Trading Volume: Implications of An

Intertemporal Capital Asset Pricing Model*

Andrew W. Lo and Jiang Wang ${ }^{\dagger}$

October 5, 2001

Abstract

We derive an intertemporal capital asset pricing model with multiple assets and heterogeneous investors, and explore its implications for the behavior of trading volume and asset returns. Assets contain two types of risks: market risk and the risk of changing market conditions. We show that investors trade only in two portfolios: the market portfolio, and a hedging portfolio, which allows them to hedge the dynamic risk. This implies that trading volume of individual assets exhibit a two-factor structure, and their factor loadings depend on their weights in the hedging portfolio. This allows us to empirically identify the hedging portfolio using volume data. We then test the two properties of the hedging portfolio: its return provides the best predictor of future market returns and its return together with the return of the market portfolio are the two risk factors determining the cross-section of asset returns.

[^0]
Contents

1 Introduction 1
2 The Model 2
2.1 The Economy 3
2.2 Discussion 4
2.3 Equilibrium 5
3 The Behavior of Returns and Volume 8
3.1 The Cross Section of Volume 8
3.2 Time Series Implications for the Hedging Portfolio 10
3.3 Cross-Sectional Implications for the Hedging Portfolio 10
4 An Empirical Implementation 13
4.1 The Data 13
4.2 Construction of the Hedging Portfolio 14
5 The Forecast Power of the Hedging Portfolio 19
5.1 Hedging-Portfolio Returns 19
5.2 Optimal Forecasting Portfolios (OFPs) 21
5.3 Hedging Portfolio Return as A Predictor of Market Returns 23
6 The Hedging-Portfolio Return as a Risk Factor 24
7 Conclusion 27
Appendix 29
A. 1 Proof of Theorem 1 29
A. 2 Proofs of Propositions 1-4 30
References 32

1 Introduction

Fundamental shocks to the economy drive both the supply and demand of financial assets and their prices. Thus, any asset-pricing model that attempts to establish a structural link between asset prices and underlying economic factors also establishes links between prices and quantities such as trading volume. In fact, asset-pricing models link the the joint behavior of prices and quantities with economic fundamentals such as the preferences of investors and the future payoffs of the assets. Therefore, the construction and empirical implementation of any asset-pricing model should involve both price and quantities as its key elements. Even from a purely empirical perspective, the joint behavior of price and quantities reveals more information about the relation between asset prices and economic factors than prices alone. Yet the asset-pricing literature has centered more on prices and much less on quantities. For example, empirical investigations of well-known asset-pricing models such as the Capital Asset Pricing Model (CAPM) and its intertemporal extensions (ICAPM) have focused exclusively on prices and returns, completely ignoring the information contained in quantities. In this paper, we hope to show that even if our main interest is in the behavior of prices, valuable information about price dynamics can be gleaned from trading volume.

We begin by developing an intertemporal capital asset pricing model of multiple assets in the spirit of Merton's ICAPM. We explicitly model investors' asset demands and derive equilibrium asset prices and asset holdings. In our model, assets are exposed to two sources of risks: market risk and the risk of changes in market conditions. ${ }^{1}$ As a result, investors wish to hold two distinct portfolios of risky assets: the market portfolio and a hedging portfolio. The market portfolio allows them to adjust their exposure to market risk, and the hedging portfolio allows them hedge the risk of changes in market conditions. In equilibrium, investors trade in only these two portfolios, and expected asset returns are determined by their exposure to these two risks, i.e., a two-factor linear pricing model holds, where the two factors are the returns on the market portfolio and the hedging portfolio, respectively.

We then explore the implications of this model on the joint behavior of volume and returns. Since investors hold only two portfolios - the market portfolio and the hedging

[^1]portfolio-they trade in only these portfolios. This implies that trading volume also exhibits a two-factor structure: the first factor arises from their trades in the market portfolio and the second factor arises from their trades in the hedging portfolio. More importantly, we show that the factor loading of each asset's trading volume on the hedging-portfolio factor is identical to that asset's portfolio weight in the hedging portfolio. This remarkable property of the trading volume of individual assets suggests a way to identify the hedging portfolio from a rather unexpected source: volume data. Moreover, after arriving at such a portfolio, we have the means to verify that it is indeed the hedging portfolio: its returns should be the best predictor of future returns on the market portfolio. Collectively, these results provide concrete economic foundations for determining risk factors beyond the market portfolio for dynamic equilibrium asset-pricing models.

Using the weekly returns and volume data on NYSE and AMEX stocks from 1962 to 1996, we implement the model empirically. From the trading volume of individual stocks, we construct the hedging portfolio and its returns. We find that the hedging-portfolio returns consistently outperforms other factors in predicting future returns to the market portfolio. We then use the returns to the hedging and market portfolios as two risk factors in a crosssectional test along the lines of Fama and MacBeth (1973), and find that the hedging portfolio is comparable to other factors in explaining the cross-sectional variation of expected returns.

In Section 2, we present our intertemporal equilibrium model of asset-pricing and trading volume. In Section 3, we explore the model's implications for volume and returns. Section 4 describes the data used in our empirical implementation of the model, and outlines the construction of the hedging portfolio. In Section 5, we compare the forecast power of the hedging portfolio with other factors, and we perform cross-sectional tests of the hedging portfolio as a risk factor in Section 6. We conclude in Secton 7.

2 The Model

In this section, we develop an intertemporal equilibrium model of stock trading and pricing with multiple assets and heterogeneous investors. Since our purpose is to draw its qualitative implications on the joint behavior of return and volume, the model is kept as parsimonious as possible. Several generalizations of the model are discussed in Section 2.2.

2.1 The Economy

We consider an economy defined on a set of discrete dates: $t=0,1,2, \ldots$. There are J risky assets in the economy, which we call stocks. Each stock pays a stream of dividends over time. Let $D_{j t}$ denote the dividend of stock j at date $t, j=1, \cdots, J$, and $D_{t} \equiv\left(D_{1 t} ; \cdots ; D_{J t}\right)$ denote the column vector of dividends. ${ }^{2}$ Without loss of generality, in this section we assume that the total number of shares outstanding is one for each stock.

A stock portfolio can be expressed in terms of its shares of each stock, denoted by $S \equiv\left(S_{1} ; \ldots ; S_{J}\right)$, where S_{j} is the number of stock j shares in the portfolio $(j=1, \ldots, J)$. A portfolio of particular importance is the market portfolio, denoted by S_{M}, which is given by

$$
\begin{equation*}
S_{M}=\iota \tag{1}
\end{equation*}
$$

where ι is a vector of 1 's with rank $J . D_{M t} \equiv \iota^{\prime} D_{t}$ gives the dividend of the market portfolio, which is the aggregate dividend.

In addition to the stocks, there is also a risk-free bond that yields a constant, positive interest r per time period.

There are I investors in the economy. Each investor is endowed with equal shares of the stocks and no bond. Every period, investor $i, i=1, \ldots, I$, maximizes his expected utility of the following form:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{t}}\left[-e^{-W_{t+1}^{i}-\left(\lambda_{X} X_{t}+\lambda_{Y} Y_{t}^{i}\right) D_{M t+1}-\lambda_{Z}\left(1+Z_{t}^{i}\right) X_{t+1}}\right] \tag{2}
\end{equation*}
$$

where W_{t+1}^{i} is investor i 's wealth next period, $X_{t}, Y_{t}^{i}, Z_{t}^{i}$ are three one-dimensional state variables, and $\lambda_{X}, \lambda_{Y}, \lambda_{Z}$ are non-negative constants. Apparently, the utility function in (2) is state-dependent. We further assume

$$
\begin{equation*}
\sum_{i=1}^{I} Y_{t}^{i}=\sum_{i=1}^{I} Z_{t}^{i}=0 \tag{3}
\end{equation*}
$$

where $t=0,1, \ldots$.
For simplicity, we assume that all the exogenous shocks, $D_{t}, X_{t},\left\{Y_{t}^{i}, Z_{t}^{i}, i=1, \ldots, I\right\}$, are IID over time with zero means. For tractability, we further assume that D_{t} and X_{t} are

[^2]jointly normally distributed:
\[

u_{t} \equiv\binom{D_{t}}{X_{t}} \stackrel{d}{\sim} N(\cdot, \sigma) \quad where \quad \sigma=\left($$
\begin{array}{cc}
\sigma_{D D} & \sigma_{D X} \tag{4}\\
\sigma_{X D} & \sigma_{X X}
\end{array}
$$\right) .
\]

Without loss of generality, $\sigma_{D D}$ is assumed to be positive definite.

2.2 Discussion

Our model has several features that might seem unusual. Most importantly, investors are assumed to have a myopic, but state-dependent utility function in (2). The purpose for using this utility function is to capture the dynamic nature of the investment problem without explicitly solving a dynamic optimization problem. This utility function should be interpreted as the equivalent of a value function from an appropriately specified dynamic optimization problem (see, for example, Wang, 1994 and Lo and Wang, 2000b). In an earlier draft of the paper, we did specify a canonical dynamic optimization problem for the investors, in which they have state-independent utility over their lifetime consumption. It was shown that the resulting value function, as a function of wealth and the state variables, has the form as the state-dependent utility function in (2). For simplicity in exposition, we directly start with (2).

The state dependence of the utility function has the following properties. The marginal utility of wealth depends on the dividend of the market portfolio (the aggregate dividend), as reflected in the second term in the exponential of the utility function. When the aggregate dividend goes up, the marginal utility of wealth goes down. There are many ways to motivate this type of utility function. For example, the utility can be derived from wealth in reference to the market, not the level of wealth itself (see, for example, Abel, 1990, and Campbell and Cochrane, 1999). Alternatively, if in addition to their stock investments, investors are also exposed to other risks that are correlated to the market (see, for example, Wang, 1994). The marginal utility of wealth also depends on future state variables, in particular X_{t+1}, as reflected in the third term in the exponential of the utility function. The motivation for allowing such a dependence is as follows. Since the state variables determine the stock returns in equilibrium, the value function (indirect utility function) of an investor who optimizes dynamically would depend on these state variables. Without modelling the dynamic opti-
mization problem explicitly, we explicitly impose such a dependence on the (myopic) utility function. This dependence introduces dynamic hedging motives in the investors' portfolio choices (see Merton, 1971, for a discussion on dynamic hedging).

Another simplification in the model is the IID assumption for the state variables. This might leave the impression that the model is effectively static. This impression, however, is false since the state-dependence of investors' utility function introduces important dynamics over time. We can allow richer dynamics for the state variables without changing the main properties of the model.

The particular form of the utility function and the normality of distribution for the state variables are assumed for tractability. These assumptions are restrictive. But we hope with some confidence that the qualitative predictions of the model that we explore in this paper are not sensitive to these assumptions.

In the model, we also assumed an exogenous interest rate for the bond without requiring the bond market to clear. This is a modelling choice we have made in order to simplify our analysis and to focus on the stock market. As will become clear later, changes in the interest rate is not important for the issues we examine in this paper. From an empirical point of view, at the frequency we are interested in (weekly), changes in interest rate are usually small.

2.3 Equilibrium

Let $P_{t} \equiv\left(P_{1 t} ; \ldots ; P_{J t}\right)$ and $S_{t}^{i} \equiv\left(S_{1 t}^{i} ; \ldots ; S_{J t}^{i}\right)$ be the (column) vectors of (ex-dividend) stock prices and investor i 's stock holdings respectively. We now derive the equilibrium of the economy.

Definition 1 An equilibrium is given by a price process $\left\{P_{t}: t=0,1, \ldots\right\}$ and the investors stock positions $\left\{S_{t}^{i}: i=1, \ldots, I ; t=0,1, \ldots\right\}$ such that:

1. S_{t}^{i} solves investor i 's optimization problem:

$$
\begin{align*}
& S_{t}^{i}=\arg \max \mathrm{E}\left[-e^{-W_{t+1}^{i}-\left(\lambda_{X} X_{t}+\lambda_{Y} Y_{t}^{i}\right) D_{M t+1}-\lambda_{Z}\left(1+Z_{t}^{i}\right) X_{t+1}}\right] \tag{5}\\
& \text { s. t. } \\
& W_{t+1}^{i}=W_{t}^{i}+S_{t}^{i \prime}\left[D_{t+1}+P_{t+1}-(1+r) P_{t}\right]
\end{align*}
$$

2. stock market clears:

$$
\begin{equation*}
\sum_{i=1}^{i} S_{t}^{i}=\iota \tag{6}
\end{equation*}
$$

The above definition of equilibrium is standard, except that the bond market does not clear here. As discussed earlier, the interest rate is given exogenously and there is an elastic supply of bonds at that rate.

For $t=0,1, \ldots$, let Q_{t+1} denote the vector of excess dollar returns on the stocks:

$$
\begin{equation*}
Q_{t+1} \equiv D_{t+1}+P_{t+1}-(1+r) P_{t} . \tag{7}
\end{equation*}
$$

Thus, $Q_{j t+1}=D_{j t+1}+P_{j t+1}-(1+r) P_{j t}$ gives the dollar return on one share of stock j in excess of its financing cost for period $t+1$. For the remainder of the paper, we simply refer to $Q_{j t+1}$ as the dollar return of stock j, omitting the qualifier "excess". Dollar return $Q_{j t+1}$ differs from the conventional (excess) return measure $R_{j t+1}$ which is the dollar return normalized by the share price: $R_{j t+1} \equiv Q_{j t+1} / P_{j t}$. We refer to $R_{j t+1}$ simply as the return on stock j in period $t+1$.

We can now state the solution to the equilibrium in the following theorem:

Theorem 1 The economy defined above has a unique linear equilibrium in which

$$
\begin{equation*}
P_{t}=-a-b X_{t} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{t}^{i}=\left(I^{-1}-\lambda_{Y} Y_{t}^{i}\right) \iota-\left[\lambda_{Y}\left(b^{\prime} \iota\right) Y_{t}^{i}+\lambda_{Z} Z_{t}^{i}\right]\left(\sigma_{Q Q}\right)^{-1} \sigma_{Q X} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma_{Q Q} & =\sigma_{D D}-\left(b \sigma_{X D}+\sigma_{D X} b^{\prime}\right)+\sigma_{X}^{2} b b^{\prime} \\
\sigma_{Q X} & =\sigma_{D X}-\sigma_{X}^{2} b \\
a & =\frac{1}{r}\left(\bar{\alpha} \sigma_{Q Q} \iota+\lambda_{z} \sigma_{Q X}\right) \\
b & \left.=\lambda_{X}\left[(1+r)+\lambda_{Z} \sigma_{X D} \iota\right)\right]^{-1} \sigma_{D D} \iota
\end{aligned}
$$

and $\bar{\alpha}=1 / I$.

The nature of the equilibrium is intuitive. In our model, an investor's utility function depends not only on his wealth, but also on the stock payoffs directly. In other words, even he holds no stocks, his utility fluctuates with the payoff of the stocks. Such a "market spirit" affects his demand for the stocks, in addition to the usual factors such as the stocks' expected returns. The market spirit of investor i is measured by $\left(\lambda_{X} X_{t}+\lambda_{Y} Y_{t}^{i}\right)$. When $\left(\lambda_{X} X_{t}+\lambda_{Z} Y_{t}^{i}\right)$ is positive, investor i extracts positive utility when the aggregate stock payoff is high. Such a positive "attachment" to the market makes holding stocks less attractive to him. When $\left(\lambda_{X} X_{t}+\lambda_{Y} Y_{t}^{i}\right)$ is negative, he has a negative attachment to the market, which makes holding stocks more attractive. Such a market spirit at the aggregate level, which is captured by X_{t}, affects the aggregate stock demand, which in turn affects their equilibrium prices. Given the particular form of the utility function, X_{t} affects the equilibrium stock prices linearly. The idiosyncratic differences among investors in their market spirit, which are captured by Y_{t}^{i}, offset each other at the aggregate level, thus do not affect the equilibrium stock prices. However, they do affect individual investors' stock holdings. As the first term of (9) shows, investors with positive Y_{t}^{i} 's hold less stocks (they are already happy by just "watching" the stocks paying off).

Since the aggregate utility variable X_{t} is driving the stock prices, it is also driving the stock returns. In fact, the expected returns on the stocks are changing with X_{t} (see the discussion in the next section). The form of the utility function further states that the investors utility function directly depends on X_{t}, which fully characterizes the market conditions investors face, in particular, the investment opportunities. Such a dependence endogenously arises when investors optimize dynamically. In our setting, however, we assume that investors optimize myopically but insert such a dependence directly into the utility function. This dependence induces investors to care about future market conditions when choose their portfolios. In particular, they prefer those portfolios whose returns can help them to smooth fluctuations in their utility due to changes in market conditions. Such a preference gives rise to the hedging component in their asset demand, which is captured by the second term in (9).

3 The Behavior of Returns and Volume

Given the intertemporal CAPM defined above, we can derive its implications on the behavior of return and volume. For the stocks, their dollar return vector can be re-expressed as follows:

$$
\begin{equation*}
Q_{t+1}=r a+(1+r) b X_{t}+\tilde{Q}_{t+1} \tag{10}
\end{equation*}
$$

where $\tilde{Q}_{t+1} \equiv D_{t+1}-b Z_{t+1}$ denotes the vector of unexpected dollar returns on the stocks, which are IID over time with zero mean. Equation (10) shows that the expected returns on the stocks change over time. In particular, they are driven by a single state variable X_{t}.

The investors stock holdings can be expressed in the following form:

$$
\begin{equation*}
S_{t}^{i}=h_{M t}^{i} \iota+h_{H t}^{i} S_{H} \quad \forall i=1,2, \ldots, I \tag{11}
\end{equation*}
$$

where $h_{M t}^{i} \equiv I^{-1}-\lambda_{Y} Y_{t}^{i}, h_{H t}^{i} \equiv \lambda_{Y}\left(b^{\prime} \iota\right) Y_{t}^{i}-\lambda_{z} Z_{t}^{i}$, and

$$
\begin{equation*}
S_{H} \equiv\left(\sigma_{Q Q}\right)^{-1} \sigma_{Q X} \tag{12}
\end{equation*}
$$

Equation (11) simply states that two-fund separation holds for the investors' stock investments. That is, the stock investments of all investors can be viewed as investments in two common funds: the market portfolio ι and the hedging portfolio $S_{H} .{ }^{3}$ In our current model, these two portfolios, expressed in terms of stock shares, are constant over time.

The particular structure of the returns and the investors' portfolios lead to several interesting predictions about the behavior of volume and returns. We present these predictions through a set of propositions.

3.1 The Cross Section of Volume

Given the heterogeneity in their preferences which change over time, investors trade among themselves to achieve their optimal stock holdings. The volume of trade can be measure by the turnover ratio. Since we have normalized the total number of shares outstanding to be

[^3]one for all stocks, the turnover of a stock, say, stock j, is given by
\[

$$
\begin{equation*}
\tau_{j t} \equiv \frac{1}{2} \sum_{i=1}^{I}\left|\left(h_{M t}^{i}-h_{M t-1}^{i}\right)+\left(h_{H t}^{i}-h_{H t-1}^{i}\right) S_{H j}\right| \quad \forall j=1, \ldots, J . \tag{13}
\end{equation*}
$$

\]

Let τ_{t} denote the vector of turnover for all stocks. We have the following proposition on the cross-section of volume:

Proposition 1 When investors' trading in the hedging portfolio is small relative to their trading in the market portfolio, the two-fund separation in their stock holdings leads to an approximate two-factor structure for stock turnover:

$$
\begin{equation*}
\tau_{t} \approx \iota F_{M t}+S_{H} F_{H t} \tag{14}
\end{equation*}
$$

where

$$
F_{M t}=\frac{1}{2} \sum_{i=1}^{I}\left|h_{M t}^{i}-h_{M t-1}^{i}\right| \quad \text { and } \quad F_{H t}=\frac{1}{2} \sum_{i=1}^{I}\left(h_{H t}^{i}-h_{H t-1}^{i}\right) \operatorname{sgn}\left(h_{H t}^{i}-h_{H t-1}^{i}\right) .
$$

In the special case when one-fund separation holds for stock holdings (when $X_{t}=0 \quad \forall t$), turnover would have an exact one-factor structure, $\tau_{t}=\iota F_{M t}$. Moreover, the loading of individual turnover on the common factor is identical. In other words, the turnover is identical cross all stocks. This is not surprising. In the case of one-fund separation for stock investments, investors trade in one stock portfolio, which has to be the market portfolio. Thus, they trade all the stocks in same proportions (in shares). Consequently, the turnover must be the same for all stocks. ${ }^{4}$

In the general case when two-fund separation holds for stock investments, turnover has an approximate two-factor structure as given in (14). It is important to note that the loading of stock j 's turnover on the second factor is proportional to its share weight in the hedging portfolio. Thus, empirically if we can identify the two common factors, $F_{M t}$ and $F_{H t}$, the stocks' loadings on the second factor allow us to identify the hedging portfolio. In our empirical analysis, we explore this information that the cross-section of volume conveys. As we discuss below, the hedging portfolio has important properties that allow us to better understand the behavior of returns. Merton (1971) has discussed the properties of hedging portfolios in a

[^4]continuous-time framework as a characterization of equilibrium. Our discussion here follows Merton in spirit, but is in a discrete-time, equilibrium environment.

3.2 Time Series Implications for the Hedging Portfolio

By the definition of the hedging portfolio in (12), it is easy to show that its current return gives the best forecast of future market return.

Let $Q_{M t+1}$ denote the dollar return on the market portfolio in period $t+1$ and $Q_{H t+1}$ denote the dollar return on the hedging portfolio. Then,

$$
\begin{equation*}
Q_{M t+1}=\iota^{\prime} Q_{t+1} \quad \text { and } \quad Q_{H t+1}=S_{H}^{\prime} Q_{t+1} . \tag{15}
\end{equation*}
$$

For an arbitrary portfolio S, its dollar return in period t, which is $Q_{t} \equiv S^{\prime} Q_{t}$, can serve as a predictor for the dollar of the market next period:

$$
Q_{M t+1}=\delta_{0}+\delta_{1} Q_{t}+\varepsilon_{M t+1} .
$$

The predictive power of S is measured by the R^{2} of the above regression. We can solve for the portfolio that maximizes the R^{2}. The solution, up to a scaling constant, is the hedging portfolio. Thus, we have the following result:

Proposition 2 Among the returns of all portfolios, the dollar return of the hedging portfolio, S_{H}, provides the best forecast for the future dollar return of the market.

In other words, if we regress the market dollar return on the lagged dollar return of any portfolios, the hedging portfolio gives the highest R^{2}.

3.3 Cross-Sectional Implications for the Hedging Portfolio

We now turn to examine the predictions of our model on the cross-section of returns. For expositional simplicity, we introduce some additional notation. Let $Q_{p t+1}$ be the dollar return of a stock or a portfolio (of stocks). $\tilde{Q}_{p t+1} \equiv Q_{p t+1}-\mathrm{E}_{\mathrm{t}}\left[Q_{p t+1}\right]$ then denotes its unexpected dollar return and \bar{Q}_{p} its unconditional mean. Thus, $\tilde{Q}_{M t+1}$ and $\tilde{Q}_{H t+1}$ denote, respectively, the unexpected dollar returns on the market portfolio and the hedging portfolio, and

$$
\sigma_{M}^{2} \equiv \operatorname{Var}\left[\tilde{Q}_{M t+1}\right], \quad \sigma_{H}^{2} \equiv \operatorname{Var}\left[\tilde{Q}_{H t+1}\right], \quad \sigma_{M H} \equiv \operatorname{Cov}\left[\tilde{Q}_{M t+1}, \tilde{Q}_{H t+1}\right]
$$

denote their conditional variances and covariances. It is easy to show that

$$
\sigma_{M}^{2}=\iota^{\prime} \sigma_{Q Q} \iota, \quad \sigma_{H}^{2}=\sigma_{X Q}\left(\sigma_{Q Q}\right)^{-1} \sigma_{Q X}, \quad \sigma_{M H}=\iota^{\prime} \sigma_{Q X}
$$

where $\sigma_{Q Q}$ and $\sigma_{Q X}$ are given in Theorem 1. From Theorem 1, we have

$$
\begin{gather*}
\bar{Q}=\bar{\alpha} \sigma_{Q Q} \iota+\lambda_{z} \sigma_{Q X} \tag{16a}\\
\bar{Q}_{M}=\bar{\alpha} \sigma_{M}^{2}+\lambda_{z} \sigma_{M H} \tag{16b}\\
\bar{Q}_{H}=\bar{\alpha} \sigma_{M H}+\lambda_{z} \sigma_{H}^{2} . \tag{16c}
\end{gather*}
$$

Equation (16) characterizes the cross-sectional variation in the stocks' expected dollar returns.

In order to develop more intuition about (16), we first consider the special case when $X_{t}=0 \forall t$. In this case, returns are IID over time. The risk of a stock is measured by its co-variability with the market portfolio. We have the following result:

Proposition 3 When $X_{t}=0 \quad \forall t$, we have

$$
\begin{equation*}
\mathrm{E}\left[\tilde{Q}_{t+1} \mid \tilde{Q}_{M t+1}\right]=\beta_{M} \tilde{Q}_{M t+1} \tag{17}
\end{equation*}
$$

where

$$
\beta_{M} \equiv \operatorname{Cov}\left[\tilde{Q}_{t+1}, \tilde{Q}_{M t+1}\right] / \operatorname{Var}\left[\tilde{Q}_{M t+1}\right]=\sigma_{D D} \iota /\left(\iota^{\prime} \sigma_{D D} \iota\right)
$$

is the vector of the stocks' market betas. Moreover,

$$
\begin{equation*}
\bar{Q}=\beta_{M} \bar{Q}_{M} \tag{18}
\end{equation*}
$$

where $\bar{Q}_{M}=\bar{\alpha} \sigma_{M}^{2} \geq 0$.
Obviously in this case, the CAPM holds for the dollar returns. It can be shown that it also holds for the returns.

In the general case when X_{t} changes over time, there is an additional risk due to changing market conditions (dynamic risk). Moreover, this risk is represented by the dollar return of the hedging portfolio, which is denoted by $Q_{H t} \equiv S_{H}^{\prime} Q_{t}$. In this case, the risk of a stock is measured by its risk with respect to the market portfolio and its risk with respect to the
hedging portfolio. In other words, there are two risk factors, the (contemporaneous) market risk and the (dynamic) risk of changing market conditions. The expected returns of the stocks are then determined by their exposures to these two risks and the associated risk premia. The result is summarized in the following proposition:

Proposition 4 When X_{t} changes over time, we have

$$
\begin{equation*}
\mathrm{E}\left[\tilde{Q}_{t+1} \mid \tilde{Q}_{M t+1}, \tilde{Q}_{H t+1}\right]=\beta_{M} \tilde{Q}_{M t+1}+\beta_{H} \tilde{Q}_{H t+1} \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
\left(\beta_{M}, \beta_{H}\right) & =\operatorname{Cov}\left[\tilde{Q}_{t+1},\left(\tilde{Q}_{M t+1}, \tilde{Q}_{H t+1}\right)\right]\left\{\operatorname{Var}\left[\left(\tilde{Q}_{M t+1}, \tilde{Q}_{H t+1}\right)\right]\right\}^{-1} \\
& =\left(\sigma_{Q M}, \sigma_{Q H}\right)\left(\begin{array}{cc}
\sigma_{M}^{2} & \sigma_{M H} \\
\sigma_{M H} & \sigma_{H}^{2}
\end{array}\right)^{-1}
\end{aligned}
$$

is the vector of the stocks' market betas and hedging betas. Moreover, The stocks' expected dollar returns satisfy

$$
\begin{equation*}
\bar{Q}=\beta_{M} \bar{Q}_{M}+\beta_{H} \bar{Q}_{H} \tag{20}
\end{equation*}
$$

where $\bar{Q}_{M}=\bar{\alpha} \sigma_{M}^{2}+\lambda_{z} \sigma_{M H}$ and $\bar{Q}_{H}=\bar{\alpha} \sigma_{M H}+\lambda_{z} \sigma_{H}^{2}$.

Thus, a stock's risk is measured by its beta with respect to the market portfolio and its beta with respect to the hedging portfolio. The expected dollar return on the market portfolio gives the premium of the market risk and the expected dollar return on the hedging portfolio gives the premium of the dynamic risk. (20) simply states that the premium on a stock is then given by the sum of the product of its exposure to each risk and the associated premium.

Under constant market conditions $\left(X_{t}=0, \quad \forall t\right)$, the premium for the market risk, \bar{Q}, is always positive. However, under changing market conditions, the premium for the market risk need not always be positive. In particular, when $\sigma_{M H}$ is significantly negative (λ_{z} is assumed to be positive), \bar{Q} can become negative. This is simply because that the premium is determined by the covariance between the market return and investors' marginal utility, which depends on both their wealth and the other state variables. The positive covariance between the market return and investors' wealth gives a positive premium to the market portfolio. But the negative covariance between the market return and the state
variable X_{t} that drives the utility function gives a negative premium. The total premium on the market portfolio is the sum of these two components, which can be negative when the second component dominates.

The pricing relation we obtain in Proposition 4 is in the spirit of Merton's Intertemporal CAPM in a continuous-time framework (Merton, 1971). However, it is important to note that Merton's result is a characterization of the pricing relation under a (class of) proposed price processes and no equilibrium is provided to support these price processes. In contrast, our pricing relation is derived from a dynamic equilibrium model. In this sense, we model provides an particular equilibrium model for which Merton's characterization holds.

If we can identify the hedging portfolio empirically, its return provides the second risk factor. Differences in the stocks' expected returns can then be fully explained by their exposures to the two risks (market risk and dynamic risk), as measured by their market betas and hedging betas.

4 An Empirical Implementation

Our empirical analysis of the implications of the model outlined in Sections 2 and 3 is comprised of three parts. In the first part, we exploit the model's cross-sectional implications to construct the hedging portfolio from volume data. In the second part, we examine the ability of the hedging portfolio to forecast future market-portfolio returns. And in the third part, we investigate the role of the hedging-portfolio return as a risk factor in explaining the cross-sectional variation of expected returns. We focus on the first part in this section, and consider the second and third parts in Sections 5 and 6.

4.1 The Data

We use an extract of the CRSP Daily Master File called the "MiniCRSP Returns and Turnover" database described in Lo and Wang (2000a). This extract consists of weekly return and turnover series for individual stocks traded on NYSE and AMEX from July 1962 to December 1996 (1800 weeks). We choose weekly holding periods as a compromise between maximizing the sample size and minimizing the impact of high-frequency return and turnover fluctuations that are likely to be of less direct economic consequence. We also
limit our focus to ordinary common shares (CRSP sharecodes 10 and 11 only).
As documented in Lo and Wang (2000a) and in many other studies, aggregate turnover seems to be nonstationary, exhibiting a significant time trend and time-varying volatilities. For example, the average weekly turnover in the period from 1962 to 1966 is 0.57%, but grows to 1.31% in the period from 1992 to 1996, and the volatilities during these two periods were 0.07% and to 0.23%, respectively. Detrending has been advocated by several other authors (e.g., Andersen, 1996 and Gallant, Rossi, and Tauchen 1992), and there is no doubt that such procedures may help to induce more desirable time series properties for turnover. However, Lo and Wang (2000a) show that the different types of detrending methods, e.g., linear, logarithmic, or quadratic, yield detrended time series with markedly different statistical properties. Since we do not have any specific priors or theoretical justification for the kinds of nonstationarities in aggregate turnover, we use the raw data in our empirical analysis. To address the issue of nonstationarities, we conduct our empirical analysis on five-year subperiods only. ${ }^{5}$ For notational convenience, we shall sometimes refer to these subperiods by the following numbering scheme:

Subperiod 1:	July 1962 to December 1966
Subperiod 2:	January 1967 to December 1971
Subperiod 3:	January 1972 to December 1976
Subperiod 4:	January 1977 to December 1981
Subperiod 5:	January 1982 to December 1986
Subperiod 6:	January 1987 to December 1991
Subperiod 7:	January 1992 to December 1996

4.2 Construction of the Hedging Portfolio

Our first step in empirically implementing the intertemporal model of Sections 2 and 3 is to construct the hedging portfolio from turnover data. From (14), we know that in the two-factor model for turnover in Proposition 1, stock j 's loading on the second factor $F_{H t}$ yields the number of shares (as a fraction of its total number of shares outstanding) of stock j in the hedging portfolio. In principle, this identifies the hedging portfolio. However, we face two challenges in practice. First, the exact two-factor specification (14) is, at best, an

[^5]approximation for the true data-generating process of turnover. Second, the two common factors are generally not observable. We address both of these problems in turn.

A more realistic starting point for modelling turnover is an approximate two-factor model:

$$
\begin{equation*}
\tau_{j t}=F_{M t}+\theta_{H j} F_{H t}+\varepsilon_{j t}, \quad j=1, \ldots, J \tag{21}
\end{equation*}
$$

where $F_{M t}$ and $F_{H t}$ are the two factors that generate trading in the market portfolio and the hedging portfolio, respectively, $\theta_{H j}$ is the percentage of shares of stock j in the hedging portfolio (as a percentage of its total number of shares outstanding), and $\varepsilon_{j t}$ is the error term, which is assumed to be independent across stocks.

Cross-sectional independence of the errors is a restrictive assumption. If, for example, there are other common factors in addition to $F_{M t}$ and $F_{H t}$, then $\varepsilon_{j t}$ is likely to be correlated across stocks. The appropriateness of the independence assumption is an empirical matter, and in Lo and Wang (2000a), we have found evidence supporting the two- factor structure. In particular, the covariance matrices of turnover for a collection of turnover-beta-sorted portfolios generally exhibit two large eigenvalues that dominate the rest. This provides limited justification for assuming that $\varepsilon_{j t}$ is independent across stocks.

Since we do not have any sufficient theoretical foundation to identify the two common factors $F_{M t}$ and $F_{H t}$, we use two turnover indexes as their proxies: the equally-weighted and share-weighted turnover of the market. Specifically. let N_{j} denote the total number of shares outstanding for stock j and $N \equiv \sum_{j} N_{j}$ the total number of shares outstanding of all stocks. The two turnover indexes are

$$
\begin{align*}
\tau_{t}^{E W} & \equiv \frac{1}{J} \sum_{j=1}^{J} \tau_{j t}=F_{M t}+n^{E W} F_{H t}+\varepsilon_{t}^{E W} \tag{22a}\\
\tau_{t}^{S W} & \equiv \sum_{j=1}^{J} \frac{N_{j}}{N} \tau_{j t}=F_{M t}+n^{S W} F_{H t}+\varepsilon_{t}^{S W} \tag{22b}
\end{align*}
$$

where

$$
n^{E W}=\frac{1}{J} \sum_{j=1}^{J} \theta_{H j} \text { and } n^{S W}=\sum_{j=1}^{J} \frac{N_{j}}{N} \theta_{H j}
$$

are the average percentage of shares of each stock in the hedging portfolio and the percentage of all shares (of all stocks) in the hedging portfolio, respectively, and $\varepsilon_{t}^{E W}$ and $\varepsilon_{t}^{S W}$ are the
error terms for the two indexes. ${ }^{6}$ Since the error terms in (21) are assumed to be independent across stocks, the error terms of the two indexes, which are weighted averages of the error terms of individual stocks, become negligible when the number of stocks is large. For the remainder of our analysis, we shall ignore them.

Simple algebra then yields the following relation between individual turnover and the two indexes:

$$
\begin{equation*}
\tau_{j t}=\beta_{\tau j}^{S W} \tau_{t}^{S W}+\beta_{\tau j}^{E W} \tau_{t}^{E W}+\varepsilon_{j t} \tag{23}
\end{equation*}
$$

where

$$
\beta_{\tau j}^{E W}=\frac{n^{E W}-\theta_{H j}}{n^{E W}-n^{S W}} \text { and } \beta_{\tau j}^{S W}=\frac{\theta_{H j}-n^{S W}}{n^{E W}-n^{S W}} .
$$

These expressions imply that the following relations for $\beta_{\tau j}^{E W}$ and $\beta_{\tau j}^{S W}$ must hold:

$$
\begin{align*}
\beta_{\tau j}^{E W}+\beta_{\tau j}^{S W} & =1 \quad \forall j \tag{24a}\\
\frac{1}{J} \sum_{j=1}^{J} \beta_{\tau j}^{E W} & =1 . \tag{24b}
\end{align*}
$$

These relations should come as no surprise since the two-factor specification for turnover, (21), has only J parameters $\left\{\theta_{H j}\right\}$, whereas the transformed two-factor model (23) has two sets of parameters, $\left\{\beta_{\tau j}^{E W}\right\}$ and $\left\{\beta_{\tau j}^{S W}\right\}$. The first relation, (24a), exactly reflects the dependence between the parameters and the second relation, (24b), comes from the fact that the coefficients in (23) are independent of the scale of $\left\{\theta_{H j}\right\}$.

Using the MiniCRSP volume database, we can empirically estimate $\left\{\beta_{\tau j}^{E W}\right\}$ and $\left\{\beta_{\tau j}^{S W}\right\}$ by estimating the following constrained regression:

$$
\begin{align*}
\tau_{j t}= & \beta_{\tau j}^{S W} \tau_{t}^{S W}+\beta_{\tau j}^{E W} \tau_{t}^{E W}+\varepsilon_{j t}, \quad j=1, \ldots, J \tag{25a}\\
\text { s.t. } & \beta_{\tau j}^{E W}+\beta_{\tau j}^{S W}=1 \tag{25b}\\
& \sum_{j=1}^{J} \beta_{\tau j}^{E W}=J . \tag{25c}
\end{align*}
$$

From the estimates $\left\{\widehat{\beta}_{\tau j}^{E W}\right\}$, we can construct estimates of the portfolio weights of the hedging

[^6]portfolio in the following manner
\[

$$
\begin{equation*}
\widehat{\theta}_{H j}=\left(n^{E W}-n^{S W}\right) \widehat{\beta}_{\tau j}^{E W}+n^{S W} . \tag{26}
\end{equation*}
$$

\]

However, there are two remaining parameters, $n^{E W}$ and $n^{S W}$, that need to be estimated. It should be emphasized that these two remaining degrees of freedom are inherent in the model (21). When the two common factors are not observed, the parameters $\left\{\theta_{H} j\right\}$ are only identified up to a scaling constant and a rotation. Clearly, (21) is invariant when $F_{H t}$ is rescaled as long as $\left\{\theta_{H j}\right\}$ is also rescaled appropriately. In addition, when the two factors are replaced by their linear combinations, (21) remains formally the same as long as $\left\{\theta_{H j}\right\}$ is also adjusted with an additive constant. ${ }^{7}$ Since the hedging portfolio $\left\{\theta_{H j}\right\}$ is defined only up to a scaling constant, we let

$$
\begin{align*}
n^{S W} & =1 \tag{27a}\\
n^{E W}-n^{S W} & =\phi \tag{27b}
\end{align*}
$$

where ϕ is a parameter that we calibrate to the data (see Section 5). This yields the final expression for the J components of the hedging portfolio:

$$
\begin{equation*}
\widehat{\theta}_{H j}=\phi \widehat{\beta}_{\tau j}^{E W}+1 . \tag{28}
\end{equation*}
$$

The normalization $n^{S W}=1$ sets the total number of shares in the portfolio to a positive value. If $\phi=0$, the portfolio has equal percentage of all the shares of each company, implying that it is the market portfolio. Nonzero values of ϕ represent deviations from the market portfolio.

To estimate $\left\{\beta_{\tau j}^{E W}\right\}$ and $\left\{\beta_{\tau j}^{S W}\right\}$, we first construct the two turnover indexes. Figure 1 plots their time series over the entire sample period from 1962 to 1996. We estimate (25a)-(25b) for each of the seven five-year subperiods, ignoring the global constraint $(25 \mathrm{c}) .{ }^{8}$ Therefore, we estimate constrained linear regressions of the weekly turnover for each stock on equal-

[^7]and share-weighted turnover indexes in each of the seven five-year subperiods of our sample.
Figure 2 plots the histogram of $\left\{\widehat{\beta}_{\tau j}^{E W}\right\}$ for each of the subperiods. There is clearly a wide distribution of estimated coefficients, ranging from -2 to 10 in the first four subperiods and - 10 to 10 in the last three. Outliers in the raw turnover data are often the source of these large estimates (see Lo and Wang, 2000a, for a more detailed discussion of outliers).

Table 1 reports summary statistics for these constrained regressions. To provide a clearer sense of the dispersion of these regressions, we first sort them into deciles based on $\left\{\widehat{\beta}_{\tau j}^{E W}\right\}$, and then compute the means and standard deviations of the estimated coefficients $\left\{\widehat{\beta}_{\tau j}^{E W}\right\}$ and $\left\{\widehat{\beta}_{\tau j}^{S W}\right\}$, their t-statistics, and the $\bar{R}^{2} \mathrm{~s}$ within each decile. The t-statistics indicate that the estimated coefficients are generally significant - even in the fifth and sixth deciles, the average t-statistic for $\left\{\widehat{\beta}_{\tau j}^{E W}\right\}$ is 4.585 and 6.749 , respectively (we would, of course, expect significant t-statistics in the extreme deciles even if the true coefficients were zero, purely from sampling variation). The \bar{R}^{2} s also look impressive, however, they must be interpreted with some caution because of the imposition of the constraint (25b), which can yield \bar{R}^{2} greater than unity and less than zero. ${ }^{9}$ Table 1 shows that negative $\bar{R}^{2} \mathrm{~S}$ appear mainly in the two extreme deciles, except in the last subperiod when they are negative for all the deciles, presumably an indication that the constraint is not consistent with the data in this last subperiod.

For comparison, we estimate the unconstrained version of (25a) and compute the same summary statistics, reported in Table 2. Table 2 also reports the mean and standard deviation within each decile of p-values corresponding to the statistic that (25b) holds. Except for the last subperiod, the constraint seems to be reasonably consistent with the data, with average p-values well above 5% for all but the extreme deciles in most subperiod. For example, in the first subperiod, the average p-values range from a minimum of 4.0% in decile 1 to a maximum of 32.4% in decile 6 , and with a value of 19.4% in decile 10 . However, in the last subperiod, the average p-value is less than 5% deciles $2-6$, and close to significance for most of the other deciles, which explains the negative \bar{R}^{2} s in Table 1.

Without the constraint, the \bar{R}^{2} s in Table 2 are well behaved, and of similar magnitude to those in Table 1 that are between 0% and 100%, ranging from 40% to 60%, even in the

[^8]last subperiod. Clearly the two-factor model of turnover accounts for a significant amount of variation in the weekly turnover of individual stocks.

5 The Forecast Power of the Hedging Portfolio

Having constructed the hedging portfolio up to a parameter ϕ to be determined, we can examine its time-series properties as predicted by the model of Sections 2 and 3. In particular, in this section we focus on the degree to which the the hedging portfolio can predict future stock returns, especially the return on the market portfolio. We first construct the returns of the hedging portfolio in Section 5.1 by calibrating ϕ, and then compare its forecast power with other factors in Sections 5.2 and 5.3.

5.1 Hedging-Portfolio Returns

To construct the return on the hedging portfolio, we begin by calculating its dollar value and dollar returns. Let k denote subperiod $k, k=2, \ldots, 7, V_{j t}(k)$ denote the total market capitalization of stock j at time period t (the end of week t) in subperiod $k, Q_{j t}(k)$ denote its dividend-adjusted excess dollar return for the same period, and $R_{j t}(k)$ denote the dividend-adjusted excess return, and $\theta_{j}(k)$ the estimated share (as fraction of its total shares outstanding) in the hedging portfolio in subperiod k.

For stock j to be included in the hedging portfolio in subperiod k, which we shall refer to as the "testing period", we require it to have volume data for at least one third of the sample in the previous subperiod $(k-1)$, which we call the "estimation period". Among the stocks satisfying this criteria, we eliminate those ranked in the top and bottom 0.5% according to their volume betas (or their share weights in the hedging portfolio) to limit the potential impact of outliers. ${ }^{10}$ We let $J_{t}(k)$ denote the set of stocks that survive these two filters and that have price and return data for week t of subperiod k. The hedging portfolio in week t of sub-period k is then given by:

$$
\theta_{H j t}(k)= \begin{cases}\widehat{\theta}_{H j}, & j \in J_{t}(k) \tag{29}\\ 0, & j \notin J_{t}(k)\end{cases}
$$

[^9]The dollar return of the hedging portfolio for week t follows naturally:

$$
\begin{equation*}
Q_{H t}(k) \equiv \sum_{j} \theta_{H j t}(k) V_{j t} R_{j t} \tag{30}
\end{equation*}
$$

and the (rate of) return of the hedging portfolio is given by

$$
\begin{equation*}
R_{H t}(k) \equiv \frac{Q_{H j t}(k)}{V_{H t}(k)} \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{H t}(k) \equiv \sum_{j} \theta_{H j t}(k) V_{j t-1} \tag{32}
\end{equation*}
$$

is the value of the hedging portfolio at the beginning of the week.
The procedure outlined above yields the return and the dollar return of the hedging portfolio up to the parameter ϕ, which must be calibrated. To do so, we exploit a key property of the hedging portfolio: its return is the best forecaster of future market returns (see Section 3). Therefore, for a given value of ϕ, we can estimate the following regression

$$
\begin{equation*}
R_{M t+1}=\delta_{0}+\delta_{1}\left\{R_{H t} \text { or } Q_{H t}\right\}+\varepsilon_{M t+1} \tag{33}
\end{equation*}
$$

where the single regressor is either the return of the hedging portfolio $R_{H t}$ or its dollar return for a given choice of ϕ, and then vary ϕ to maximize the $\bar{R}^{2} .{ }^{11}$

Figures 3 and 4 show how the \bar{R}^{2} from the regression of $R_{M t}$ on the lagged return and dollar-return, respectively, of the hedging portfolio varies with the value of ϕ in each of the subperiods. In all cases, there is a unique global maximum, from which we obtain ϕ. However, for some values of ϕ, the value of the hedging portfolio changes sign, and in these cases, defining the return on the portfolio becomes problematic. Therefore, we eliminate these values from consideration, and for all subperiods except subperiod 4 and 7 (i.e., subperiods $2,3,5,6$), the omitted values of ϕ do not seem to affect the choice of ϕ for the maximum R^{2}.

For subperiods 2 to 7 , the values for ϕ that give the maximum R^{2} are 1.25, 4.75, 1.75, 47,38 , and 0.25 , respectively, using $R_{H t}$ as the predictor. Using $Q_{H t}$, the values of ϕ are 1.5,

[^10]$4.25,2,20,27$, and 0.75 , respectively. With these values of ϕ in hand, we have fully specified the hedging portfolio, its return and dollar return. Table 3 reports the summary statistics for the return and dollar return on the hedging portfolio.

5.2 Optimal Forecasting Portfolios (OFPs)

Having constructed the return of the hedging portfolio in Section 5.1, we wish to compare its forecast power to those of other factors. According to Proposition 2, the returns of the hedging portfolio should outperform the returns of any other portfolios in predicting future market returns. Specifically, if we regress $R_{M t}$ on the lagged return of any arbitrary portfolio p, the \bar{R}^{2} should be less than that of (33).

It is impractical to compare (33) to all possible portfolios, and uninformative to compare it to random portfolios. Instead, we need only make comparisons to "optimal forecast portfolios", portfolios that are optimal forecasters of $R_{M t}$, since by construction, no other portfolios can have higher levels of predictability than these. The following proposition shows how to construct optimal forecasting portfolios (OFPs) (see Lo and Wang, 2001 for details):

Proposition 5 Let Γ_{0} and Γ_{1} denote the contemporaneous and first-order autocovariance matrix of the vector of all returns. For any arbitrary target portfolio q with weights $w_{q}=$ $\left(w_{q 1} ; \ldots ; w_{q N}\right)$, define $A \equiv \Gamma_{0}{ }^{-1} \Gamma_{1} w_{q} w_{q}{ }^{\prime} \Gamma_{1}{ }^{\prime}$. The optimal forecast portfolio of w_{q} is given by the normalized eigenvector of A corresponding to its largest eigenvalue.

Since Γ_{0} and Γ_{1} are unobservable, they must be estimated using historical data. Given the large number of stocks in our sample (over 2,000 in each subperiod) and the relatively short time series in each subperiod (261 weekly observations), the standard estimators for Γ_{0} and Γ_{1} are not viable. However, it is possible to construct OFPs from a much smaller number of "basis portfolios", and then compare the predictive power of these OFPs to the hedging portfolio. As long as the basis portfolios are not too specialized, the $\bar{R}^{2} \mathrm{~s}$ are likely to be similar to those obtained from the entire universe of all stocks.

We form several sets of basis portfolios by sorting all the J stocks into K groups of equal numbers $(K \leq J)$ according to: market capitalization, market beta, and SIC codes, and then construct value-weighted portfolios within each group. ${ }^{12}$ This procedure yields K

[^11]basis portfolios for which the corresponding Γ_{0} and Γ_{1} can be estimated using the portfolios' weekly returns within each subperiod. Based on the estimated autocovariance matrices, the OFP can be computed easily according to Proposition 5.

In selecting the number of basis portfolios K, we face the following trade-off: fewer portfolios yields better sampling properties for the covariance matrix estimators, but less desirable properties for the OFP since the predictive power of the OFP is obviously maximized when when $K=J$. As a compromise, for the OFPs based market capitalization and market betas, we choose K to be $10,15,20$, and 25 . For the OFP based on SIC codes, we choose 13 industry groupings, described in more detail below.

Specifically, for each five-year subperiod in which we wish to evaluate the forecast power of the hedging portfolio (the testing period), we use the previous five-year subperiod (the estimation period) to estimate the OFPs. For the OFP based on 10 market-capitalizationsorted portfolios, which we call "CAP10", we construct 10 value-weighted portfolios each week, one for each market-capitalization decile. Market-capitalization deciles are recomputed each week, and the time series of decile returns form the 10 basis portfolio returns of CAP10, with which we can estimate Γ_{0} and Γ_{1}. To compute the OFP, we also require the weights ω_{q} of the target portfolio, in this case the market portfolio. Since the testing period follows the estimation period, we use the market capitalization of each group in the last week of the estimation period to map the weights of the market portfolio into a 10×1-vector of weights for the 10 basis portfolios. The weights of the OFP for the basis portfolios CAP10 follow immediately from Proposition 5. The same procedure is used to form OFPs for CAP15, CAP20, and CAP25 basis portfolios.

The OFPs of market-beta-sorted basis portfolios are constructed in a similar manner. We first estimate the market betas of individual stocks in the estimation period, sort them according to their estimated betas and then form small groups of basis portfolios, calculating value-weighted returns for each group. We consider 10, 15, 20 and 25 groups, denoted by "Beta10", "Beta15", and so on. The same procedure is then followed to construct the OFPs for each of these sets of basis portfolios.

[^12]Finally, the industry portfolios are based on SIC-code groupings. The first two digits of the SIC code yield sixty to eighty industry categories, depending on the sample period, and some of categories contain only one or two stocks. On the other, the first digit yields only eight broad industry categories. As a compromise, we use a slightly more disaggregated grouping of 13 industries, given by the following correspondence: ${ }^{13}$

$\#$	SIC Codes	Description
1	$1-14$	
2	$15-19,30,32-34$	Agriculture, forest, fishing, mining
3	$20-21$	Fonstruction, basic materials (steel, glass, concrete, etc.)
4	$22,23,25,31,39$	Textiles, clobacco
5	$24,26-27$	Logging, paper, printing, publishing
6	28	Chemicals
7	29	Petroleum
8	$35-36,38$	Machinery and equipment supply, including computers
9	$37,40-47$	Transportation-related
10	$48-49$	Utilities and telecommunications
11	$50-59$	Wholesale distributors, retail
12	$60-69$	Financial
13	$70-89,98-99$	Recreation, entertainment, services, conglomerates, etc.

Each week, stocks are sorted according to their SIC codes into the 13 categories defined above, and value-weighted returns are computed for each group, yielding the 13 basis portfolios which we denote by "SIC13". The autocovariance matrices are then estimated and the OFP constructed according to Proposition 5.

5.3 Hedging Portfolio Return as A Predictor of Market Returns

Table 4 reports the results of the regressions of $R_{M t}$ on various lagged OFP returns and on the hedging portfolios $R_{H t}$ and $Q_{H t}$. For completeness, we have also included four additional regressions, with lagged value- and equal-weighted CRSP index returns, the logarithm of the reciprocal of lagged market-capitalization, and the lagged three-month constant-maturity Treasury bill return as predictors. ${ }^{14}$ Table 4 shows that the hedging portfolios outperforms

[^13]all of the other competing portfolios in forecasting future market returns in three of the six subperiods (subperiods 2, 4, and 6). In subperiod 3, only one OFP (Beta20) outperforms the hedging portfolio, and in subperiod 5, Beta20 and SIC13's OFPs outperform the hedging portfolio, but only marginally. And in subperiod 7, the equal-weighted CRSP index return outperforms the hedging portfolio.

However, several caveats should be kept in mind with regard to the three subperiods in which the hedging portfolios were surpassed by one or two competing portfolios. First, in these three subperiods, the hedging portfolio still outperforms most of the other competing portfolios. Second, there is no consistent winner in these subperiods. Third, the performance of the hedging portfolios are often close to the best performer. Moreover, the best performers in these subperiods performed poorly in the other subperiods, raising the possibility that their performance might be due to sampling variation. In contrast, the hedging portfolios forecasted $R_{\text {Mt }}$ consistently in every subperiod. Indeed, among all of the regressors, the hedging portfolios were the most consistent across all six subperiods, a remarkable confirmation of the properties of the model of Sections 2 and $3 .{ }^{15}$

6 The Hedging-Portfolio Return as a Risk Factor

To evaluate the success of the hedging-portfolio return as a risk factor in the cross section of expected returns, we implement a slightly modified version of the well-known regression tests outlined in Fama and MacBeth (1973). The basic approach is the same: form portfolios sorted by an estimated parameter such as market beta coefficients in one time period (the "portfolio-formation period"), estimate betas for those same portfolios in a second nonoverlapping time period (the "estimation period"), and perform a cross-sectional regression test for the explanatory power of those betas using the returns of a third non-overlapping time period (the "testing period"). However, in contrast to Fama and MacBeth (1973), we use weekly instead of monthly returns, and our portfolio-formation, estimation, and testing

[^14]periods are five years each. ${ }^{16}$
Specifically, we run the following bivariate regression for each security in the portfolioformation period, using only those securities that exist in all three periods: ${ }^{17}$
\[

$$
\begin{equation*}
R_{j t}=\alpha_{j}+\beta_{j}^{M} R_{M t}+\beta_{j}^{H} R_{H t}+\varepsilon_{i t} \tag{34}
\end{equation*}
$$

\]

where $R_{M t}$ is the return on the CRSP value-weighted index and $R_{H t}$ is the return on the hedging portfolio. Using the estimated coefficients $\left\{\widehat{\beta}_{i}^{M}\right\}$ and $\left\{\widehat{\beta}_{i}^{H}\right\}$, we perform a double sort among the individual securities in the estimation period, creating 100 portfolios corresponding to the deciles of the estimated market and hedging-portfolio betas. We re-estimate the two betas for each of these 100 portfolios in the estimation period, and use these estimated betas as regressors in the testing period, for which we estimate the following cross-sectional regression:

$$
\begin{equation*}
R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{H}+\eta_{p t} \tag{35}
\end{equation*}
$$

where $R_{p t}$ is the equal-weighted portfolio return for securities in portfolio $p, p=1, \ldots, 100$, constructed from the double-sorted rankings of the portfolio-estimation period, and $\widehat{\beta}_{p t}^{M}$ and $\widehat{\beta}_{p t}^{H}$ are the market and hedging-portfolio returns, respectively, of portfolio p obtained from the estimation period. This cross-sectional regression is estimated for each of the 261 weeks in the five-year testing period, yielding a time series of coefficients $\left\{\widehat{\gamma}_{0 t}\right\}$, $\left\{\widehat{\gamma}_{1 t}\right\}$, and $\left\{\widehat{\gamma}_{2 t}\right\}$. Summary statistics for these coefficients and their diagnostics are then reported, and this entire procedure is repeated by incrementing the portfolio-formation, estimation, and testing periods by five years. We then perform the same analysis for the hedge-portfolio dollar-return series $\left\{Q_{H t}\right\}$.

Because we use weekly instead of monthly data, it may be difficult to compare our results to other cross-sectional tests in the extant literature, e.g., Fama and French (1992). Therefore, we apply our procedure to three other benchmark models: the standard CAPM in

[^15]which $R_{M t}$ is the only regressor in (34) and 100 market-beta-sorted portfolios constructed, a two-factor model in which the hedging-portfolio return factor is replaced by a "small-minusbig capitalization" or "SMB" portfolio return factor as in Fama and French (1993), and a two-factor model in which the hedging-portfolio return factor is replaced by the OFP return factor described in Section 5.2. ${ }^{18}$

Table 5 reports the the correlations between the different portfolio return factors, returns on CRSP value- and equal-weighted portfolios, return and dollar return on the hedging portfolio, returns on the SMB portfolio and, OFP, Beta20, and the two turnover indices. Table 6 reports the summary statistics for the return betas from the five risk models on returns: the single-factor market model and the four two-factors models.

Table 7 summarizes the results of all of these cross-sectional regression tests for each of the five testing periods from 1972 to 1996. In the first subpanel, corresponding to the first testing period from 1972 to 1976, there is little evidence in support of the CAPM or any of the two-factor models estimated. ${ }^{19}$ For example, the first three rows show that the timeseries average of the market-beta coefficients, $\left\{\widehat{\gamma}_{1 t}\right\}$, is 0.000 , with a t-statistic of 0.348 and an average \bar{R}^{2} of $10.0 \% .{ }^{20}$ When the hedging-portfolio beta $\widehat{\beta}_{t}^{H}$ is added to the regression, the \bar{R}^{2} does increase to 14.3% but the average of the coefficients $\left\{\hat{\gamma}_{2 t}\right\}$ is -0.002 with a t-statistic of -0.820 . The average market-beta coefficient is still insignificant, but it has now switched sign. The results for the two-factor model with the hedging-portfolio dollar-return factor and the two-factor model with the SMB factor are similar.

In the second testing period, both specifications with the hedging-portfolio factor exhibit statistically significant means for the hedging-portfolio betas, with average coefficients and t-statistics of -0.012 and -3.712 for the hedging-portfolio return factor and -1.564 and -4.140 for the hedging-portfolio dollar-return factor, respectively. In contrast, the market-

[^16]beta coefficients are not significant in either of these specifications, and are also of the wrong sign. The only other specification with a significant mean coefficient is the two-factor model with SMB as the second factor, with an average coefficient of 0.299 for the SMB factor and a t-statistic of 4.433.

For the three remaining test periods, the only specifications with any statistically significant factors are the SMB and MPP two-factor models in the 1992-1996 testing period. However, the $\bar{R}^{2} \mathrm{~S}$ in the last two testing periods are substantially lower than in the earlier periods, perhaps reflecting the greater volatility of equity returns in recent years.

Overall, the results do not provide overwhelming support for any factor in explaining the cross-sectional variation of expected returns. There is, of course, the ubiquitous problem of lack of power in these cross-sectional regression tests, hence we should not be surprised that no single factor stands out. ${ }^{21}$ However, the point estimates of the cross-sectional regressions show that the hedging-portfolio factor is comparable in magnitude and in performance to other commonly proposed factors.

7 Conclusion

By deriving an explicit link between economic fundamentals and the dynamic properties of asset returns and volume, we have shown that interactions between prices and quantities in equilibrium yield a rich set of implications for any asset-pricing model. Indeed, by exploiting the relation between prices and volume in our dynamic equilibrium model, we are able to identify and construct the hedging portfolio that all investors use to hedge against changes in market conditions. Moreover, our empirical analysis shows that this hedging portfolio has considerable forecast power in predicting future returns of the market portfolio-a property of the true hedging portfolio-and its abilities to explain cross-sectional variation in expected returns is comparable to other popular risk factors such as market betas, the Fama and French (1993) SMB factor, and optimal forecast portfolios.

Although our model is purposefully parsimonious so as to focus attention on the essential features of risk-sharing and trading activity, it underscores the general point that quantities, together with prices, should be an integral part of any analysis of asset markets, both the-

[^17]oretically and empirically. Our results provide compelling motivation for determining risk factors from economic fundamentals rather than through statistical means. Although this is an old theme that has its origins in Black (1972), Mayers (1973), and Merton (1973), it has become less fashionable as competing approaches such as the statistical approach of Roll and Ross (1980) and Chamberlain and Rothschild (1983) and the empirical approach of Fama and French (1992) have become more popular. We hope to revive interest in the lofty goal of identifying risk factors through the logic of equilibrium analysis in general, and by exploiting the information contained in trading volume in particular.

Appendix

A. 1 Proof of Theorem 1

We prove Theorem 1 by first deriving the investors' asset demand under the price function (8) and then solves the coefficient vector a and b to clear the stock market.

For simplicity in notation, let $u_{t} \equiv\left(D_{t} ; X_{t}\right)$, where $(\cdot ; \cdot)$ denotes a column vector and (\cdot, \cdot) denotes a row vector. From (8), we have

$$
Q_{t+1}=\bar{Q}_{t}+\tilde{Q}_{t+1}
$$

where

$$
\bar{Q}_{t}=r a+(1+r) b X_{t} \quad \text { and } \quad \tilde{Q}_{t+1}=(1,-b) u_{t+1}
$$

where 1 is an $(n \times n)$ identity matrix. We also let $\lambda_{1 t} \equiv \lambda_{X} X_{t}+\lambda_{Y} Y_{t}^{i}$ and $\lambda_{2 t} \equiv \lambda_{z}\left(1+Z_{t}^{i}\right)$.
We now consider investor i 's optimal portfolio choice. Let S_{t} be the vector of his stock holding in period t. His wealth next period is $W_{t+1}=W_{t}+S_{t}{ }^{\prime} \bar{Q}_{t+1}+S_{t}^{\prime}(1,-b) u_{t+1}$, where we have omitted superscript i for brevity. Then,

$$
\begin{aligned}
\mathrm{E}\left[e^{-W_{t+1}-\lambda_{1 t} D_{M t+1}-\lambda_{2 t} X_{t+1}}\right] & =\mathrm{E}\left[e^{-W_{t}-S_{t} \bar{Q}_{t}+\left(S_{t}+\lambda_{1 t} t ;-b^{\prime} S_{t}+\lambda_{2 t}\right)^{\prime} u_{t+1}}\right] \\
& =\mathrm{E}\left[e^{-W_{t}-S_{t}{ }^{\prime} \bar{Q}_{t}+\frac{1}{2}\left(S_{t}+\lambda_{1 t} t ;-b^{\prime} S_{t}+\lambda_{2 t}\right)^{\prime} \sigma\left(S_{t}+\lambda_{1 t} ; ; b^{\prime} S_{t}+\lambda_{2 t}\right)}\right] .
\end{aligned}
$$

where σ is the covariance matrix for u_{t}. Thus, the investor's optimization problem is reduced to

$$
\begin{equation*}
\max _{S_{t}} \quad S_{t}^{\prime} \bar{Q}_{t}-\frac{1}{2}\left(S_{t}+\lambda_{1 t} \iota ;-b^{\prime} S_{t}+\lambda_{2 t}\right)^{\prime} \sigma\left(S_{t}+\lambda_{1 t} \iota ;-b^{\prime} S_{t}+\lambda_{2 t}\right) \tag{A.1}
\end{equation*}
$$

The first order condition is

$$
\begin{equation*}
0=\bar{Q}_{t}-\left(\sigma_{D D}-b \sigma_{D X}{ }^{\prime}-\sigma_{D X} b^{\prime}+\sigma_{X X} b b^{\prime}\right) S_{t}-\lambda_{1 t}\left(\sigma_{D D}-b \sigma_{D Z}\right) \iota-\lambda_{2 t}\left(\sigma_{D X}-b \sigma_{X X}\right) \tag{A.2}
\end{equation*}
$$

The solution gives the investor's stock demand

$$
\begin{equation*}
S_{t}=\left(\sigma_{D D}-b \sigma_{D X}^{\prime}-\sigma_{D X} b^{\prime}+\sigma_{X X} b b^{\prime}\right)^{-1}\left[\bar{Q}_{t}-\lambda_{1 t}\left(\sigma_{D D}-b \sigma_{D Z}\right) \iota-\lambda_{2 t}\left(\sigma_{D X}-b \sigma_{X X}\right)\right] \tag{A.3}
\end{equation*}
$$

Summing (A.2) over all investors and imposing the market clearing condition, $\sum_{i} S_{t}^{i}=\iota$,
we have

$$
\begin{equation*}
0=I\left[r a+(1+r) b X_{t}\right]-\sigma_{Q Q} \iota-\lambda^{X} I \sigma_{Q D} \iota X_{t}-\lambda_{z} I \sigma_{Q X} . \tag{A.4}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
r a & =(1 / I) \sigma_{Q Q} \iota+\lambda_{z} \sigma_{Q X} \\
(1+r) b & =\lambda_{X} \sigma_{Q D} \iota
\end{aligned}
$$

which uniquely determine the equilibrium a and b. Substitute (A.4) into (A.3), we obtain investor i 's equilibrium stock holding:

$$
S_{t}^{i}=\left(I^{-1}-\lambda_{Y} Y_{t}^{i}\right) \iota-\left[\lambda_{Y}\left(b^{\prime} \iota\right) Y_{t}^{i}+\lambda_{Z} Z_{t}^{i}\right]\left(\sigma_{Q Q}\right)^{-1} \sigma_{Q Z}
$$

where is (9). Q.E.D.

A. 2 Proofs of Propositions 1-4

Proof of Proposition 1

A proof of a more general version of Proposition 1 with multiple funds is given in Lo and Wang (2000a). Q.E.D.

Proof of Proposition 2

Suppose we use the (dollar) return of portfolio S to predict future market return. The resulting R^{2} is

$$
R^{2}=\left(\operatorname{Cov}\left[\left(S^{\prime} Q_{t}\right) Q_{M t+1}\right]\right)^{2} /\left(\operatorname{Var}\left[S^{\prime} Q_{t}\right] \operatorname{Var}\left[Q_{M t+1}\right]\right)
$$

To choose the S to maximize R^{2}, we solve the following problem

$$
\begin{array}{cl}
\max _{S} & S^{\prime} \sigma_{Q X}\left(b^{\prime} \iota\right) \\
\text { s.t. } & S^{\prime} \sigma_{Q Q} S=v .
\end{array}
$$

Up to a scaling constant, the solution is $S_{H}=\left(\sigma_{Q Q}\right)^{-1} \sigma_{Q X}$. Q.E.D.

Proof of Proposition 3

When $X_{t}=0 \forall t, Q_{t}=r a+\tilde{Q}_{t}=(1,-b) u_{t}$. Then, $\operatorname{Cov}\left[\tilde{Q}_{t}, \tilde{Q}_{M t}\right]=\operatorname{Cov}\left[\tilde{Q}_{t}, \iota^{\prime} \tilde{Q}_{t}\right]=\sigma_{D D} \iota$, $\operatorname{Var}\left[\tilde{Q}_{M t}\right]=\iota^{\prime} \sigma_{D D} \iota$ and (17) follows. Since $\sigma_{Q X}=0$ in this case, $\sigma_{M H}=0$ and $\bar{Q}_{M}=(1 / I) \sigma_{M}^{2}$. Thus, $\bar{Q}=\beta_{M} \bar{Q}_{M}$ which is (18). Q.E.D.

Proof of Proposition 4

Equation (19) simply follows from the joint normality of $\tilde{Q}_{t+1}, \tilde{Q}_{M t+1}$, and $\tilde{Q}_{H t+1} \cdot$ (20) can be verified by substituting in the expressions for $\beta_{M}, \beta_{M}, \bar{Q}_{M}$ and \bar{Q}_{H}, which gives (16c). Q.E.D.

References

Abel, A., 1990, "Asset Prices under Habit Formation and Catching Up with the Joneses", American Economic Review 80, 38-42.

Andersen, T., 1996, "Return Volatility and Trading Volume: An Information Flow Interpretation", Journal of Finance 51, 169-204.

Antoniewicz, R.L., 1993, Relative Volume and Subsequent Stock Price Movements, working paper, Board of Governors of the Federal Reserve System.

Atkins, A. and E. Dyl, 1997, "Market Structure and Reported Trading Volume: NASDAQ versus the NYSE", Journal of Financial Research 20, 291-304.

Banz, R., 1981, "The Relation between Return and Market Value of Common Stocks", Journal of Financial Economics 9, 3-18.

Black, F., 1972, "Capital Market Equilibrium with Restricted Borrowing", Journal of Business 45, 444-454.

Black, F., 1976, "Studies of Stock Price Volatility Changes", in Proceedings of the 1976 Meetings of the Business and Economic Statistics Section, American Statistical Association, 177-181.

Black, F., M. Jensen, and M. Scholes, 1972, "The Capital Asset Pricing Model: Some Empirical Tests", Studies in the Theory of Capital Markets (M. Jensen ed.), Praeger Publishers.

Brown, K., Van Harlow, W. and S. Tinic, 1993, "The Risk and Required Return of Common Stock Following Major Price Innovations", Journal of Financial and Quantitative Analysis 28, 101-116.

Campbell, J. and J. Cochrane, 1999, "By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior", Journal of Political Economy 107, 205-251.

Campbell, J., Grossman S. and J. Wang, 1993, "Trading Volume and Serial Correlation in Stock Returns", Quarterly Journal of Economics 108, 905-939.

Campbell, J., A. Lo and C. MacKinlay, 1996, The Econometrics of Financial Markets, Princeton University Press.

Chamberlain, G. and M. Rothschild, 1983, "Arbitrage and Mean-Variance Analysis on Large Asset Markets", Econometrica 51, 1281-1301.

Chan, L. and J. Lakonishok, 1995, "The Behavior of Stock Prices Around Institutional Trades", Journal of Finance 50, 1147-74.

Conrad, J., Hameed, A. and C. Niden, 1994, "Volume and Autocovariances in Short-Horizon Individual Security Returns", Journal of Finance 49, 1305-1329.

Epps, T. and M. Epps, 1976, "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture of Distribution Hypothesis", Econometrica 44, 305-321.

Fama, E. and K. French, 1992, "The Cross-Section of Expected Stock Returns", Journal of Finance 47, 427-465.

Fama, E. and J. MacBeth, 1973, "Risk, Return, and Equilibrium: Empirical Tests", Journal of Political Economy 81, 607-636.

Foster, D., Smith, T. and R. Whaley, 1997, "Assessing Goodness-of-Fit of Asset Pricing Models: The Distribution of the Maximal R-Squared", Journal of Finance 52, 591-607.

Gallant, R., Rossi, P. and G. Tauchen, 1992, "Stock Prices and Volume", Review of Financial Studies 5, 199-242.

Hiemstra, C. and J. Jones, 1994, "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation", Journal of Finance 49, 1639-1664.

He, H., and J. Wang, 1995, "Differential Information and Dynamic Behavior of Stock Trading Volume", Review of Financial Studies 8, 919-972.

Hu, S., 1997, "Trading Turnover and Expected Stock Returns: Does It Matter and Why?", working paper, National Taiwan University.

Jain, P. and G. Joh, 1988, "The Dependence between Hourly Prices and Trading Volume", Journal of Financial and Quantitative Analysis 23, 269-282.

James, C., and R. Edmister, 1983, "The Relation between Common Stock Returns, Trading Activity and Market Value", Journal of Finance 38, 1075-1086.

Jegadeesh, N. and S. Titman, 1993, "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency", Journal of Finance 48, 65-91.

Karpoff, J., 1987, "The Relation between Price Changes and Trading Volume: A Survey", Journal of Financial and Quantitative Analysis 22, 109-126.

Lakonishok, J. and S. Smidt, 1986, "Volume for Winners and Losers: Taxation and Other Motives for Stock Trading", Journal of Finance 41, 951-974.

Lakonishok, J. and T. Vermaelen, 1986, "Tax-Induced Trading Around Ex-Dividend Days", Journal of Financial Economics 16, 287-319.

Lamoureux, C. and W. Lastrapes, 1990, "Heteroskedasticity in Stock Return Data: Volume vs. GARCH Effects", Journal of Finance 45, 487-498.

Lamoureux, C. and W. Lastrapes, 1994 "Endogenous Trading Volume and Momentum in Stock-Return Volatility", Journal of Business and Economic Statistics 12, 253-160.

Lamoureux, C. and J. Wansley, 1987, "Market Effects of Changes in the Standard \& Poor's 500 Index", Financial Review 22, 53-69.

LeBaron, B., 1992, "Persistence of the Dow Jones Index on Rising Volume", working paper, University of Wisconsin.

Lim, T., Lo, A., Wang, J. and P. Adamek, 1998, "Trading Volume and the MiniCRSP Database: An Introduction and User's Guide", MIT Laboratory for Financial Engineering Working Paper No. LFE-1038-98.

Llorente, G., R. Michaely, G. Saar and J. Wang, 2000, "Dynamic Volume-Return Relations for Individual Stocks", Review of Financial Studies, forthcoming.

Lo, A. and C. MacKinlay, 1997, "Maximizing Predictability in the Stock and Bond Markets", Macroeconomic Dynamics 1(1997), 102-134.

Lo, A., H. Mamaysky and J. Wang, 2000, "Asset Prices and Trading Volume under Fixed Transaction Costs", working paper, MIT.

Lo, A. and J. Wang, 2000a, Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory, Review of Financial Studies 13, 257-300.

Lo, A. and J. Wang, 2000b, "Trading Volume", to appear in Advances in Economic Theory: Eight World Congress, Econometric Society Monograph.

Lo, A. and J. Wang, 2001, "Optimal Forecast Portfolios", work in progress, MIT.
MacKinlay, C., 1994, "Multi-Factor Models Do Not Explain Deviations From the CAPM", Journal of Financial Economics 38, 3-28.

MacKinlay, C., 1987, "On Multivariate Tests of the CAPM", Journal of Financial Economics 18, 341-371.

Mayers, D., 1972, "Nonmarketable Assets and Capital Market Equilibrium Under Uncertainty", in M. Jensen, ed., Studies in the Theory of Capital Markets. New York: Praeger Publishers.

Merton, R., 1971, "Optimal Consumption and Portfolio Rules in a Continuous-Time Model", Journal of Economic Theory 3, 373-413.

Merton, R., 1973, "An Intertemporal Capital Asset Pricing Model", Econometrica 41, 867887.

Michaely, R., 1991, "Ex-Dividend Day Stock Price Behavior: The Case of the 1986 Tax Reform Act", Journal of Finance 46, 845-860.

Michaely, R. and J. Vila, 1995, "Investors' Heterogeneity, Prices and Volume Around the Ex-Dividend Day", Journal of Financial and Quantitative Analysis 30, 171-198.

Michaely, R. and J. Vila, 1996, "Trading Volume with Private Valuation: Evidence from the Ex-Dividend Day", Review of Financial Studies 9, 471-509.

Michaely, R., J.-L. Vila and J. Wang, "A Model of Trading Volume with Tax-Induced Heterogeneous Valuation and Transaction Costs" Journal of Financial Intermediation 5, 340-371, 1996.

Morse, D., 1980, "Asymmetric Information in Securities Markets and Trading Volume", Journal of Financial and Quantitative Analysis 15, 1129-1148.

Smidt, S., 1990, "Long-Run Trends in Equity Turnover", Journal of Portfolio Management , Fall, 66-73.

Shleifer, A., 1986, "Do Demand Curves for Stocks Slope Down?", Journal of Finance 41, 579-590.

Stickel, S., 1991, "The Ex-Dividend Day Behavior of Nonconvertible Preferred Stock Returns and Trading Volume", Journal of Financial and Quantitative Analysis 26, 45-61.

Stickel, S. and R. Verrecchia, 1994, "Evidence that Volume Sustains Price Changes", Financial Analysts Journal (November-December), 57-67.

Tauchen, G., and M. Pitts, "The Price Variability-Volume Relationship On Speculative Markets", Econometrica 51, 485-506.

Tkac, P., 1996, "A Trading Volume Benchmark: Theory and Evidence", working paper, Department of Finance and Business Economics, University of Notre Dame.

Wang, J., 1994, "A Model of Competitive Stock Trading Volume", Journal of Political Economy 102, 127-168.

Ying, C., 1966, "Stock Market Prices and Volume of Sales", Econometrica 34, 676-686.

Equal-Weighted Turnover

Figure 1: Time series of equally- and share-weighted turnover indices from 1962 to 1997.

Figure 2: Histogram of turnover betas on the equally-weighted turnover index for each of the 5 -year subperiod from 1962 to 1997.

Figure 3: R^{2} of the return of the candidate hedging portfolio in predicting future market returns as a function ϕ for the second to the seventh 5-year subperiods from 1962 to 1996.

Figure 4: R^{2} of the dollar return of the candidate hedging portfolio in predicting future market returns as a function ϕ for the second to the seventh 5 -year subperiods from 1962 to 1996.

Table 1

Summary statistics for the restricted volume betas using weekly returns and volume data for N SE and AME stocks from 1962 to 1996. Turnover over individual stocks is regressed on the equallyweighted and share- weighted turnover indices, subject to the restriction that the two regression coefficients, $\widehat{\beta}_{\tau}^{E W}$ and $\widehat{\beta}_{\tau}^{S W}$, must add up to one. The stocks are then sorted into ten deciles by $\widehat{\beta}_{\tau}^{E W}$. The summary statistics are then reported for each decile.

		$\overline{\widehat{\beta}_{\tau}^{E W}}$		$t\left(\widehat{\beta}_{\tau}^{E W}\right)$		$\widehat{\beta}_{\tau}^{S W}$		$t\left(\widehat{\beta}_{\tau}^{S W}\right)$		$-^{2}()$	
July 1962 to December 1966 (234 Weeks)											
1	218	-0 906	0119	-49 394	19023	1906	0119	103944	38755	-2520 4	278174
2	219	-0 657	0069	-26 187	12805	1657	0069	65488	30083	565	195
3	219	-0 432	0064	-10 917	5956	1432	0064	35879	17907	550	204
4	218	-0 188	0082	-3 812	2732	1188	0082	22907	10555	571	178
5	219	0107	0097	1273	1243	0893	0097	11365	4570	515	160
6	219	0494	0119	4585	1943	0506	0119	4847	2401	506	165
7	218	0927	0145	6749	2258	0073	0145	0639	1190	507	155
8	219	1520	0229	8229	2893	-0 520	0229	-2 714	1348	492	154
9	219	2568	0434	10410	3491	-1568	0434	-6 292	2401	494	152
10	218	6563	4100	11682	3880	-5 563	4100	-9 500	3332	471	153
January 1967 to December 1971 (261 Weeks)											
1	242	-0 783	0134	-36 725	17343	1783	0134	84302	38946	-175 3	9762
2	243	-0 529	0056	-18772	8459	1529	0056	53969	22871	582	161
3	242	-0 315	0068	-7905	4099	1315	0068	32431	13771	564	163
4	243	-0 054	0089	-1139	1845	1054	0089	18479	7855	552	143
5	242	0264	0087	3269	1482	0736	0087	9228	3260	541	132
6	243	0623	0126	6035	2217	0377	0126	3723	1871	535	134
7	243	1110	0154	8367	2719	-0 110	0154	-0 735	1178	544	130
8	242	1782	0205	10314	3151	-0 782	0205	-4 477	1630	532	132
9	243	2661	0330	12249	3120	-1661	0330	-7609	2149	546	110
10	242	5410	2540	13019	4172	-4 410	2540	-10260	3383	526	142
January 1972 to December 1977 (261 Weeks)											
1	262	-2 013	0845	-13276	4901	3013	0845	20755	8319	-11476	50349
2	263	-1 069	0129	-10986	3890	2069	0129	21239	7045	254	446
3	263	-0 697	0096	-6 014	2466	1697	0096	14600	5619	443	271
4	263	-0 359	0105	-2 825	1444	1359	0105	10608	4044	503	228
5	263	0015	0114	0062	0765	0985	0114	6620	2466	530	192
6	263	0485	0156	2577	1159	0515	0156	2792	1354	528	154
7	263	1084	0187	4684	1801	-0 084	0187	-0 322	0870	514	145
8	263	1888	0289	6827	2426	-0 888	0289	-3180	1421	528	142
9	263	3161	0501	8894	3311	-2 161	0501	-6 060	2431	525	140
10	262	7770	4940	11202	4447	-6770	4940	-9 480	3965	523	138
January 1977 to December 1981 (261 Weeks)											
1	242	-3 096	0347	-22 164	4591	4096	0347	29341	5815	-872 7	69588
2	243	-2 284	0192	-15799	4883	3284	0192	22701	6846	327	236
3	243	-1654	0208	-10 524	4628	2654	0208	16861	7167	489	208
4	243	-1 021	0156	-5 505	2335	2021	0156	10884	4304	541	184
5	243	-0 394	0189	-1833	1180	1394	0189	6387	2655	556	171
6	243	0355	0250	1277	1045	0645	0250	2472	1438	555	165
7	243	1330	0308	3864	1519	-0 330	0308	-0 894	0971	536	157
8	243	2599	0457	6198	2242	-1599	0457	-3782	1560	545	157
9	243	4913	0809	8860	2983	-3913	0809	-7038	2487	553	145
10	242	10090	4231	11202	3618	-9 090	4231	-9 980	3311	552	134

Table 1 (continued)

		$\widehat{\beta}_{\tau}^{E W}$		$t\left(\widehat{\beta}_{\tau}^{E W}\right)$		$\widehat{\beta}_{\tau}^{S W}$		$t\left(\widehat{\beta}_{\tau}^{S W}\right)$		$-^{2}()$	
January 1982 to December 1986 (261 Weeks)											
1	227	-6968	3038	-5 636	2328	7968	3038	6525	2577	466	159
2	228	-2 257	0624	-3 249	1604	3257	0624	4724	2199	527	202
3	228	-0 640	0380	-1223	0967	1640	0380	3180	1667	455	1369
4	227	0501	0283	1166	0841	0499	0283	1177	0903	554	224
5	228	1357	0231	3540	1655	-0 357	0231	-0 954	0786	413	907
6	228	2077	0201	5319	2159	-1 077	0201	-2 758	1216	-195	6863
7	227	2754	0196	7402	2342	-1754	0196	-4710	1531	283	528
8	228	3431	0201	9244	2667	-2 431	0201	-6548	1922	32	1018
9	228	4168	0237	11354	2905	-3168	0237	-8 630	2248	-163 1	16786
10	227	5399	1170	14045	5229	-4399	1170	-11392	4405	-348 1	10271
January 1987 to December 1991 (261 Weeks)											
1	216	-8487	7040	-7093	3763	9487	7040	8082	4137	502	168
2	217	-2866	0725	-4616	2439	3866	0725	6263	3224	548	188
3	217	-0 843	0494	-1832	1512	1843	0494	4097	2537	568	210
4	217	0441	0330	1196	1277	0559	0330	1423	1268	570	199
5	217	1502	0317	4887	3062	-0 502	0317	-1693	1583	578	188
6	217	2510	0280	8434	4070	-1510	0280	-5 074	2582	512	187
7	217	3389	0234	12139	4615	-2 389	0234	-8567	3325	422	156
8	217	4157	0196	15329	4607	-3157	0196	-11637	3513	238	198
9	217	4836	0212	18370	4580	-3836	0212	-14572	3673	-270	661
10	217	5743	0402	21430	5101	-4743	0402	-17682	4229	-9219	46821
January 1992 to December 1996 (261 Weeks)											
1	241	-4 275	2858	-2 409	1092	5275	2858	3097	1342	-423 6	33367
2	241	-1 074	0384	-1277	0741	2074	0384	2538	1369	-1477	26312
3	242	-0 245	0155	-0 371	0301	1245	0155	1944	0899	-147	5082
4	241	0189	0100	0298	0203	0811	0100	1296	0534	-135 1	8993
5	241	0520	0098	0779	0313	0480	0098	0729	0330	-1353 9	57552
6	242	0865	0106	1226	0414	0135	0106	0196	0177	-1976	6691
7	241	1303	0159	1725	0641	-0 303	0159	-0 400	0260	-1303	9317
8	242	2022	0254	2391	0824	-1 022	0254	-1202	0480	-589	6845
9	241	3271	0498	3061	1027	-2 271	0498	-2 117	0769	-249	2258
10	241	8234	9836	3844	1360	-7234	9836	-3 237	1190	-219 9	11457

Table 2

Summary statistics for the unrestricted volume betas using weekly returns and volume data for N SE and
AME stocks from 1962 to 1996 . Turnover over individual stocks are regressed on the equally-weighted and share- weighted turnover indices, giving two regression coefficients, $\beta_{\tau}^{E W}$ and $\beta_{\tau}^{S W}$. The stocks are then sorted into ten deciles by the estimates of their $\bar{\beta}_{\tau}^{E W}$. The summary statistics are reported for each decile. The last two columns report the test statistic for the condition that $\beta_{\tau}^{E W}$ and $\beta_{\tau}^{S W}$ add up to one.

Table 2 (continued)

Table 2 (continued)

		$\widehat{\beta}_{\tau}^{E W}$		$t\left(\widehat{\beta}_{\tau}^{\text {EW }}\right)$		$\widehat{\beta}_{\tau}^{S W}$		$t\left(\widehat{\beta}_{\tau}^{S W}\right)$		${ }^{-2}()$		p	
January 1992 to December 1996 (261 Weeks)													
1	241	-2 894	2074	-2 174	1107	4563	2659	3498	1595	574	196	55	163
2	241	-0 681	0206	-1335	0822	1613	0622	2886	1450	613	210	48	163
3	242	-0 197	0093	-0 623	0612	0924	0534	2192	1396	598	226	23	97
4	241	0072	0072	0308	0485	0526	0488	1057	0905	560	207	28	134
5	241	0344	0085	1064	0731	0261	0441	0281	0951	556	200	35	128
6	242	0624	0093	1430	0778	0124	0659	-0 176	0909	551	182	27	103
7	241	1018	0130	2028	1151	-0 224	0578	-0 836	1176	533	170	64	188
8	242	1618	0230	2357	1122	-0 694	0647	-1248	1110	514	172	61	181
9	241	2720	0454	2624	1170	-1477	0830	-1616	1088	494	151	107	237
10	241	7977	9529	3706	1411	-6 205	9055	-2823	1339	453	145	62	174

Table 3

Summary statistics for the returns and dollar returns of the hedging portfolio constructed from individual stocks' volume data using weekly returns and volume data for N SE and AME stocks from 1962 to 1996.

Statistic	Sample Period						
	Entire	67-71	72-76	77-81	82-86	87-91	92-96
Hedging Portfolio Return $R_{H t}$							
Mean	0.013	0.001	0.005	0.007	0.011	0.052	0.003
S.D.	0.198	0.029	0.039	0.045	0.046	0.477	0.013
Skewness	24.092	0.557	0.542	-0.330	0.270	10.200	-0.214
Kurtosis	747.809	1.479	7.597	0.727	1.347	130.476	0.945
1	0.017	0.199	0.141	0.196	0.125	0.004	-0.165
2	-0.058	0.018	0.006	0.071	0.036	-0.070	-0.028
3	0.104	-0.028	-0.036	-0.010	0.073	0.099	-0.003
4	0.184	0.070	0.043	0.045	-0.113	0.182	-0.010
5	-0.086	0.114	0.144	-0.026	-0.103	-0.099	-0.025
6	0.079	-0.003	0.258	-0.089	-0.093	0.072	0.020
7	0.217	0.037	0.083	-0.031	-0.173	0.218	0.098
8	-0.098	0.002	-0.124	-0.008	0.006	-0.111	-0.130
9	0.048	-0.002	-0.008	-0.060	0.011	0.041	0.006
10	-0.044	-0.017	0.174	-0.037	-0.117	-0.055	0.035
Hedging Portfolio Dollar Return							
Mean	2.113	0.072	1.236	2.258	5.589	3.244	0.281
S.D.	16.836	3.639	11.059	21.495	25.423	20.906	1.845
Skewness	0.717	0.210	-0.144	-0.495	-0.080	2.086	0.215
Kurtosis	14.082	-0.085	0.500	2.286	6.537	13.286	2.048
1	0.164	0.219	0.251	0.200	0.098	0.157	-0.122
2	0.082	0.014	0.148	0.052	0.125	-0.015	-0.095
3	0.039	0.003	0.077	0.010	0.071	-0.041	0.037
4	0.021	0.061	0.084	0.127	-0.037	-0.066	0.014
5	0.036	0.116	0.102	-0.002	0.051	-0.016	-0.027
6	-0.010	-0.044	0.127	-0.094	-0.053	0.057	-0.014
7	-0.006	0.034	0.013	-0.060	-0.014	0.010	0.107
8	-0.046	0.005	-0.055	-0.028	-0.127	0.016	-0.075
9	0.027	-0.016	0.045	-0.006	0.047	0.005	-0.006
10	-0.001	-0.030	0.042	0.026	0.014	-0.082	0.031

Table 4

Forecast of weekly market-portfolio returns by lagged weekly returns of the beta-sorted optimal forecast portfolios (OFPs),
 lagged constant-maturity (three-month) Treasury bill rates from 1982 to 1996. The value of ϕ is 1.25 for the return R_{H} and 1.5 for the dollar return ${ }_{H}$ on the hedging portfolio, respectively.

Table 4 (continued)

Table 5

Correlation matrix for weekly returns on the CRSP value-weighted index $\left(R_{V W t}\right)$, the CRSP equal-weighted index $\left(R_{E W t}\right)$, the hedging-portfolio return $\left(R_{H t}\right)$, the hedging-portfolio dollarreturn $\left(H_{H t}\right)$, the return of the small-minus-big capitalization stocks portfolio $\left(R_{S M B t}\right)$, the return return $R_{O F P t}$ of the optimal-forecast portfolio (OFP) for the set of 25 market-beta-sorted basis portfolios, and the equal-weighted and share-weighted turnover indices ($\tau_{t}^{E W}$ and $\tau_{t}^{S W}$), using CRSP weekly returns and volume data for N SE and AME stocks from 1962 to 1996 and in five-year subperiods.

	$W t$	$E W t$	Ht	$Q_{H t}$	SM	$t \quad t$	$\tau_{t}^{E W}$	$\tau_{t}^{S W}$
July 1962 to December 1996 (1,800 Weeks)								
Wt	1000	887	-132	156	140	-26 9	106	81
$E W t$	887	1000	-15 8	46	535	-25 3	126	55
Ht	-132	-158	1000	403	-10 7	-110	149	168
$Q_{H t}$	156	46	403	1000	-13 3	-67	75	99
$S M \quad t$	140	535	-10 7	-13 3	1000	-48	46	-58
t	-269	-25 3	-110	-67	-48	1000	-49	-24
$\tau_{t}^{E W}$	106	126	149	75	46	-49	1000	862
$\tau_{t}^{S W}$	81	55	168	99	-5 8	-24	862	1000
January 1967 to December 1971 (261 Weeks)								
Wt	1000	926	956	915	627	-762	191	263
$E W t$	926	1000	923	884	845	-719	328	369
Ht	956	923	1000	974	707	-65 0	220	296
$Q_{H t}$	915	884	974	1000	698	-60 1	229	298
$S M \quad t$	627	845	707	698	1000	-46 6	397	382
t	-762	-719	-650	-60 1	-46 6	1000	-75	-10 4
$\tau_{t}^{E W}$	191	328	220	229	397	-75	1000	931
$\tau_{t}^{S W}$	263	369	296	298	382	-10 4	931	1000
January 1972 to December 1977 (261 Weeks)								
Wt	1000	845	133	142	-69	-595	190	276
$E W t$	845	1000	-115	-182	441	-454	243	354
Ht	133	-115	1000	866	-55 2	-83	-28	-19
$Q_{H t}$	142	-182	866	1000	-70 4	-116	-41	-42
$S M \quad t$	-69	441	-55 2	-70 4	1000	150	113	163
t	-595	-454	-83	-116	150	1000	-67	-124
$\tau_{t}^{E W}$	190	243	-28	-41	113	-67	1000	873
$\tau_{t}^{S W}$	276	354	-19	-42	163	-124	873	1000
January 1977 to December 1981 (261 Weeks)								
$W t$	1000	902	854	823	238	226	126	157
$E W t$	902	1000	885	820	593	127	76	81
Ht	854	885	1000	871	512	93	76	86
$Q_{H t}$	823	820	871	1000	490	104	110	123
$S M \quad t$	238	593	512	490	1000	-167	-83	-12 7
${ }_{E W}{ }^{t}$	226	127	93	104	-167	1000	107	104
$\tau_{t}^{E W}$	126	76	76	110	-83	107	1000	949
$\tau_{t}^{S W}$	157	81	86	123	-127	104	949	1000

Table 5 (continued)

	$W t$	$E W t$	Ht	$Q_{H t}$	SM		$\tau_{t}^{\text {EW }}$	$\tau_{t}^{S W}$
January 1982 to December 1986 (261 Weeks)								
$W t$	1000	921	-170	61	-28	-235	271	286
$E W t$	921	1000	-341	-102	306	-30 6	360	316
Ht	-170	-341	1000	733	-545	135	-122	-78
$Q_{H t}$	61	-102	733	1000	-411	80	13	42
$S M \quad t$	-28	306	-54 5	-411	1000	-159	199	65
t	-23 5	-30 6	135	80	-159	1000	-20 7	-179
$\tau_{t}^{E W}$	271	360	-122	13	199	-20 7	1000	932
$\tau_{t}^{S W}$	286	316	-78	42	65	-179	932	1000
January 1987 to December 1991 (261 Weeks)								
$W t$	1000	912	-40 4	-36 0	81	189	-150	-170
$E W t$	912	1000	-44 3	-465	446	363	-167	-20 9
Ht	-40 4	-44 3	1000	581	-23 8	-26 2	432	437
$Q_{H t}$	-36 0	-465	581	1000	-371	-32 8	253	240
$S M \quad t$	81	446	-238	-371	1000	451	-114	-169
${ }^{t}$	189	363	-262	-328	451	1000	-185	-197
$\tau_{t}^{E W}$	-150	-167	432	253	-114	-185	1000	947
$\tau_{t}^{S W}$	-170	-209	437	240	-169	-19 7	947	1000
January 1992 to December 1996 (261 Weeks)								
$W t$	1000	843	955	665	-12	-131	155	104
EWt	843	1000	732	405	461	-5 2	182	54
Ht	955	732	1000	848	-197	-87	153	112
$Q_{H t}$	665	405	848	1000	-416	02	120	92
$S M \quad t$	-12	461	-19 7	-416	1000	113	30	-101
	-131	-5 2	-87	02	113	1000	-30	-33
$\tau_{t}^{E W}$	155	182	153	120	30	-30	1000	927
$\tau_{t}^{S W}$	104	54	112	92	-101	-3 3	927	1000

Table 6a

Summary statistics for market betas estimated with weekly returns data for N SE and AME stocks from July 1962 to December 1996 in five-year subperiods. Returns of individual stocks are regressed on the returns of the CRSP value-weighted returns index, yielding the beta coefficient $\widehat{\beta}_{j}^{M}$. The betas are sorted into deciles and means and standard deviations of the estimated coefficients are reported for each decile.

		$\widehat{\beta}_{\tau}^{M}$		$t\left(\widehat{\beta}_{\tau}^{M}\right)$		$-^{2}()$	
January 1967 to December 1971 (261 Weeks)							
1	242	0432	0136	4103	1990	72	52
2	243	0710	0058	5532	1881	119	62
3	242	0880	0041	6343	2233	149	77
4	243	1020	0044	6811	2476	173	86
5	242	1168	0040	7122	2345	181	81
6	243	1307	0038	7166	2293	184	86
7	243	1463	0050	7682	2180	207	79
8	242	1648	0061	7554	2165	199	82
9	243	1881	0077	8290	2158	234	77
10	242	2282	0239	8814	2190	267	82
January 1972 to December 1977 (261 Weeks)							
1	262	0300	0146	2774	1853	37	43
2	263	0537	0047	4493	2051	81	64
3	263	0680	0038	5161	2067	103	67
4	263	0792	0030	5671	2331	120	79
5	263	0896	0030	6334	2422	143	85
6	263	1004	0031	7011	2793	169	97
7	263	1113	0032	7365	3120	182	112
8	263	1242	0046	7550	2788	189	101
9	263	1428	0065	8337	2957	219	106
10	262	1818	0240	9085	2949	254	104
January 1977 to December 1981 (261 Weeks)							
1	242	0262	0111	2324	1549	25	31
2	243	0490	0048	4046	1885	68	52
3	243	0643	0038	4689	1806	86	55
4	243	0761	0032	5475	2047	112	65
5	243	0870	0033	6103	2485	136	87
6	243	0977	0026	6479	2609	151	91
7	243	1091	0037	7162	2709	176	98
8	243	1223	0040	7631	2793	192	101
9	243	1397	0066	8050	2609	211	93
10	242	1756	0220	9013	2762	266	97
January 1982 to December 1986 (261 Weeks)							
1	227	0208	0157	1645	1354	13	23
2	228	0456	0046	3744	1681	58	45
3	228	0590	0040	4327	1973	79	60
4	227	0718	0032	4931	1833	98	61
5	228	0823	0033	5617	2084	121	72
6	228	0928	0027	6269	2493	144	84
7	227	1032	0034	7189	2524	176	90
8	228	1141	0035	7576	2795	195	100
9	228	1302	0060	8050	2810	217	99
10	227	1667	0231	8231	3201	227	113

Table 6a (continued)

		$\widehat{\beta}_{\tau}^{M}$		$t\left(\widehat{\beta}_{\tau}^{M}\right)$		$-^{2}()$	
January 1987 to December 1991 (261 Weeks)							
1	216	0268	0219	3368	2845	62	75
2	217	0540	0061	4659	2807	96	88
3	217	0701	0036	5479	2726	123	94
4	217	0839	0040	6750	3427	167	118
5	217	0956	0032	7920	3860	215	136
6	217	1056	0025	8350	4121	231	143
7	217	1151	0031	8979	4061	250	145
8	217	1264	0033	9001	4202	256	150
9	217	1418	0054	9490	4345	277	150
10	217	1737	0217	8926	4058	277	145
January 1992 to December 1996 (261 Weeks)							
1	241	-0 001	0448	0394	0788	-02	06
2	241	0368	0050	2301	1312	23	26
3	242	0515	0033	2990	1614	39	39
4	241	0636	0037	3337	1652	48	42
5	241	0763	0040	3972	1837	67	54
6	242	0881	0030	4676	2134	89	63
7	241	1000	0035	4959	2187	99	68
8	242	1139	0045	5651	2620	125	90
9	241	1336	0076	5591	2484	123	85
10	241	1820	0340	5760	2794	138	93

Table 6b

Summary statistics for market and hedging-portfolio return betas estimated with weekly returns data for N SE and AME stocks from July 1962 to December 1996 in five-year subperiods. Returns of individual stocks are regressed on the returns of the CRSP value-weighted returns index and the hedging-portfolio return index $R_{H t}$, yielding two beta coefficients $\widehat{\beta}_{j}^{M}$ and $\widehat{\beta}_{j}^{H R}$. The pairs are sorted into deciles according to their market betas and means and standard deviations of the estimated coefficients are reported for each decile.

		$\overline{\widehat{\beta}_{\tau}^{M}}$		$t\left(\widehat{\beta}_{\tau}^{M}\right)$		$\widehat{\beta}_{\tau}^{H}$		$t\left(\widehat{\beta}_{\tau}^{H}\right)$		$-^{2}()$	
January 1967 to December 1971 (261 Weeks)											
1	242	-1250	0605	-1451	0755	2027	0640	3571	1514	224	129
2	243	-0 297	0155	-0 405	0248	1196	0436	2347	0939	179	110
3	242	0147	0101	0233	0207	0806	0419	1611	0796	159	96
4	243	0420	0070	0744	0350	0553	0358	1224	0758	168	95
5	242	0648	0060	1192	0578	0391	0359	0777	0834	167	87
6	243	0852	0057	1639	0711	0213	0373	0339	0913	171	91
7	243	1053	0061	2234	0908	0056	0336	-0 128	1064	188	84
8	242	1263	0063	2493	1092	-0 049	0345	-0 450	1177	187	83
9	243	1527	0091	3113	1368	-0 227	0331	-0 953	1273	208	88
10	242	2080	0341	3541	1540	-0 496	0367	-1438	1357	221	99
January 1972 to December 1977 (261 Weeks)											
1	262	0316	0157	3025	1924	-0 099	0134	-0 811	1230	47	46
2	263	0565	0048	4706	2104	-0 110	0151	-0 853	1404	94	68
3	263	0714	0040	5427	2168	-0 129	0159	-1 055	1361	115	74
4	263	0839	0032	6023	2371	-0 166	0154	-1378	1271	136	85
5	263	0947	0029	6673	2567	-0 171	0171	-1327	1365	160	91
6	263	1054	0033	7197	2820	-0 187	0188	-1454	1397	180	101
7	263	1180	0038	7296	3077	-0247	0212	-1697	1444	186	112
8	263	1315	0046	7866	2768	-0 265	0213	-1931	1402	205	103
9	263	1511	0068	8120	2948	-0 312	0211	-2 135	1294	217	104
10	262	1930	0238	9378	3010	-0 439	0297	-2 717	1329	273	104
January 1977 to December 1981 (261 Weeks)											
1	242	-0 244	0295	-0 523	0519	0350	0202	2335	1052	57	57
2	243	0137	0059	0493	0341	0250	0162	1997	1151	80	69
3	243	0308	0040	1246	0600	0186	0149	1634	1232	93	62
4	243	0428	0034	1858	0850	0162	0155	1459	1393	118	78
5	243	0528	0027	2380	1019	0151	0164	1324	1454	143	81
6	243	0629	0032	2666	1139	0151	0156	1325	1415	164	85
7	243	0742	0035	3124	1163	0131	0143	1233	1385	184	91
8	243	0867	0037	3464	1357	0122	0142	1122	1303	201	104
9	243	1035	0068	4205	1742	0093	0143	0795	1259	232	107
10	242	1414	0249	4829	2215	0033	0172	0226	1405	256	129
January 1982 to December 1986 (261 Weeks)											
1	227	0202	0164	1573	1343	-0 079	0164	-0 465	1360	17	27
2	228	0457	0044	3672	1724	-0 049	0160	-0 023	1877	65	52
3	228	0590	0040	4440	2107	-0 049	0182	0040	2123	94	76
4	227	0714	0032	4864	1793	-0 086	0147	-0 671	1578	104	63
5	228	0818	0031	5598	2078	-0 093	0150	-0 821	1510	128	74
6	228	0923	0028	6362	2448	-0 121	0180	-1 006	1772	159	83
7	227	1028	0033	7141	2651	-0 107	0161	-1 017	1570	188	95
8	228	1136	0036	7454	2830	-0 127	0161	-1218	1470	199	101
9	228	1299	0059	8007	2886	-0 178	0204	-1765	1910	233	105
10	227	1660	0235	8147	3360	-0229	0237	-1913	2052	244	125

Table 6b (continued)

		$\widehat{\beta}_{\tau}^{M}$		$t\left(\widehat{\beta}_{\tau}^{M}\right)$		$\widehat{\beta}_{\tau}^{H}$		$t\left(\widehat{\beta}_{\tau}^{H}\right)$		$-^{2}()$	
January 1987 to December 1991 (261 Weeks)											
1	216	0205	0257	2267	2359	-0 082	0174	-0 724	1657	51	61
2	217	0484	0048	4365	2830	-0 048	0116	-0 351	2057	107	92
3	217	0637	0041	4923	2456	-0 063	0092	-1 080	1579	136	93
4	217	0775	0039	5373	2931	-0 075	0098	-1012	1644	151	114
5	217	0898	0035	6868	3184	-0 064	0106	-0957	1623	208	119
6	217	1005	0028	7740	3675	-0 063	0112	-0 756	1587	239	136
7	217	1098	0028	8356	4074	-0 059	0086	-0 864	1389	264	151
8	217	1215	0038	8771	4157	-0 068	0103	-0927	1461	278	157
9	217	1362	0050	8651	4134	-0 064	0108	-0 849	1342	276	158
10	217	1699	0239	8413	3661	-0 119	0207	-0 893	1280	284	146
January 1992 to December 1996 (261 Weeks)											
1	241	-1526	1776	-1784	1521	2269	1841	2727	2043	99	101
2	241	-0 031	0209	-0 058	0347	0660	0456	0921	0764	62	81
3	242	0582	0153	0790	0406	0027	0450	0059	0554	64	86
4	241	1086	0138	1370	0602	-0 469	0440	-0 521	0488	64	73
5	241	1506	0118	1833	0738	-0 799	0413	-0 881	0497	80	80
6	242	1965	0132	2156	0935	-1279	0507	-1260	0603	77	74
7	241	2487	0177	2776	1078	-1737	0452	-1750	0709	100	84
8	242	3166	0213	3067	1182	-2 344	0521	-2 064	0805	103	86
9	241	4062	0327	3380	1432	-3 300	0673	-2 464	0997	104	88
10	241	6789	2540	4211	2113	-6058	2827	-3 342	1684	124	99

Table 6c

Summary statistics for market and hedging-portfolio dollar-return betas estimated with weekly returns data for N SE and AME stocks from July 1962 to December 1996 in five-year subperiods. Returns of individual stocks are regressed on the returns of the CRSP value-weighted returns index and the hedging-portfolio dollar-return index $H t$, yielding two beta coefficients $\widehat{\beta}_{j}^{M}$ and $\widehat{\beta}_{j}^{H Q}$. The pairs are sorted into deciles according to their market betas and means and standard deviations of the estimated coefficients are reported for each decile.

		$\widehat{\beta}_{\tau}^{M}$		$t\left(\widehat{\beta}_{\tau}^{M}\right)$		$\widehat{\beta}_{\tau}^{H Q}$		$t\left(\widehat{\beta}_{\tau}^{H Q}\right)$		${ }^{2}()^{2}$	
January 1967 to December 1971 (261 Weeks)											
1	242	-0 535	0460	-0 707	0541	0011	0004	2699	1171	157	110
2	243	0142	0101	0270	0237	0006	0003	1838	0984	147	99
3	242	0440	0073	0916	0409	0005	0003	1406	0982	162	98
4	243	0652	0054	1580	0761	0003	0003	0799	1106	167	86
5	242	0831	0049	2049	0913	0002	0003	0352	1105	169	88
6	243	1007	0051	2331	0959	0001	0003	0133	1091	181	82
7	243	1187	0053	2835	1204	0000	0003	-0 236	1334	199	81
8	242	1393	0062	3195	1510	-0 001	0003	-0 550	1333	213	89
9	243	1651	0085	3343	1373	-0 001	0003	-0 673	1252	220	90
10	242	2280	0472	3555	1261	-0 003	0003	-0982	1032	231	96
January 1972 to December 1977 (261 Weeks)											
1	262	0341	0155	3248	1949	-0 001	0001	-0 932	1226	54	50
2	263	0595	0052	4836	2049	-0 001	0001	-1 111	1512	101	71
3	263	0754	0041	5620	2246	-0 001	0001	-1461	1461	125	82
4	263	0885	0032	6182	2451	-0 001	0001	-1522	1370	144	93
5	263	0995	0035	6844	2524	-0 001	0001	-1786	1524	169	94
6	263	1108	0032	7368	2953	-0 001	0001	-1856	1686	189	113
7	263	1241	0041	7399	2780	-0002	0001	-2 173	1476	191	106
8	263	1387	0046	7777	2589	-0 002	0001	-2 507	1341	201	96
9	263	1591	0075	8113	2846	-0 002	0001	-2 765	1308	215	101
10	262	2023	0241	9674	3046	-0 003	0001	-3 359	1458	281	106
January 1977 to December 1981 (261 Weeks)											
1	242	-0 289	0362	-0 550	0562	0001	0001	2288	0986	58	55
2	243	0179	0075	0613	0410	0001	0000	1679	1150	75	65
3	243	0388	0047	1446	0700	0000	0000	1287	1305	98	82
4	243	0532	0033	2148	0937	0000	0000	1009	1416	122	74
5	243	0641	0034	2671	1173	0000	0000	0679	1558	137	80
6	243	0748	0033	3050	1397	0000	0000	0522	1634	154	92
7	243	0869	0034	3509	1410	0000	0000	0445	1648	182	94
8	243	1008	0045	3885	1477	0000	0000	0263	1380	195	97
9	243	1180	0060	4509	1745	0000	0000	0125	1507	233	108
10	242	1552	0261	5386	2286	0000	0001	-0 747	1582	256	119
January 1982 to December 1986 (261 Weeks)											
1	227	0215	0159	1734	1437	0000	0001	-0 094	1384	21	34
2	228	0460	0042	3784	1757	0000	0001	0362	1793	72	65
3	228	0600	0045	4331	1756	0000	0001	0010	1792	91	77
4	227	0738	0035	4989	1786	0000	0001	-0 401	1350	105	65
5	228	0844	0033	5618	2363	0000	0001	-0 556	1542	128	84
6	228	0957	0030	6491	2431	0000	0001	-0 801	1466	158	89
7	227	1063	0033	6964	2727	0000	0000	-1 065	1332	174	96
8	228	1181	0039	7554	2724	0000	0000	-1309	1255	196	99
9	228	1359	0067	8092	2949	0000	0001	-1613	1607	226	103
10	227	1743	0250	8443	3476	-0 001	0001	-2 273	1878	243	122

Table 6c (continued)

		$\widehat{\beta}_{\tau}^{M}$		$t\left(\widehat{\beta}_{\tau}^{M}\right)$		$\widehat{\beta}_{\tau}^{H Q}$		$t\left(\widehat{\beta}_{\tau}^{H Q}\right)$		${ }^{-2}()$	
January 1987 to December 1991 (261 Weeks)											
1	216	0225	0226	2499	2477	-0 001	0001	-0 378	1768	51	63
2	217	0501	0053	4629	2998	0000	0001	-0 013	2282	110	97
3	217	0660	0039	5205	2573	0000	0001	-0 845	1507	129	89
4	217	0794	0039	6035	3358	0000	0001	-0 718	1985	165	122
5	217	0918	0031	7190	3599	0000	0001	-0 843	1638	205	129
6	217	1017	0028	7886	3813	0000	0001	-0 909	1458	233	134
7	217	1111	0028	8692	3965	0000	0001	-1 058	1384	263	143
8	217	1222	0034	9086	4338	-0 001	0001	-1 153	1438	279	158
9	217	1364	0050	9211	4311	-0 001	0001	-1390	1264	287	157
10	217	1701	0233	8494	3768	-0 001	0001	-1302	1310	280	145
January 1992 to December 1996 (261 Weeks)											
1	241	-0 990	1628	-0 866	0807	0013	0016	1839	1487	57	81
2	241	0169	0122	0378	0368	0003	0003	0871	0855	62	75
3	242	0526	0092	1026	0504	0000	0003	0140	0709	57	76
4	241	0846	0099	1609	0750	-0 001	0003	-0 212	0641	77	82
5	241	1177	0088	2072	0883	-0 003	0003	-0 714	0586	75	76
6	242	1509	0100	2499	1100	-0 005	0003	-1118	0619	85	83
7	241	1877	0124	2985	1229	-0 008	0003	-1559	0721	93	73
8	242	2365	0160	3276	1458	-0 011	0004	-1815	0828	108	93
9	241	3101	0250	3724	1624	-0 016	0005	-2 343	1033	114	86
10	241	5284	2356	3925	1876	-0 036	0026	-2855	1246	111	88

Table 6d

Summary statistics for market and SMB-portfolio return betas estimated with weekly returns data for N SE and AME stocks from July 1962 to December 1996 in five-year subperiods. Returns of individual stocks are regressed on the returns of the CRSP value-weighted returns index and the return to a portfolio of small-minus-big capitalization stocks $R_{S M B}$, yielding two beta coefficients $\widehat{\beta}_{j}^{M}$ and $\widehat{\beta}_{j}^{S M B}$. The pairs are sorted into deciles according to their market betas and means and standard deviations of the estimated coefficients are reported for each decile.

		$\widehat{\beta}_{\tau}^{M}$		$t\left(\widehat{\beta}_{\tau}^{M}\right)$		$\widehat{\beta}_{\tau}^{S M}$		$t\left(\widehat{\beta}_{\tau}^{S M}\right)$		$-^{2}()$	
January 1967 to December 1971 (261 Weeks)											
1	242	0124	0213	0699	0914	1311	0874	2937	1402	91	60
2	243	0423	0049	2398	1224	0927	0802	2339	1689	124	55
3	242	0572	0041	3017	1373	0909	0832	2221	1835	150	59
4	243	0708	0037	3715	1560	0871	0862	2075	1829	177	62
5	242	0824	0032	3951	1573	0848	0769	2027	1793	188	68
6	243	0926	0028	4498	1834	0860	0768	2030	1711	213	67
7	243	1039	0034	4865	1880	0834	0782	1916	1805	225	66
8	242	1178	0046	5444	2198	0881	0785	1981	1789	261	70
9	243	1369	0065	5697	2066	0868	0752	1893	1710	269	77
10	242	1717	0207	6248	1855	0952	0704	2038	1474	314	80
January 1972 to December 1977 (261 Weeks)											
1	262	0317	0168	3059	2073	0873	0711	3374	1434	87	59
2	263	0564	0048	4884	2163	0889	0557	3563	1426	132	66
3	263	0713	0040	5686	2201	0913	0576	3457	1693	155	70
4	263	0830	0030	6254	2429	0970	0630	3439	1933	176	78
5	263	0933	0031	6687	2548	1016	0689	3476	2133	193	84
6	263	1040	0034	7548	2847	0929	0741	3056	2209	219	92
7	263	1157	0036	7600	3020	1120	0766	3427	2396	225	103
8	263	1287	0043	8095	2965	1138	0836	3316	2536	243	100
9	263	1471	0065	8326	2893	1235	0800	3451	2180	252	96
10	262	1857	0221	9475	2904	1364	0947	3533	1946	295	93
January 1977 to December 1981 (261 Weeks)											
1	242	0183	0123	1503	1310	0676	0665	2053	1335	40	32
2	243	0411	0046	3313	1603	0636	0549	2159	1533	82	46
3	243	0548	0038	4052	1717	0703	0549	2393	1582	110	53
4	243	0661	0032	4529	1767	0779	0534	2588	1422	129	58
5	243	0765	0028	4834	1906	0865	0583	2611	1480	142	63
6	243	0871	0031	5958	2352	0792	0652	2456	1822	181	76
7	243	0982	0035	6551	2577	0773	0620	2331	1782	201	83
8	243	1108	0039	7148	2594	0844	0622	2548	1910	229	87
9	243	1288	0060	8094	2751	0718	0668	2049	2221	258	89
10	242	1638	0219	8809	2915	0785	0641	2089	1790	302	96
January 1982 to December 1986 (261 Weeks)											
1	227	0215	0157	1690	1373	0672	0797	1519	1326	27	30
2	228	0463	0045	3872	1687	0510	0557	1389	1612	74	45
3	228	0599	0041	4429	1988	0568	0628	1370	1884	96	65
4	227	0727	0032	4952	1881	0765	0677	1905	1508	115	63
5	228	0831	0034	5857	2103	0705	0675	1870	1827	145	74
6	228	0938	0027	6513	2604	0796	0726	1964	1881	169	86
7	227	1040	0033	7154	2593	0722	0764	1781	1876	191	89
8	228	1150	0035	7769	2697	0662	0700	1747	1822	213	97
9	228	1317	0060	8188	2903	0842	0794	2014	1878	238	100
10	227	1681	0226	8286	3262	1117	0872	2302	1690	244	115

Table 6d (continued)

		$\widehat{\beta}_{\tau}^{M}$		$t\left(\widehat{\beta}_{\tau}^{M}\right)$		$\widehat{\beta}_{\tau}^{S M}$		$t\left(\widehat{\beta}_{\tau}^{S M}\right)$		$-^{2}()$	
January 1987 to December 1991 (261 Weeks)											
1	216	0254	0234	3138	2773	0614	0845	1176	2242	77	78
2	217	0522	0056	4668	2949	0658	0711	1474	2816	128	102
3	217	0672	0037	5535	2743	0789	0594	2735	2159	165	106
4	217	0808	0037	6285	3354	0910	0672	2632	2306	190	120
5	217	0928	0032	7766	3749	0806	0663	2461	2556	247	133
6	217	1025	0027	8062	3971	0841	0733	2353	2326	251	136
7	217	1119	0027	9163	4334	0812	0728	2345	2327	286	147
8	217	1228	0036	9188	4240	0855	0666	2490	2026	296	150
9	217	1378	0052	9637	4477	0985	0762	2710	1779	313	149
10	217	1726	0258	9021	4098	1102	0765	2504	1678	303	150
January 1992 to December 1996 (261 Weeks)											
1	241	-0 002	0442	0400	0794	0790	1087	1307	1222	08	17
2	241	0368	0049	2310	1338	0445	0657	0934	1902	37	37
3	242	0514	0032	2983	1688	0480	0743	0757	2492	59	57
4	241	0634	0036	3432	1692	0547	0674	1273	2213	70	57
5	241	0763	0040	3937	1858	0618	0673	1495	1824	81	59
6	242	0881	0030	4761	2149	0597	0615	1560	1975	110	66
7	241	1000	0035	5035	2168	0670	0666	1696	1872	119	69
8	242	1139	0046	5704	2653	0634	0685	1522	2029	143	90
9	241	1336	0074	5651	2501	0946	0787	2365	1519	146	85
10	241	1820	0343	5955	2850	1462	1490	2671	1667	171	99

Table 6e

Summary statistics for market and optimal-forecast-portfolio return betas estimated with weekly returns data for N SE and AME stocks from July 1962 to December 1996 in five-year subperiods. Returns of individual stocks are regressed on the returns of the CRSP value-weighted returns index and the return $R_{\text {OFPt }}$ of the optimal-forecast portfolio (OFP) for the set of 25 market-beta-sorted basis portfolios, yielding two beta coefficients $\widehat{\beta}_{j}^{M}$ and $\widehat{\beta}_{j}^{O F P}$. The pairs are sorted into deciles according to their market betas and means and standard deviations of the estimated coefficients are reported for each decile.

$\widehat{\beta}_{T}^{M}$	${ }^{\left(\widehat{\beta}_{T}^{M}\right)}$	$\widehat{\beta}_{\tau}$	$t\left(\widehat{\beta}_{\tau}\right.$)	${ }^{2}()$

January 1967 to December 1971 (261 Weeks)											
1	242	0161	0146	0932	0904	-0 592	0368	-2771	1784	120	83
2	243	0551	0081	2543	0975	-0 361	0378	-1 126	0941	116	73
3	242	0777	0051	3464	1350	-0 272	0371	-0 748	0930	149	84
4	243	0945	0050	3968	1409	-0 176	0344	-0 434	0923	163	80
5	242	1107	0044	4333	1512	-0 130	0391	-0 227	1030	176	80
6	243	1261	0046	4668	1711	-0 065	0464	-0 041	1141	189	88
7	243	1450	0056	5035	1709	0032	0429	0197	1082	201	84
8	242	1649	0071	5241	1841	0029	0422	0219	1139	214	84
9	243	1952	0104	5636	1612	0220	0452	0533	0989	226	84
10	242	2629	0414	6970	1899	0777	0625	1570	1258	280	84
January 1972 to December 1977 (261 Weeks)											
1	262	0310	0163	2392	1681	-0 102	0596	-0 083	1153	45	56
2	263	0572	0044	3795	1657	0014	0512	0156	1054	85	61
3	263	0712	0038	4402	1743	0075	0497	0218	1122	110	74
4	263	0840	0036	4968	1900	0107	0517	0273	1130	131	86
5	263	0955	0029	5573	2078	0213	0551	0533	1136	152	93
6	263	1067	0038	6260	2496	0182	0582	0446	1275	186	114
7	263	1187	0032	6049	2153	0279	0566	0583	1174	173	98
8	263	1317	0045	6317	2415	0374	0651	0673	1131	187	110
9	263	1502	0068	6882	2338	0357	0653	0629	1225	213	110
10	262	1910	0301	7252	2322	0595	0923	0844	1262	234	107
January 1977 to December 1981 (261 Weeks)											
1	242	0267	0122	2338	1633	0004	0567	-0 264	1267	28	36
2	243	0504	0045	4172	1865	-0 125	0471	-0 531	1344	74	53
3	243	0654	0037	4711	1906	-0 119	0458	-0 288	1097	90	61
4	243	0771	0032	5299	2060	-0 095	0533	-0 233	1224	113	69
5	243	0883	0035	6066	2495	-0 141	0427	-0 314	1193	138	94
6	243	0994	0029	6702	2464	-0 180	0480	-0 425	1172	162	91
7	243	1110	0038	6825	2666	-0 219	0503	-0 404	1074	170	99
8	243	1249	0043	7680	2723	-0 262	0491	-0 582	1214	199	105
9	243	1436	0067	7727	2431	-0 456	0595	-0974	1153	203	89
10	242	1805	0223	9143	2722	-0540	0596	-1 194	1184	273	97
January 1982 to December 1986 (261 Weeks)											
1	227	0179	0160	1301	1135	-0 392	0716	-0748	1140	14	23
2	228	0436	0050	3347	1602	-0 287	0524	-0 488	1135	54	41
3	228	0574	0035	4237	1976	-0 175	0623	-0 103	1435	83	60
4	227	0695	0033	4886	1780	-0 267	0504	-0 546	1188	107	63
5	228	0801	0031	5254	1993	-0306	0580	-0 668	1157	119	72
6	228	0905	0030	6063	2337	-0228	0657	-0 450	1228	149	82
7	227	1013	0032	6586	2595	-0 215	0605	-0381	1197	167	91
8	228	1119	0032	7549	2587	-0 199	0513	-0384	1128	205	95
9	228	1280	0059	7641	2850	-0 243	0669	-0 395	1146	214	102
10	227	1645	0240	8210	3135	-0173	0751	-0223	1137	239	112

Table 6e (continued)

		$\widehat{\beta}_{\tau}^{M}$		$t\left(\widehat{\beta}_{\tau}^{M}\right)$		$\widehat{\beta}_{\tau}$		$t\left(\widehat{\beta}_{\tau} \quad\right)$		${ }^{-2}()$	
January 1987 to December 1991 (261 Weeks)											
1	216	0231	0247	2664	2457	0663	1210	1187	1077	56	66
2	217	0500	0060	4482	2731	0588	0746	1261	1194	109	87
3	217	0657	0035	5034	2403	0663	0727	1511	1267	130	89
4	217	0793	0041	6255	3263	0627	0707	1299	1478	172	115
5	217	0919	0033	7248	3555	0536	0688	1162	1498	212	128
6	217	1018	0028	7919	3734	0591	0679	1189	1511	234	130
7	217	1114	0028	8658	4462	0512	0736	0954	1603	258	156
8	217	1218	0034	9028	4089	0539	0643	1169	1353	279	147
9	217	1366	0055	9412	4311	0719	0683	1506	1404	297	153
10	217	1694	0220	8709	4024	0541	0838	0987	1228	285	150
January 1992 to December 1996 (261 Weeks)											
1	241	0006	0439	0424	0810	0066	0971	0146	1134	- 01	11
2	241	0384	0052	2278	1372	0135	0517	0708	1769	29	45
3	242	0530	0032	3100	1858	0132	0611	1001	2203	54	66
4	241	0648	0037	3542	1780	0165	0483	0800	1874	60	60
5	241	0769	0037	4105	1971	0080	0468	0335	1668	76	67
6	242	0883	0031	4629	2057	0052	0446	0090	1323	90	64
7	241	1002	0034	5077	2225	-0 002	0516	-0 068	1414	106	75
8	242	1141	0045	5363	2594	-0 005	0671	-0 017	1437	122	90
9	241	1337	0077	5627	2418	0037	0549	0069	1260	127	85
10	241	1823	0341	5754	2820	0079	0795	0228	1058	138	95

Table 7

Cross-sectional regression tests of various linear factor models along the lines of Fama and MacBeth (1973) using weekly returns for N SE and AME stocks from 1962 to 1996, five-year subperiods for the portfolio-formation, estimation, and testing periods, and 100 portfolios in the cross-sectional regressions each week. The five linear-factor models are: the standard CAPM $\left(\widehat{\beta}_{p}^{M}\right)$, and four two-factor models in which the first factor is the market beta and the second factors are, respectively, the hedging portfolio return beta $\left(\widehat{\beta}_{p}^{H R}\right)$, the hedging portfolio dollar-return beta $\left(\widehat{\beta}_{p}^{H Q}\right)$, the beta of a small-minus-big cap portfolio return ($\widehat{\beta}_{p}^{S M B}$), and the beta of the optimal forecast portfolio based on a set of 25 market-beta-sorted basis portfolios $\left(\widehat{\beta}_{p}^{O F P}\right)$.

Model	Statistic	$\gamma_{0 t}$	$\gamma_{1 t}$	$\gamma_{2 t}$	$\bar{R}^{2}()$
January 1972 to December 1976 (261 Weeks)					
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+{ }_{p t}$	Mean:	0.002	0.000		10.0
	S.D.:	0.015	0.021		10.9
	t-Stat:	1.639	0.348		
$\begin{aligned} & R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{H R}+{ }_{p t} \\ & (\phi=1.25) \end{aligned}$	Mean:	0.004	-0.002	-0.002	14.3
	S.D.:	0.035	0.035	0.037	10.9
		2.040	-1.047	-0.820	
$\begin{aligned} & R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{H Q}+{ }_{p t} \\ & (\phi=1.50) \end{aligned}$	Mean:	0.004	-0.002	-0.104	15.5
	S.D.:	0.032	0.034	3.797	10.9
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{S M B}+{ }_{p t}$	Mean:	0.001	0.000	0.063	12.1
	S.D.:	0.014	0.024	1.142	10.8
	t-Stat:	1.424	0.217	0.898	
January 1977 to December 1981 (261 Weeks)					
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+{ }_{p t}$	Mean:	0.001	0.003		11.7
	S.D.:	0.011	0.022		12.8
	t-Stat:	1.166	2.566		
$\begin{aligned} & R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{H R}+{ }_{p t} \\ & (\phi=4.75) \end{aligned}$	Mean:	0.003	-0.001	-0.012	13.1
	S.D.:	0.014	0.020	0.051	12.4
	t-Stat:	3.748	-0.902	-3.712	
$\begin{aligned} & R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{H Q}+{ }_{p t} \\ & (\phi=4.25) \end{aligned}$	Mean:	0.003	-0.001	-1.564	12.5
	S.D.:	0.013	0.020	6.104	12.2
	t-Stat:	3.910	-0.754	-4.140	
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{S M B}+{ }_{p t}$	Mean:	0.001	0.000	0.299	14.9
	S.D.:	0.011	0.017	1.088	13.4
	t-Stat:	2.251	-0.164	4.433	
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{O F P}+{ }_{p t}$	Mean:	0.003	0.001	0.001	14.1
	S.D.:	0.018	0.023	0.036	11.6
	t-Stat:	2.735	0.843	0.632	

Table 7 (continued)

Model	Statistic	$\gamma_{0 t}$	$\gamma_{1 t}$	$\gamma_{2 t}$	$\bar{R}^{2}()$
January 1982 to December 1986 (261 Weeks)					
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+{ }_{p t}$	$\begin{aligned} & \text { Mean: } \\ & \text { S.D.: } \\ & t \text {-Stat: } \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.011 \\ & 8.169 \end{aligned}$	$\begin{array}{r} -0.001 \\ 0.019 \\ -1.044 \end{array}$		$\begin{array}{r} 9.4 \\ 11.1 \end{array}$
$\begin{aligned} & R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{H R}+{ }_{p t} \\ & (\phi=1.75) \end{aligned}$	$\begin{aligned} & \text { Mean: } \\ & \text { S.D.: } \\ & t \text {-Stat: } \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.011 \\ & 8.390 \end{aligned}$	$\begin{array}{r} -0.001 \\ 0.020 \\ -0.780 \end{array}$	$\begin{array}{r} -0.006 \\ 0.055 \\ -1.732 \end{array}$	$\begin{aligned} & 9.6 \\ & 9.4 \end{aligned}$
$\begin{aligned} & R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{H Q}+{ }_{p t} \\ & (\phi=2.00) \end{aligned}$	$\begin{aligned} & \text { Mean: } \\ & \text { S.D.: } \\ & t \text {-Stat: } \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.011 \\ & 8.360 \end{aligned}$	$\begin{array}{r} -0.002 \\ 0.019 \\ -1.297 \end{array}$	$\begin{array}{r} -0.740 \\ 19.874 \\ -0.602 \end{array}$	$\begin{array}{r} 10.4 \\ 9.5 \end{array}$
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{S M B}+{ }_{p t}$	$\begin{aligned} & \text { Mean: } \\ & \text { S.D.: } \\ & t \text {-Stat: } \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.012 \\ & 7.451 \end{aligned}$	$\begin{array}{r} -0.002 \\ 0.019 \\ -1.264 \end{array}$	$\begin{aligned} & 0.038 \\ & 1.154 \\ & 0.531 \end{aligned}$	$\begin{array}{r} 10.0 \\ 8.4 \end{array}$
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{O F P}+{ }_{p t}$	Mean: S.D.: t-Stat:	$\begin{aligned} & 0.005 \\ & 0.011 \\ & 7.545 \end{aligned}$	$\begin{array}{r} -0.001 \\ 0.020 \\ -0.818 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.021 \\ & 0.199 \end{aligned}$	$\begin{aligned} & 11.7 \\ & 10.8 \end{aligned}$
January 1987 to December 1991 (261 Weeks)					
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+{ }_{p t}$	Mean: S.D.: t-Stat:	$\begin{aligned} & 0.002 \\ & 0.013 \\ & 2.649 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.023 \\ & 0.204 \end{aligned}$		$\begin{aligned} & 5.9 \\ & 8.7 \end{aligned}$
$\begin{aligned} & R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{H R}+{ }_{p t} \\ & (\phi=47) \end{aligned}$	$\begin{aligned} & \text { Mean: } \\ & \text { S.D.: } \\ & t \text {-Stat: } \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.016 \\ & 2.254 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.019 \\ & 0.105 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.060 \\ & 0.132 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 6.1 \end{aligned}$
$\begin{aligned} & R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{H Q}+{ }_{p t} \\ & (\phi=20) \end{aligned}$	Mean: S.D.: t-Stat	$\begin{aligned} & 0.002 \\ & 0.016 \\ & 2.434 \end{aligned}$	$\begin{array}{r} 0.000 \\ 0.019 \\ -0.147 \end{array}$	$\begin{array}{r} 0.189 \\ 18.194 \\ 0.168 \end{array}$	$\begin{array}{r} 6.0 \\ 6.7 \end{array}$
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{S M B}+{ }_{p t}$	Mean: S.D.: t-Stat:	$\begin{aligned} & 0.003 \\ & 0.014 \\ & 3.101 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.020 \\ & 0.158 \end{aligned}$	$\begin{array}{r} -0.075 \\ 1.235 \\ -0.979 \end{array}$	$\begin{aligned} & 7.8 \\ & 8.2 \end{aligned}$
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{O F P}+{ }_{p t}$	Mean: S.D. t-Stat:	$\begin{aligned} & 0.003 \\ & 0.015 \\ & 2.731 \end{aligned}$	$\begin{array}{r} -0.001 \\ 0.021 \\ -0.385 \end{array}$	$\begin{array}{r} 0.000 \\ 0.021 \\ -0.234 \end{array}$	$\begin{aligned} & 6.4 \\ & 7.3 \end{aligned}$

Table 7 (continued)

Model	Statistic	$\gamma_{0 t}$	$\gamma_{1 t}$	$\gamma_{2 t}$	$\bar{R}^{2}()$
January 1992 to December 1996 (261 Weeks)					
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+{ }_{p t}$	Mean: S.D.: t-Stat	$\begin{aligned} & 0.002 \\ & 0.013 \\ & 2.679 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.020 \\ & 1.178 \end{aligned}$		$\begin{aligned} & 5.7 \\ & 7.7 \end{aligned}$
$\begin{aligned} & R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{H R}+{ }_{p t} \\ & (\phi=38) \end{aligned}$	$\begin{aligned} & \text { Mean: } \\ & \text { S.D.: } \\ & t \text {-Stat: } \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.013 \\ & 2.785 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.020 \\ & 1.164 \end{aligned}$	$\begin{array}{r} -0.004 \\ 0.091 \\ -0.650 \end{array}$	$\begin{aligned} & 6.9 \\ & 6.8 \end{aligned}$
$\begin{aligned} & R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{H Q}+{ }_{p t} \\ & (\phi=27) \end{aligned}$	Mean: S.D.: t-Stat:	$\begin{aligned} & 0.003 \\ & 0.015 \\ & 3.279 \end{aligned}$	$\begin{array}{r} 0.000 \\ 0.022 \\ -0.178 \end{array}$	$\begin{array}{r} -1.584 \\ 12.992 \\ -1.970 \end{array}$	$\begin{aligned} & 6.2 \\ & 6.6 \end{aligned}$
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{S M B}+{ }_{p t}$	$\begin{aligned} & \text { Mean: } \\ & \text { S.D.: } \\ & t \text {-Stat: } \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.015 \\ & 1.653 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.019 \\ & 0.861 \end{aligned}$	$\begin{aligned} & 0.154 \\ & 1.157 \\ & 2.147 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 7.0 \end{aligned}$
$R_{p t}=\gamma_{0 t}+\gamma_{1 t} \widehat{\beta}_{p}^{M}+\gamma_{2 t} \widehat{\beta}_{p}^{O F P}+{ }_{p t}$	$\begin{aligned} & \text { Mean: } \\ & \text { S.D.: } \\ & t \text {-Stat: } \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.016 \\ & 0.895 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.020 \\ & 1.236 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.015 \\ & 2.407 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.4 \end{aligned}$

[^0]: *We thank Joon Chae, Ilan Guedj, Jannette Papastaikoudi, Antti Petajisto, and Jean-Paul Sursock for excellent research assistance, and Jonathan Lewellen for providing his industry classification scheme. We are grateful to seminar and conference participants at the Chinese University of Hong Kong, Georgetown University, the Shenzhen Stock Exchange, UCLA, University of Pennsylvania, the 8th World Congress of the Econometric Society, and the 2001 Lectures in Financial Economics in Beijing and Taipei for helpful comments and suggestions. Financial support from the MIT Laboratory for Financial Engineering and the National Science Foundation (Grant No. SBR-9709976) is gratefully acknowledged.
 ${ }^{\dagger}$ MIT Sloan School of Management, Cambridge, MA 02142-1347 and NBER.

[^1]: ${ }^{1}$ One example of changes in market conditions is changes in the investment opportunity set considered by Merton (1973).

[^2]: ${ }^{2}$ Throughout this paper, we follow the following convention: For a set of elements, $e_{1}, \ldots, e_{n},\left(e_{1} ; \ldots ; e_{n}\right)$ denotes the column vector and $\left(e_{1}, \ldots, e_{n}\right)$ denotes the row vector from these elements.

[^3]: ${ }^{3}$ The investors' total portfolios satisfy three-fund monetary separation: the risk-free bond and the two stock funds. For our discussion here, we restrict our attention to their stock investments and always focus on the two stock funds.

[^4]: ${ }^{4}$ For a discussion on the implications of mutual fund separation on the cross-sectional behavior of volume, see Lo and Wang (2000a). See also Tkac (1996).

[^5]: ${ }^{5}$ Obviously, from a purely statistical perspective, using shorter subperiods does not render a nonstationary time series stationary. However, if the sources of nonstationarity are institutional changes and shifts in general business conditions, confining our attention to shorter timespans does improve the quality of statistical inference. See Lo and Wang (2000a) for further discussion.

[^6]: ${ }^{6}$ To avoid degeneracy, we need $N_{j} \neq N_{k}$ for some $j \neq k$, which is surely valid empirically.

[^7]: ${ }^{7}$ For example, for any a, we have $\forall j$:

 $$
 \tau_{j t}=F_{M t}+\theta_{H j} F_{H t}+\varepsilon_{j t}=\left(F_{M t}+a F_{H t}\right)+\left(\theta_{H j}-a\right) F_{H t}+\varepsilon_{j t}=\tilde{F}_{M t}+\tilde{\theta}_{H j} F_{H t}+\varepsilon_{j t}
 $$

 where $\tilde{F}_{M t}=F_{M t}+a F_{H t}$ and $\tilde{\theta}_{H j}=\theta_{H j}-a$.
 ${ }^{8}$ We ignore this constraint for two reasons. First, given the large number of stocks in our sample, imposing a global constraint like $(25 \mathrm{c})$ requires a large amount of computer memory, which was unavailable to us. Second, because of the large number of individual regressions involved, neglecting the reduction of one dimension should not significantly affect any of the final results.

[^8]: ${ }^{9}$ For example, a negative \bar{R}^{2} arises when the variance of $\widehat{\beta}_{\tau j}^{E W} \tau_{t}^{E W}+\widehat{\beta}_{\tau j}^{S W} \tau_{t}^{S W}$ exceeds the variance of the dependent variable $\tau_{j t}$, which can happen when the constraint (25b) is imposed.

[^9]: ${ }^{10}$ See Lo and Wang (2000a) for the importance of outliers in volume data.

[^10]: ${ }^{11}$ This approach ignores the impact of statistical variation on the "optimal" ϕ, which is beyond the scope of this paper but is explored further in related contexts by Foster, Smith, and Whaley (1997) and Lo and MacKinlay (1997).

[^11]: ${ }^{12}$ It is important that we use value-weighted portfolios here so that the market portfolio, whose return

[^12]: we wish to predict, is a portfolio of these basic portfolios (recall that the target portfolio ω_{q} that we wish to forecast is a linear combination of the vector of returns for which Γ_{k} is the k-th order autocovariance matrix).

[^13]: ${ }^{13}$ We are grateful to Jonathan Lewellen for sharing his industry classification scheme.
 ${ }^{14}$ We also considered nine other interest-rate predictors (six-month and one-year Treasury bill rates, three-month, six-month, and one-year off-the-run Treasury bill rates, one-month and three-month CD and Eurodollar rates, and the Fed Funds rate (all obtained from the Federal Reserve Bank of St. Louis, http://www.stls.frb.org/fred/data/wkly.html). Each of these variables produced results similar to those for the three-month constant-maturity Treasury bill return, hence we omit those regressions from Table 4.

[^14]: ${ }^{15}$ On the other hand, the results in Table 4 must be tempered by the fact that the OFPs are only as good as the basis portfolios from which they are constructed. Increasing the number of basis portfolios should, in principle, increase the predictive power of the OFP. However, as the number of basis portfolios increases, the estimation errors in the autocovariance estimators $\widehat{\gamma}_{0}$ and $\widehat{\gamma}_{1}$ also increase for a fixed set of time series observations, hence the impact on the predictive power of the OFP is not clear.

[^15]: ${ }^{16}$ Our first portfolio-formation period, from 1962 to 1966 , is only four and a half years because the CRSP Daily Master file begins in July 1962. Fama and MacBeth's (1973) original procedure used a seven-year portfolio-formation period, a five-year estimation period, and a four-year testing period.
 ${ }^{17}$ This induces a certain degree of survivorship bias, but the effects may not be as severe given that we apply the selection criterion three periods at a time. Moreover, while survivorship bias has a clear impact on expected returns and on the size effect, its implications for the cross-sectional explanatory power of the hedging portfolio is less obvious, hence we proceed cautiously with this selection criterion.

[^16]: ${ }^{18}$ Specifically, the SMB portfolio return is constructed by taking the difference of the value-weighted returns of securities with market capitalization below and above the median market capitalization at the start of the five-year subperiod.
 ${ }^{19}$ The two-factor model with OFP as the second factor is not estimated until the second testing period because we use the 1962-1966 period to estimate the covariances from which the OFP returns in the 19671971 period are constructed. Therefore, the OFP returns are not available in the first portfolio-formation period.
 ${ }^{20}$ The t-statistic is computed under the assumption of independently and identically distributed coefficients $\left\{\gamma_{1 t}\right\}$, which may not be appropriate. However, since this has become the standard method for reporting the results of these cross-sectional regression tests, we follow this convention to make our results comparable to those in the literature.

[^17]: ${ }^{21}$ See, for example, MacKinlay $(1987,1994)$.

