returns can still be economically

meaningful.

These �ndings surprise many economists because a violation of the random walk necessarily

implies that price changes are forecastable to some degree. But since forecasts of price changes are

also subject to random uctuations, riskless pro�t opportunities are not an immediate consequence

of forecastability. Nevertheless, economists still cannot completely explain why weekly returns are

not a \fair game". Two other empirical facts add to this puzzle: (1) Weekly portfolio returns are

strongly positively autocorrelated, but the returns to individual securities generally are not; in fact,

the average autocorrelation|averaged across individual securities|is negative (and statistically

insigni�cant); (2) The predictability of returns is quite sensitive to the holding period: serial

dependence is strong and positive for daily and weekly returns, but is virtually zero for returns

over a month, a quarter, or a year.

For holding periods much longer than one week, e.g., three to �ve years, Fama and French (1988)

and Poterba and Summers (1988) �nd negative serial correlation in US stock returns indexes using

data from 1926 to 1986. Although their estimates of serial correlation coe�cients seem large in

magnitude, there is insu�cient data to reject the random walk hypothesis at the usual levels of

signi�cance. Moreover, a number of statistical biases documented by Kim, Nelson, and Startz (1991)

and Richardson (1993) cast serious doubt on the reliability of these longer-horizon inferences.

Despite these concerns, models of long-term memory have been a part of the �nance literature

ever since Mandelbrot (1971) applied Hurst's (1951) rescaled range statistic to �nancial data. Time

series with long-term memory exhibit an unusually high degree of persistence, so that observations

in the remote past are nontrivially correlated with observations in the distant future, even as the

time span between the two observations increases. Nature's predilection towards long-term memory

has been well-documented in the natural sciences such as hydrology, meteorology, and geophysics,

and some have argued that economic time series must therefore also have this property.

However, using recently developed asymptotic approximations based on functional central limit

theory, Lo (1991) constructs a test for long-term memory that is robust to short-term correla-

tions of the sort uncovered by Lo and MacKinlay (1988, 1999), and concludes that despite earlier

evidence to the contrary, there is little support for long-term memory in stock market prices.

Departures from the random walk hypothesis can be fully explained by conventional models of

short-term dependence for most �nancial time series. However, new data are being generated each
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day and the characteristics of �nancial time series are unlikely to be stationary over time as �nan-

cial institutions evolve. Perhaps some of the newly developed techniques for detecting long-term

memory|borrowed from the statistical physics literature|will shed more light on this issue (see,

for example, Mandelbrot (1997) and Pilgram and Kaplan (1998)).

More recent investigations have focused on a number of other aspects of predictability in �nan-

cial markets: stochastic volatility models (Gallant, Hsieh, and Tauchen (1997)), estimation of tail

probabilities and \rare" events (Jansen and de Vries (1991)), applications of \chaos theory" and

nonlinear dynamical systems (Hsieh (1991)), Markov-switching models (Gray (1996)), and mixed

jump-di�usion models (Bates (1996)). This research area is one of the most active in the �nance

literature, with as many researchers in industry as in academia developing tools to detect and

exploit all forms of predictabilities in �nancial markets.

Finally, in contrast to the random walk literature, which focuses on the conditional distribu-

tion of security returns, another strand of the early �nance literature has focused on the marginal

distribution of returns, and speci�cally on the notion of \stability", the preservation of the para-

metric form of the marginal distribution under addition. This is an especially important prop-

erty for security returns, which are summed over various holding periods to yield cumulative

investment returns. For example, if Pt denotes the end-of-month-t price of a security, then its

monthly continuously compounded return xt is de�ned as log(Pt=Pt�1), hence its annual return is

log(Pt=Pt�12) = xt+xt�1+ � � � +xt�11. The normal distribution is a member of the class of stable

distributions, but the non-normal stable distributions possess a distinguishing feature not shared

by the normal: they exhibit leptokurtosis or \fat tails", which seems to accord well with higher

frequency �nancial data, e.g., daily and weekly stock returns. Indeed, the fact that the historical

returns of most securities have many more outliers than predicted by the normal distribution has

rekindled interest in this literature, which has recently become part of a much larger endeavor

known as \risk management".

Of course, stable distributions have played a prominent role in the early development of modern

probability theory (see, for example, L�evy (1937)), but their application to economic and �nancial

modeling is relatively recent. Mandelbrot (1960, 1963) pioneered such applications, using stable

distributions to describe the cross-sectional distributions of personal income and of commodity

prices. Fama (1965) and Samuelson (1967) developed the theory of portfolio selection for securi-

ties with stably distributed returns, and Fama and Roll (1971) estimated the parameters of the
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stable distribution using historical stock returns. Since then, many others have considered sta-

ble distributions in a variety of �nancial applications|see McCulloch (1996) for an excellent and

comprehensive survey.

More recent contributions include the application of invariance principles of statistical physics to

deduce scaling properties in tail probabilities (Mandelbrot (1997), Mantegna and Stanley (1999)),

the use of large-deviation theory and extreme-value theory to estimate loss probabilities (Embrechts,

Kluppelberg, and Mikosch (1997)), and the derivation of option-pricing formulas for stocks with

stable distributions (McCulloch (1996)).

4 Derivative Pricing Models

One of the most important breakthroughs in modern �nance is the pricing and hedging of \deriva-

tive" securities, securities with payo�s that depend on the prices of other securities. The most

common example of a derivative security is a call option on common stock, a security that gives

its owner the right (but not the obligation, hence the term \option") to purchase a share of the

stock at a prespeci�ed price K (the \strike price") on or before a certain date T (the \expiration

date"). For example, a three-month call option on General Motors (GM) stock with a $90 strike

price gives its owner the right to purchase a share of GM stock for $90 any time during the next

three months. If GM is currently trading at $85, is the option worthless? Not if there is some

probability that GM's share price will exceed the $90 strike price some time during the next three

months. It seems, therefore, that the price of the option should be determined in equilibrium by

a combination of the statistical properties of GM's price dynamics and the preferences of investors

buying and selling this type of security (as in the pricing equation (1)).

However, Black and Scholes (1973) and Merton (1973b) provided a compelling alternative to

(1), a pricing model based only on arbitrage arguments, and not on general equilibrium (in fact,

the Black and Scholes (1973) framework does rely on equilibrium arguments|it was Merton's

(1973b) application of continuous-time stochastic processes that eliminated the need for equilibrium

altogether; see Merton (1992) for further discussion). This alternative is best illustrated through

the simple binomial option-pricing model of Cox, Ross, and Rubinstein (1979), a model in which

there are two dates, 0 and 1, and the goal is to derive the date-0 price of a call option with strike

price K that expires at date 1. In this simple economy, two other �nancial securities are assumed
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to exist: a riskless bond that pays a gross rate of return of r (e.g., if the bond yields a 5% return,

then r = 1:05), and a risky security with date-0 price P0 and date-1 price P1 that is assumed to be

a Bernoulli random variable:

P1 =

(
uP0 with probability � ,

dP0 with probability 1��
(2)

where 0 < d < u. Since the stock price takes on only two values at date 1, the option price takes

on only two values at date 1 as well:

C1 =

(
Cu � Max[uP0�K; 0] with probability � ,

Cd �Max[dP0�K; 0] with probability 1�� .
(3)

Given the simple structure that we have assumed so far, can we uniquely determine the date-0

option price C0? It seems unlikely, since we have said nothing about investors' preferences nor the

supply of the security. Yet C0 is indeed completely and uniquely determined, and is a function of

K, r, P0, d, and u. Surprisingly, C0 is not a function of �!

To see how and why, consider constructing a portfolio of � shares of stock and $B of bonds at

date 0, at a total cost of X0 = P0�+B. The payo� X1 of this portfolio at date 1 is simply:

X1 =

(
uP0�+ rB with probability � ,

dP0�+ rB with probability 1�� .
(4)

Now choose � and B so that the following two linear equations are satis�ed simultaneously:

uP0� + rB = Cu ; dP0� + rB = Cd (5)

which is always feasible as long as the two equations are linearly independent. This is assured if

u 6= d, in which case we have:

�� =
Cu � Cd

(u�d)P0
; B� =

uCd � dCu

(u�d)r
: (6)

Since the portfolio payo� X1 under (6) is identical to the payo� of the call option C1 in both states,

the total cost X0 of the portfolio must equal the option price C0, otherwise it is possible to construct

an arbitrage, a trading strategy that yields riskless pro�ts. For example, suppose X0 > C0. By

9



purchasing the option and selling the portfolio at date 0, a cash inow of X0�C0 is generated, and

at date 1 the obligation X1 created by the sale of the portfolio is exactly o�set by the payo� of the

option C1. A similar argument rules out the case where X0 < C0. Therefore, we have the following

pricing equation:

C0 = P0�
� + B� =

1

r

� �
r�d

u�d

�
Cu +

�
u�r

u�d

�
Cd

�
(7)

=
1

r
[ ��Cu + (1���)Cd ] ; �� �

r�d

u�d
: (8)

This pricing equation is remarkable in several respects. First, it does not seem to depend on

investors' attitudes towards risk, but merely requires that investors prefer more money to less (in

which case arbitrage opportunities are ruled out). Second, nowhere in (8) does the probability �

appear, which implies that two investors with very di�erent opinions about � will nevertheless agree

on the price C0 of the option. Finally, (8) shows that C0 can be viewed as an expected present

value of the option's payo�, but where the expectation is computed not with respect to the original

probability �, but with respect to a \pseudo-probability" ��, often called a risk-neutral probability

or equivalent martingale measure (contrast (8) with the pricing equation (1) in which the discount

factors t;t+k are also present).

That �� is a probability is not immediately apparent, and requires further argument. A neces-

sary and su�cient condition for �� 2 [0; 1] is the inequality d � r � u. But this inequality follows

from the fact that we have assumed the co-existence of stocks and riskless bonds in our economy.

Suppose, for example, that r < d � u; in this case, no investor will hold bonds because even in

the worst case, stocks will yield a higher return than r, hence bonds cannot exist, i.e., they will

have zero price. Alternatively, if d � u < r, no investor will hold stocks, hence stocks cannot exist.

Therefore, d � r � u must hold, in which case �� can be interpreted as a probability. The fact that

the option price is determined not by the original probability �, but by the equivalent martingale

measure ��, is a deep and subtle insight that has led to an enormous body of research in which

the theory of martingales plays an unexpectedly profound role in the pricing of complex �nancial

securities.

In particular, Merton's (1973b) derivation of the celebrated Black-Scholes formula for the price

of a call option makes use of the Itô calculus, a sophisticated theory of continuous-time stochastic

processes based on Brownian motion. Perhaps the most important insight of Merton's (1973b)
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seminal paper|for which he shared the Nobel prize in economics with Myron Scholes|is the fact

that under certain conditions the frequent trading of a small number of long-lived securities (stocks

and riskless bonds) can create new investment opportunities (options and other derivative securities)

that would otherwise be unavailable to investors. These conditions|now known collectively as

dynamic spanning or dynamically complete markets|and the corresponding �nancial models on

which they are based have generated a rich literature and a multi-trillion-dollar derivatives industry

in which exotic �nancial securities such as caps, collars, swaptions, knock-out and rainbow options,

etc., are synthetically replicated by sophisticated trading strategies involving considerably simpler

securities.

This framework has also led to a number of statistical applications. Perhaps the most obvious

is the estimation of the parameters of Itô processes that are the inputs to derivative pricing formu-

las. This task is complicated by the fact that Itô processes are continuous-time processes whereas

the data are discretely sampled. The most obvious method|maximum likelihood estimation|is

practical for only a handful of Itô processes, those for which the conditional density functions are

available in closed form, e.g., processes with linear drift and di�usion coe�cients. In most other

cases, the conditional density cannot be obtained analytically, but can only be characterized im-

plicitly as the solution to a particular partial di�erential equation (the Fokker-Planck or \forward"

equation; see Lo (1988) for further discussion). Therefore, other alternatives have been developed,

e.g., generalized method of moments estimators (Hansen and Scheinkman (1995)), simulation esti-

mators (Du�e and Singleton (1993)), and nonparametric estimators (A��t-Sahalia (1996)).

Because the prices of options and most other derivative securities can be expressed as expected

values with respect to the risk-neutral measure (as in (8)), e�cient Monte Carlo methods have also

been developed for computing the prices of these securities (see Boyle, Broadie, and Glasserman

(1997) for an excellent review).

Moreover, option prices contain an enormous amount of information about the statistical prop-

erties of stock prices and the preferences of investors, and several methods have been developed

recently to extract such information parametrically and nonparametrically, e.g., Shimko (1993),

Rubinstein (1994) Longsta� (1995), Jackwerth and Rubinstein (1996), and A��t-Sahalia and Lo

(1998, 1999).

Finally, the use of continuous-time stochastic processes in modeling �nancial markets has led,

directly and indirectly, to a number of statistical applications in which functional central limit
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theory and the notion of weak convergence (see, for example, Billingsley (1968)) are used to deduce

the asymptotic properties of various estimators, e.g., long-horizon return regressions (Richardson

and Stock (1989)), long-range dependence in stock returns (Lo (1991)), and the approximation

errors of continuous-time dynamic hedging strategies (Bertsimas, Kogan, and Lo (2000)).

5 Conclusions

The three ideas described above should convince even the most hardened skeptic that �nance and

statistics have much in common. There are, however, many other examples in which statistics has

become indispensable to �nancial analysis (see Campbell, Lo, and MacKinlay (1997) and Lo and

MacKinlay (1999) for speci�c references and a more complete survey). Multivariate analysis, es-

pecially factor analysis and principal components analysis, are important aspects of mean-variance

models of portfolio selection and performance attribution. Entropy and other information-theoretic

concepts have been used to construct portfolios with certain asymptotic optimality properties.

Nonparametric methods such as kernel regression, local smoothing, and bootstrap resampling al-

gorithms are now commonplace in estimating and evaluating many �nancial models, most of which

are highly nonlinear and based on large datasets. Neural networks, wavelets, support vector ma-

chines, and other nonlinear time series models have also been applied to �nancial forecasting and

risk management. There is renewed interest in the foundations of probability theory and notions

of subjective probability because of mounting psychological evidence regarding behavioral biases

in individual decisions involving �nancial risks and rewards. And Bayesian analysis has made in-

roads into virtually all aspects of �nancial modeling, especially with the advent of computational

techniques such as Markov chain Monte Carlo methods and the Gibbs sampler.

With these developments in mind, can there be any doubt that the intersection between �nance

and statistics will become even greater and more active over the next few decades, with both �elds

bene�ting enormously from the association?
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