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Personal Indexes

One day, artificial intelligence
will build them for each investor.

By Andrew W. Lo

llustration by Garrian Manning



ne of the main purposes of an index
Oof any kind is to facilitate the extrac-

tion and summary of information
through an algorithmic process, e.g., averag-
ing. Now typically done by computers, aver-
aging is a simple example of artificial intelli-
gence! Indeed, an important factor in the
early popularity of the Dow Jones Industrial
Average, first introduced in May 1896, was
the “Dow Theory,” a collection of heuristics
proposed by Charles H. Dow and later
expanded by William P. Hamilton in which
specific economic meaning is attributed to
certain time series patterns in the index.* The
dream of developing automated processes
for making better investment decisions is
obviously not unigue to our times.

But what is unique about our times is the
confluence of breakthroughs in financial tech-
nology, computer technology, and institutional
infrastructure that, for the first time in the his-
tory of modern civilization, makes automated
personalized investment management a prac-
tical possibility. The combination of artificial
intelligence and financial technology may one
day render general market indexes obsolete:
Each investor may have a “personal” index
constructed specifically to meet his or her life-
time objectives and risk preferences, and a
software agent to actively manage the portfo-
lio accordingly. If this seems more like science
fiction than reality, that is precisely the motiva-
tion for a review of some basic recent devel-
opments in artificial intelligence and their
applications to financial technology.

One of the earliest and most enduring
models of the behavior of security prices—
and stock indexes in particular—is the
Random Walk Hypothesis, an idea con-
ceived in the sixteenth century as a model of
games of chance.? As with so many of the
ideas of modern economics, the first serious
application of the Random Walk Hypothesis
to financial markets can be traced back to
Paul Samuelson (1965), whose contribution
is neatly summarized by the title of his arti-
cle, “Proof that Properly Anticipated Prices
Fluctuate Randomly”. Samuelson argued
that in financial markets randomness is
achieved through the active participation of
many investors seeking greater wealth. An
army of greedy investors trade aggressively
on even the smallest informational advan-

tages at their disposal, and in doing so, they
incorporate their information into market
prices and quickly eliminate the profit oppor-
tunities that gave rise to their trading.

While this argument for randomness is
surprisingly compelling, a number of theo-
retical and empirical studies over the past 20
years have cast serious doubt on both its
premises and its implications. For example,
from a theoretical perspective, LeRoy
(1973), Lucas (1978), and many others have
shown in many ways and in many contexts
that the Random Walk Hypothesis is neither
a necessary nor a sufficient condition for
rationally determined security prices. And
empirically, numerous researchers have
documented departures from the Random
Walk Hypothesis in financial data.® Financial
markets are predictable to some degree.

The rejection of the Random Walk
Hypothesis opens the door to the possibility
of superior long-term investment returns
through disciplined active investment man-
agement. In much the same way that inno-
vations in biotechnology can garner superior
returns for venture capitalists, innovations in
financial technology can, in principle, garner
superior returns for investors. This is com-
pelling motivation for the application of artifi-
cial intelligence in financial contexts.

Artificial Neural Networks

Recent advances in the theory and imple-
mentation of (artificial) neural networks have
captured the imagination and fancy of the
financial community.* Although they are only
one of the many types of statistical tools for
modeling nonlinear relationships, neural net-
works seem to be surrounded by a great deal
of mystique and, sometimes, misunderstand-
ing. Because they have their roots in neuro-
physiology and the cognitive sciences, neural
networks are often assumed to have brain-like
qualities: learning capacity, problem-solving
abilities, and ultimately cognition and self-
awareness. Alternatively, neural networks are
often viewed as “black boxes” that can yield
accurate predictions with little modeling effort.

In fact, neural networks are neither. They
are an interesting and potentially powerful
modeling technique in some, but surely not
all, applications. To develop some basic intu-
ition for neural networks, consider a typical
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nerve cell or “neuron.” A neuron has dendrites
(receptors) at different sites that react to stim-
ulus. This stimulus is transmitted along the
axon by an electrical pulse. If the electrical
pulse exceeds some threshold level when it
hits the nucleus, this triggers the nucleus to
react, e.g., to make a particular muscle con-
tract. This basic biological unit is what mathe-
maticians attempt to capture in a neural net-
work model.®

Even though neurobiologists have come to
realize that actual nerve cells exhibit consider-
ably more complex and subtle behavior, nev-
ertheless Al researchers have found great use
for the simple on/off or “binary threshold”
model in approximating nonlinear relation-
ships efficiently. In particular, neural network
models have a very useful feature known as
the “universal approximation property”. This
property means that with enough neurons
linked together in an appropriate way, a neural
network can approximate any nonlinear rela-
tionship, no matter how strange.

Viewed as a statistical estimation tech-
nique, neural networks are a flexible model
of nonlinearities. In this sense, they are just
one of many techniques for modeling com-
plex relationships. Examples of other nonlin-
ear estimation techniques include: splines,
wavelets, kernel regression, projection pur-
suit, radial basis functions, nearest-neighbor

estimators and, perhaps the most powerful
of all, human intuition.

Even simple neural networks can cap-
ture a variety of nonlinearities. Consider, for
example, the sine function plus a random
error term:

Y = Sin(X) + 0.5€: (1)

where € is a standard normal random vari-
able. Can a neural network extract the sine
function from observations (X,Y)?

To answer this question, 500 (X,Y) pairs
were randomly generated subject to the
nonlinear relationship (3), and a neural net-
work model was estimated using this artifi-
cial data (or in the jargon of this literature, a
neural network was trained on this data set).®
The following equation is the result of train-
ing a neural network on the data using non-
linear least squares:

Y= 5.282 — 14.576 O(~1.472+1.869X) —
5.4110(~2.628+-0.642%) —
3.0710(13.288-2.347X,) +
6.3200(=2.009+4.009%) +
7.8920(-3.316+2.474X) )

where O(x) is the logistic function 1/(1 +
exp[x]). This network has five identical acti-
vation functions ©(x) (corresponding to the

Figure 1 MLP Estimator of Y = Sin(X)+.5Z
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five nodes in the hidden layer) and a con-
stant term. The network has only two
inputs, X and 1.

Now (2) looks nothing like the sine func-
tion, so in what sense has the neural network
“approximated” the nonlinear relation (1)? In
Figure 1, the data points (X,Y:) are plotted as
triangles, the dashed line is the theoretical
relation to be estimated (the sine function),
and the solid line is the relation as estimated
by the neural network (2). The solid line is
impressively close to the dashed line, despite
the noise that the data clearly contain.
Therefore, although the functional form of (2)
does not resemble any trigonometric func-
tion, its numerical values do. Add more data
points, and it would likely get even closer.

Hutchinson, Lo, and Poggio (1994) pro-
posed neural network models for estimating
derivative pricing formulas. In particular, they
take as inputs the primary economic vari-
ables that influence the derivative’s price—
current underlying asset price, strike price,
time-to-maturity, etc.—and define the deriv-
ative price to be the output into which the
neural network maps the inputs. When prop-
erly trained, the network “becomes” the
derivative pricing formula, which may be
used in the same way that formulas
obtained from parametric pricing methods
such as the well-known Black-Scholes for-
mula are used: for pricing, delta-hedging,
simulation exercises, etc.

These neural network models have sever-
al important advantages over the more tradi-
tional parametric models. First, since they
do not rely on restrictive parametric assump-
tions such as lognormality or sample-path
continuity, they are robust to the specifica-
tion errors that plague parametric models.
(In other words, you don’t have to worry
about having the right assumptions if you
don’t have to make any assumptions).
Second, they are adaptive, and respond to
structural changes in the data-generating
processes in ways that parametric models
cannot. Third, they are flexible enough to
encompass a wide range of derivative secu-
rities and fundamental asset price dynam-
ics, yet relatively simple to implement. And
finally, they are easily parallelizable and may
be computationally more efficient.

Of course, all these advantages do not

come without some cost—the nonparamet-
ric pricing method is highly data-intensive,
requiring large quantities of historical prices
to obtain a sufficiently well-trained network.
Therefore, such an approach would be inap-
propriate for thinly traded derivatives, or
newly created derivatives that have no simi-
lar counterparts among existing securities.”
Also, if the fundamental asset's price
dynamics are well-understood and an ana-
lytical expression for the derivative's price is
available under these dynamics, then the
parametric formula will almost always out-
perform the network formula in pricing and
hedging accuracy. Nevertheless, these con-
ditions occur rarely enough that there may
still be great practical value in constructing
derivative pricing formulas by learning net-
works. To illustrate the practical relevance of
their approach, Hutchinson, Lo, and Poggio
(1994) apply it to the pricing and delta-hedg-
ing of S&P 500 futures options from 1987 to
1992. They show that neural network models
perform well, yielding delta-hedging errors
and option prices that are comparable to
and, in some cases, better than traditional
methods like Black-Scholes.

Data Mining and Data Snooping

A substantial portion of the recent litera-
ture in artificial intelligence is devoted to a
discipline now known as “data mining” or
“knowledge discovery in databases” (KDD).
The combination of very large scale data-
bases in many research and business con-
texts and the tremendous growth in comput-
ing power over the past several decades has
naturally led to the development of computa-
tionally intensive methods for systematically
sifting through large quantities of data.

In fact, Internet-based search engines are
perhaps the most common examples of data
mining applications, and there are many
other prominent examples in marketing,
financial services, telecommunications, and
molecular biology. Perhaps the most chal-
lenging issue facing data miners today is a
statistical one: how to determine whether the
results from a data-mining search are gen-
uine or spurious? For example, suppose we
search a database of mutual funds to find
the one with the most successful track
record over the past five years, and the
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process yields XYZ Growth Fund. Does this
imply that XYZ is a good fund, or is it possi-
ble that XYZ's performance is a fluke?

In searching for the presence of any
effect, whether it is superior investment per-
formance or a causal relationship between
two characteristics, the dilemma will always
be present: If the effect exists, data mining
algorithms will generally detect it; if the effect
does not exist, data mining algorithms will
usually still find an “effect” anyway. The latter
case is known as a “data-snooping bias.”
The problem is being aware of the kind of
result you have.

To see how serious a problem this dilem-
ma can be, suppose we have a collection of
n mutual funds with (random) annual returns
Ri, Ry,..., R, respectively that are mutually
independent and have the same probability
distribution function Fg(r).? That is, they have
nothing to do with each other.

Now, for concreteness, suppose that
these returns are normally distributed with
an expected value of 10% per year and a
standard deviation of 20% per year, roughly
comparable to the historical behavior of the
S&P 500. Under these assumptions, what is
the probability that the return on fund i
exceeds 50%? Because the distribution is
normal, we know the probability in any given
year is about 2.3%:

Prob(R > 0.50) = 1 — Prob(R < 0.50) = 0.0228 .
©)

But suppose we focus not on any arbi-
trary fund i, but rather on the fund that has
the largest return among all n funds.
Although we do not know in advance which
fund this will be, nevertheless we can char-
acterize this best-performing fund in the
abstract, in much the same way that college
admissions offices can construct the profiles
of the applicants with the highest standard-
ized test scores. However, this analogy is
not completely accurate because on aver-
age, test scores do seem to bear some rela-
tion to subsequent academic performance.
In our n-fund example, even though there
will always be a “best-performing” fund or
“winner,” the subsequent performance of
this winner will be statistically identical to all
the other funds by assumption, i.e., the

same expected return, the same volatility,
and the same probability law.

This distinction is the essence of the data-
snooping problem. There will always be a
winner. The question is: Does winning tell us
anything about the true nature of the winner?
In the case of standardized test scores, the
generally accepted answer is yes. In the
case of the n independently and identically
distributed mutual funds, the answer is no.
The larger the sample, the larger (and there-
fore perhaps more tempting and hard to
ignore) the largest score is likely to be.

To quantify this effect, we can derive the
probability law of the return R* of the “best-
performing” fund:

R*=Max[R 3, R ... Ry 1

(4)

which is given by the following
distribution function:

Fee(r) = [Fr(]" ©)

After data snooping, the
probability of observing per-

formance greater than 50% is
given by:

Prob(R* > 0.50) = 1 — Prob(R* < 0.50) =1 -
[Fe()]"= 1 - (0.9772)n. (6)

When n = 1, the probability that R*
exceeds 50% is the same as the probability
that R exceeds 50%: 2.3%. But among a
sample of n =100 securities, the probability
that R* exceeds 50% is 1 — (0.9772)100 or
90.0%! Not surprisingly, the probability that
the largest of 100 independent returns
exceeds 50% is considerably greater than
the probability that any individual fund’s
return exceeds 50%. However, this has no
bearing on future returns since we have
assumed that all n funds have the same
mean and variance, and they are statistical-
ly independent of each other.

How are the properties of R* related to
data-snooping biases in financial analysis?
Investors often focus on past performance as
a guide to future performance, associating
past successes with significant investment
skills. But if superior performance is the



unavoidable result of the selection proce-
dure—picking the strategy or manager with
the most successful track record, for exam-
ple—then past performance is not necessari-
ly an accurate indicator of future performance.

In other words, the selection procedure
may bias our perception of performance,
causing us to attribute superior performance
to an investment strategy or manager that
was merely “lucky.”

There are statistical procedures that can
partially offset the most obvious types of
data-snooping biases,® but the final arbiter
must inevitably be the end-user of the data-
mining algorithm. By trading off the cost of
one type of error (detecting effects that do
not exist) with the other (not detecting
effects that do exist), a sensible balance
between data mining and data snooping
needs to be struck.® The necessity of at
least some human intervention at the deci-
sion-making point may yet prove to an insur-
mountable limitation of artificial intelligence.

Pattern Recognition

One of the biggest rifts that divide aca-
demic finance and industry practice is the
separation between technical analysts and
their academic critics. In contrast to funda-
mental analysis, which was quick to be
adopted by the scholars of modern quanti-
tative finance, technical analysis has been
an orphan from the very start. In some cir-
cles, technical analysis is known as “voodoo
finance.” In his influential book A Random
Walk Down Wall Street, Burton Malkiel (1996)
concludes that “[u]lnder scientific scrutiny,
chart-reading must share a pedestal with
alchemy.”

One explanation for this state of contro-
versy and confusion is the unique and some-
times impenetrable jargon used by technical
analysts. Campbell, Lo, and MacKinlay
(1997, pp. 43-44) provide a striking example
of the linguistic barriers between technical
analysts and academic finance by contrast-
ing these two statements:

The presence of clearly identified support
and resistance levels, coupled with a one-
third retracement parameter when prices lie
between them, suggests the presence of

strong buying and selling opportunities in
the near-term.

The magnitudes and decay pattern of the first
12 autocorrelations and the statistical signif-
icance of the Box-Pierce Q-sta-

tistic suggest the presence of a

high-frequency predictable

component in stock returns.

Despite the fact that both
statements have the same
basic meaning—that past
prices contain information for

predicting future returns—
most academics find the first
statement puzzling and the second plausi-
ble.

These linguistic barriers underscore an
important difference: Technical analysis is
primarily visual, while quantitative finance is
primarily algebraic and numerical. Technical
analysis employs the tools of geometry and
pattern recognition, while quantitative
finance employs the tools of mathematical
analysis and probability and statistics. In the
wake of recent breakthroughs in financial
engineering, computer technology, and
numerical algorithms, it is no wonder that
quantitative finance has overtaken technical
analysis in popularity. The principles of port-
folio optimization are far easier to program
into a computer than the basic tenets of
technical analysis.

Nevertheless, technical analysis has sur-
vived, perhaps because its visual mode of
analysis is more conducive to human cogni-
tion, and because pattern recognition is one
of the few repetitive activities for which com-
puters do not have an absolute advantage
(yet). However, this is changing. Atrtificial
intelligence has made admirable progress in
the automation of pattern detection, hence
the possibility of automating technical analy-
sis is becoming a reality. In particular, Lo,
Mamaysky, and Wang (2000) have pro-
posed an algorithm for detecting technical
indicators such as “head-and-shoulders”
and “double bottoms,” and have applied it
to the daily prices of several hundred U.S.
stocks over a 30-year period to evaluate the
information content of such patterns.

nw ® X 0O S —

O S5 00O 0w

ﬁ(‘Dr—rﬁg)CQ



nw ®© X O® QS5 —

O S5 0O ODOw

= 0O ~+ = Q C O

This process is motivated by the general
goal of technical analysis, which is to identi-
fy regularities in the time series of prices by
extracting nonlinear patterns from noisy
data. Implicit in this goal is the recognition
that some price movements are signifi-
cant—they contribute to the formation of a
specific pattern—and others are merely ran-
dom fluctuations to be ignored. In many
cases, the human eye can perform this “sig-
nal extraction” quickly and accurately, and
until recently computer algorithms could not.

However, “smoothing” estimators such as
kernel regression are ideally suited to this
task because they extract nonlinear relations
by “averaging out” the noise. Lo, Mamaysky,
and Wang (2000) use these estimators to
mimic, and in some cases sharpen, the skills
of a trained technical analyst in identifying
certain patterns in historical price series.

Armed with a mathematical representa-
tion of the time series of historical prices
from which geometric properties can be
characterized in an objective manner, they
construct an algorithm for automating the
detection of technical patterns consisting of
three steps:

1. Define each technical pattern in terms of
its geometric properties, e.g., local
extrema (maxima and minima) so that
algorithms for identifying its occurrence

Figure 2

can be developed.
2.Construct a kernel-regression estimator
of a given time series of prices so that its
extrema can be determined numerically.
3.Analyze the fitted curve of this esti-
mator for occurrences of each techni-
cal pattern.

The first step is the most challenging
since this is the heart of the pattern-recog-
nition algorithm and where much of the
creativity of human technical analysts
comes into play. For example, note that
only five consecutive extrema are required
to identify a head-and-shoulders pattern
(although its completion requires two
more, where it initially and finally crosses
the “neckline”). This follows from the for-
malization of the geometry of a head-and-
shoulders pattern: three peaks, with the
middle peak higher than the other two.
Because consecutive extrema must alter-
nate between maxima and minima for
smooth functions, the three-peaks pat-
tern corresponds to a sequence of five
local extrema: maximum, minimum, high-
est maximum, minimum, and maximum.

Lo, Mamaysky and Wang (2000) define
nine other technical patterns in similar fashion,
and once they have been given mathematical
precision in this way, the detection of these
patterns can be readily automated. An illustra-
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tion of their algorithm at work is given in Figure
2. When they apply their algorithm to daily
prices of over 300 US stocks from 1962 to
1996, they find that certain technical indicators
do provide incremental information, and that
technical indicators tend to be more informa-
tive for NASDAQ stocks than for NYSE or
AMEX stocks.

While pattern-recognition techniques
have been successful in automating a num-
ber of tasks that were previously considered
to be uniquely human endeavors—finger-
print identification, handwriting analysis, and
face recognition, for example—neverthe-
less, it is possible that no machine algorithm
is a perfect substitute for the skills of an
experienced technical analyst. However, if
an algorithm can provide a reasonable
approximation to some of the cognitive abil-
ities of a human analyst, such an algorithm
can be used to leverage the skills of any
technician. Moreover, if technical analysis is
an art form that can be taught, then surely its
basic precepts can be quantified and auto-
mated to some degree. And as increasingly
sophisticated pattern-recognition tech-
niques are developed, a larger fraction of
the art will become a science.

Conclusions

In this article, | have only scratched the
surface of the many applications of artifi-
cial intelligence that will be transforming
financial technology over the next few
years. Other emerging technologies
include artificial markets and agent-based
models of financial transactions, electronic
market-making, modeling emotional
responses as computational algorithms
(“affective computing”), the psychophysi-
ology of risk preferences, and financial

visualization. Artificial intelligence will
undoubtedly play a more central role in
active investment manage-

ment, but this does not imply
that indexation will become
less relevant for investors.
Artificial intelligence and
active management are not
at odds with indexation, but
instead imply the evolution of
a more sophisticated set of
indexes and portfolio man-
agement policies for the typi-
cal investor, something investors can look
forward to, perhaps within the next
decade. Imagine a software program that
constructs a custom-designed index for
each investor according to his or her risk
preferences, financial objectives, insur-
ance needs, retirement plans, tax bracket,
etc. This “Smartindex” will serve to guide
each investor towards a path of long-term
financial security—a path that is unique to
each investor—so that if an investor’s port-
folio return differs by more than a certain
margin from the return of his or her
Smartindex, this will serve as an “early-
warning signal” to change the investment
policy to get back on track. Whether or not
an investor’s portfolio outperforms the S&P
500 in any given year will not be as relevant
as whether it outperforms the investor’s
Smartindex, hence such an innovation will
change the very nature of indexation and
the role of index funds and benchmark
returns. This concept may well be science
fiction today, but the technology for
Smartindexes already exists. As with the
transformation of all great ideas from theo-
ry into practice, it is only a matter of time.
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Footnotes

1 See Hamilton (1922) for a thorough exposition of the Dow Theory.

2 See, for example, Hald (1990, Chapter 4).

3 See, for example, Lo and MacKinlay (1988, 1999).

4 The adjective “ artificial” is often used to distinguish mathematical models of neural networks from their biological counter-
parts. For brevity, | shall omit this qualifier for the remainder of this article although it will be implicit in all of my references to
neural networks.

5 Since this is meant to be an overview, | will not hesitate to sacrifice rigor for clarity. A more extensive overview is given in Lo
(1994). More mathematically-inclined readers are encouraged to consult Hertz, Krogh, and Palmer (1991) for the general the-
ory of neural computation, White (1992) for the statistics of neural networks, and Ait-Sahalia and Lo (1994) and Hutchinson,
Lo, and Poggio (1994) for financial applications.

6 Specifically, the particular neural network is a “ single hidden-layer feedforward perceptron” with five nodes. As of yet, there
are no formal rules for selecting the optimal configuration or “ topology” of a neural network, and this is one of the primary
drawbacks of neural network models. Currently, experience and heuristics are the only guides we have for specifying the net-
work topology.

7 However, since newly created derivative securities can often be replicated by a combination of existing derivatives, this is not
as much of a limitation as it may seem at first.

8 Recall that the distribution function Fg(r) of a random variable R is defined as Fg(r) = Prob(R <r).

9 See, for example, Leamer (1978), lyengar and Greenhouse (1988), Lo and MacKinlay (1990, and Lo (1994).

10 See Jin and Lo (2001) for an example of this kind of analysis in a financial context.

11 After all, for two consecutive maxima to be local maxima, there must be a local minumum in between, and vice versa for two
consecutive minima.



