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Abstract

We derive an intertemporal capital asset pricing model with multiple assets and heteroge-
neous investors, and explore its implications for the behavior of trading volume and asset
returns. Assets contain two types of risks: market risk and the risk of changing market
conditions. We show that investors trade only in two portfolios: the market portfolio, and a
hedging portfolio, which allows them to hedge the dynamic risk. This implies that trading
volume of individual assets exhibit a two-factor structure, and their factor loadings depend
on their weights in the hedging portfolio. This allows us to empirically identify the hedging
portfolio using volume data. We then test the two properties of the hedging portfolio: its
return provides the best predictor of future market returns and its return together with the
return of the market portfolio are the two risk factors determining the cross-section of asset
returns.
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1 Introduction

Fundamental shocks to the economy drive both the supply and demand of financial assets
and their prices. Thus, any asset-pricing model that attempts to establish a structural
link between asset prices and underlying economic factors also establishes links between
prices and quantities such as trading volume. In fact, asset-pricing models link the the
joint behavior of prices and quantities with economic fundamentals such as the preferences
of investors and the future payoffs of the assets. Therefore, the construction and empirical
implementation of any asset-pricing model should involve both price and quantities as its key
elements. Even from a purely empirical perspective, the joint behavior of price and quantities
reveals more information about the relation between asset prices and economic factors than
prices alone. Yet the asset-pricing literature has centered more on prices and much less on
quantities. For example, empirical investigations of well-known asset-pricing models such as
the Capital Asset Pricing Model (CAPM) and its intertemporal extensions (ICAPM) have
focused exclusively on prices and returns, completely ignoring the information contained in
quantities. In this paper, we hope to show that even if our main interest is in the behavior
of prices, valuable information about price dynamics can be gleaned from trading volume.

We begin by developing an intertemporal capital asset pricing model of multiple assets
in the spirit of Merton’s ICAPM. We explicitly model investors’ asset demands and derive
equilibrium asset prices and asset holdings. In our model, assets are exposed to two sources
of risks: market risk and the risk of changes in market conditions.! As a result, investors
wish to hold two distinct portfolios of risky assets: the market portfolio and a hedging
portfolio. The market portfolio allows them to adjust their exposure to market risk, and the
hedging portfolio allows them hedge the risk of changes in market conditions. In equilibrium,
investors trade in only these two portfolios, and expected asset returns are determined by
their exposure to these two risks, i.e., a two-factor linear pricing model holds, where the two
factors are the returns on the market portfolio and the hedging portfolio, respectively.

We then explore the implications of this model on the joint behavior of volume and

returns. Since investors hold only two portfolios—the market portfolio and the hedging

1One example of changes in market conditions is changes in the investment opportunity set considered
by Merton (1973).



portfolio—they trade in only these portfolios. This implies that trading volume also exhibits
a two-factor structure: the first factor arises from their trades in the market portfolio and
the second factor arises from their trades in the hedging portfolio. More importantly, we
show that the factor loading of each asset’s trading volume on the hedging-portfolio factor is
identical to that asset’s portfolio weight in the hedging portfolio. This remarkable property
of the trading volume of individual assets suggests a way to identify the hedging portfolio
from a rather unexpected source: volume data. Moreover, after arriving at such a portfolio,
we have the means to verify that it is indeed the hedging portfolio: its returns should be the
best predictor of future returns on the market portfolio. Collectively, these results provide
concrete economic foundations for determining risk factors beyond the market portfolio for
dynamic equilibrium asset-pricing models.

Using the weekly returns and volume data on NYSE and AMEX stocks from 1962 to
1996, we implement the model empirically. From the trading volume of individual stocks,
we construct the hedging portfolio and its returns. We find that the hedging-portfolio returns
consistently outperforms other factors in predicting future returns to the market portfolio.
We then use the returns to the hedging and market portfolios as two risk factors in a cross-
sectional test along the lines of Fama and MacBeth (1973), and find that the hedging portfolio
is comparable to other factors in explaining the cross-sectional variation of expected returns.

In Section 2, we present our intertemporal equilibrium model of asset-pricing and trading
volume. In Section 3, we explore the model’s implications for volume and returns. Section
4 describes the data used in our empirical implementation of the model, and outlines the
construction of the hedging portfolio. In Section 5, we compare the forecast power of the
hedging portfolio with other factors, and we perform cross-sectional tests of the hedging

portfolio as a risk factor in Section 6. We conclude in Secton 7.

2 The Model

In this section, we develop an intertemporal equilibrium model of stock trading and pricing
with multiple assets and heterogeneous investors. Since our purpose is to draw its qualitative
implications on the joint behavior of return and volume, the model is kept as parsimonious

as possible. Several generalizations of the model are discussed in Section 2.2.



2.1 The Economy

We consider an economy defined on a set of discrete dates: ¢t =0,1,2,.... There are J risky
assets in the economy, which we call stocks. Each stock pays a stream of dividends over time.
Let Dj; denote the dividend of stock j at date t, j = 1,---,J, and Dy = (Dyy;--- ; D)
denote the column vector of dividends.? Without loss of generality, in this section we assume
that the total number of shares outstanding is one for each stock.

A stock portfolio can be expressed in terms of its shares of each stock, denoted by
S = (S1;...:5), where §; is the number of stock j shares in the portfolio (j =1,...,J). A

portfolio of particular importance is the market portfolio, denoted by 5,,, which is given by
Sy =1 (1)

where ¢ is a vector of 1’s with rank J. D,,;; = /D, gives the dividend of the market portfolio,
which is the aggregate dividend.

In addition to the stocks, there is also a risk-free bond that yields a constant, positive
interest r per time period.

There are I investors in the economy. Each investor is endowed with equal shares of the
stocks and no bond. Every period, investor i, ¢ = 1, ..., I, maximizes his expected utility of

the following form:
E, _G—Wfﬂ—(AXXt+>\YYf)DMt+1—/\Z(1+Z§)Xt+1] (2)
where W/, is investor ¢’s wealth next period, Xy, Y}, Z; are three one-dimensional state

variables, and Ay, Ay, A, are non-negative constants. Apparently, the utility function in (2)

is state-dependent. We further assume

I I
tz — i
Vi=>"7Z/=0 (3)
=1 =1

where t =0,1,....
For simplicity, we assume that all the exogenous shocks, Dy, X, {Y/, Z!i=1,...,1},

are IID over time with zero means. For tractability, we further assume that D, and X, are

2Throughout this paper, we follow the following convention: For a set of elements, e1, ..., ey, (€1;...;¢€,)
denotes the column vector and (eq, ..., e,) denotes the row vector from these elements.



jointly normally distributed:

d
utz(?;) ~ N (-,0) where U:(UDD UDX). (4)

Oxp Oxx

Without loss of generality, o, is assumed to be positive definite.

2.2 Discussion

Our model has several features that might seem unusual. Most importantly, investors are
assumed to have a myopic, but state-dependent utility function in (2). The purpose for using
this utility function is to capture the dynamic nature of the investment problem without ex-
plicitly solving a dynamic optimization problem. This utility function should be interpreted
as the equivalent of a value function from an appropriately specified dynamic optimization
problem (see, for example, Wang, 1994 and Lo and Wang, 2000b). In an earlier draft of the
paper, we did specify a canonical dynamic optimization problem for the investors, in which
they have state-independent utility over their lifetime consumption. It was shown that the
resulting value function, as a function of wealth and the state variables, has the form as the
state-dependent utility function in (2). For simplicity in exposition, we directly start with
(2).

The state dependence of the utility function has the following properties. The marginal
utility of wealth depends on the dividend of the market portfolio (the aggregate dividend),
as reflected in the second term in the exponential of the utility function. When the aggregate
dividend goes up, the marginal utility of wealth goes down. There are many ways to motivate
this type of utility function. For example, the utility can be derived from wealth in reference
to the market, not the level of wealth itself (see, for example, Abel, 1990, and Campbell
and Cochrane, 1999). Alternatively, if in addition to their stock investments, investors are
also exposed to other risks that are correlated to the market (see, for example, Wang, 1994).
The marginal utility of wealth also depends on future state variables, in particular X;,, as
reflected in the third term in the exponential of the utility function. The motivation for al-
lowing such a dependence is as follows. Since the state variables determine the stock returns
in equilibrium, the value function (indirect utility function) of an investor who optimizes

dynamically would depend on these state variables. Without modelling the dynamic opti-



mization problem explicitly, we explicitly impose such a dependence on the (myopic) utility
function. This dependence introduces dynamic hedging motives in the investors’ portfolio
choices (see Merton, 1971, for a discussion on dynamic hedging).

Another simplification in the model is the IID assumption for the state variables. This
might leave the impression that the model is effectively static. This impression, however, is
false since the state-dependence of investors’ utility function introduces important dynamics
over time. We can allow richer dynamics for the state variables without changing the main
properties of the model.

The particular form of the utility function and the normality of distribution for the state
variables are assumed for tractability. These assumptions are restrictive. But we hope with
some confidence that the qualitative predictions of the model that we explore in this paper
are not sensitive to these assumptions.

In the model, we also assumed an exogenous interest rate for the bond without requiring
the bond market to clear. This is a modelling choice we have made in order to simplify
our analysis and to focus on the stock market. As will become clear later, changes in the
interest rate is not important for the issues we examine in this paper. From an empirical
point of view, at the frequency we are interested in (weekly), changes in interest rate are

usually small.

2.3 Equilibrium

Let P, = (Py;...; Py) and Si = (Si,;...;5%,) be the (column) vectors of (ex-dividend)
stock prices and investor i’s stock holdings respectively. We now derive the equilibrium of

the economy.

Definition 1 An equilibrium is given by a price process {P; : t =0,1,...} and the investors
stock positions {Si :i=1,...,I;t =0,1,...} such that:
1. S! solves investor i’s optimization problem:
S = arg max E|—e

_Wzi+l_(AXXt+>\Y}/;ti)DMt+1_>\Z(1+Z’£)Xt+1i| (5)

5. t. i1 = Wi+ 8} [Dis1 + Prpr — (147) P



2. stock market clears:
Z Sl =1 (6)
i=1

The above definition of equilibrium is standard, except that the bond market does not clear
here. As discussed earlier, the interest rate is given exogenously and there is an elastic supply
of bonds at that rate.

Fort =0,1,..., let Q11 denote the vector of excess dollar returns on the stocks:
Qt41 = Dy1 + Py — (1+7“)Pt. (7)

Thus, Qji41 = Djit1 + Py — (1 4+ 7)Pj, gives the dollar return on one share of stock j
in excess of its financing cost for period ¢ + 1. For the remainder of the paper, we simply
refer to ()j¢41 as the dollar return of stock j, omitting the qualifier “excess”. Dollar return
Qji+1 differs from the conventional (excess) return measure R which is the dollar return
normalized by the share price: Rji1 = Qji4+1/Pjr. We refer to Rj4; simply as the return on
stock j in period t 4 1.

We can now state the solution to the equilibrium in the following theorem:

Theorem 1 The economy defined above has a unique linear equilibrium in which

Pt = —a — bXt (8)
and
SZ = (I_l_)‘YY?) L= P‘Y(b/L)Yti + )‘ZZZ] (JQQ)il Ogx 9)
where
oo = 0pp— (boxp +apxl)) 4+ o2bb
N 2
Oox = Opx —0Oxb
1,
a = ;(aaQQL—i-/\ZUQX)
h = )\X[(l—l—'r’)—i—/\ZaXDL)]_laDDe
and a = 1/1.



The nature of the equilibrium is intuitive. In our model, an investor’s utility function
depends not only on his wealth, but also on the stock payoffs directly. In other words, even
he holds no stocks, his utility fluctuates with the payoff of the stocks. Such a “market spirit”
affects his demand for the stocks, in addition to the usual factors such as the stocks’ expected
returns. The market spirit of investor i is measured by (AxX;+ Ay Y;)). When (Ax X; + A, Y})
is positive, investor i extracts positive utility when the aggregate stock payoff is high. Such
a positive “attachment” to the market makes holding stocks less attractive to him. When
(Ax X;+ A, Y}) is negative, he has a negative attachment to the market, which makes holding
stocks more attractive. Such a market spirit at the aggregate level, which is captured by
X, affects the aggregate stock demand, which in turn affects their equilibrium prices. Given
the particular form of the utility function, X, affects the equilibrium stock prices linearly.
The idiosyncratic differences among investors in their market spirit, which are captured by
Y/, offset each other at the aggregate level, thus do not affect the equilibrium stock prices.
However, they do affect individual investors’ stock holdings. As the first term of (9) shows,
investors with positive Y;"’s hold less stocks (they are already happy by just “watching” the
stocks paying off).

Since the aggregate utility variable X; is driving the stock prices, it is also driving the
stock returns. In fact, the expected returns on the stocks are changing with X, (see the dis-
cussion in the next section). The form of the utility function further states that the investors
utility function directly depends on X, which fully characterizes the market conditions in-
vestors face, in particular, the investment opportunities. Such a dependence endogenously
arises when investors optimize dynamically. In our setting, however, we assume that in-
vestors optimize myopically but insert such a dependence directly into the utility function.
This dependence induces investors to care about future market conditions when choose their
portfolios. In particular, they prefer those portfolios whose returns can help them to smooth
fluctuations in their utility due to changes in market conditions. Such a preference gives rise

to the hedging component in their asset demand, which is captured by the second term in

(9).



3 The Behavior of Returns and Volume

Given the intertemporal CAPM defined above, we can derive its implications on the behavior

of return and volume. For the stocks, their dollar return vector can be re-expressed as follows:
Qupr = ra+ (14+7)bXy 4 Qi (10)

where Qu41 = Dyy1 — bZyiq1 denotes the vector of unexpected dollar returns on the stocks,
which are IID over time with zero mean. Equation (10) shows that the expected returns on
the stocks change over time. In particular, they are driven by a single state variable X;.

The investors stock holdings can be expressed in the following form:
Si=h',u+hi,Sy Vi=12...1T (11)
where b, = I = A\ Y}, R, = A\ (V)Y — N\, Z!, and
Su = (UQQ)il Oqx- (12)

Equation (11) simply states that two-fund separation holds for the investors’ stock invest-
ments. That is, the stock investments of all investors can be viewed as investments in two
common funds: the market portfolio ¢ and the hedging portfolio Sj.® In our current model,
these two portfolios, expressed in terms of stock shares, are constant over time.

The particular structure of the returns and the investors’ portfolios lead to several inter-
esting predictions about the behavior of volume and returns. We present these predictions

through a set of propositions.

3.1 The Cross Section of Volume

Given the heterogeneity in their preferences which change over time, investors trade among
themselves to achieve their optimal stock holdings. The volume of trade can be measure by

the turnover ratio. Since we have normalized the total number of shares outstanding to be

3The investors’ total portfolios satisfy three-fund monetary separation: the risk-free bond and the two
stock funds. For our discussion here, we restrict our attention to their stock investments and always focus
on the two stock funds.



one for all stocks, the turnover of a stock, say, stock j, is given by

1< . . . . .
T =g > | (R = Py y) + (Bl — By 1) Sug| Vi=1,....J (13)
=1

Let 73 denote the vector of turnover for all stocks. We have the following proposition on

the cross-section of volume:

Proposition 1 When investors’ trading in the hedging portfolio is small relative to their
trading in the market portfolio, the two-fund separation in their stock holdings leads to an

approximate two-factor structure for stock turnover:

T = tFy + SuFu (14)
where
1< 1<
Fyy = B Z ‘hiwt_h‘iwtfl and  Fpy = 2 Z (M= Pgi) sgn (Pl —hiyey) -
i=1 i=1

In the special case when one-fund separation holds for stock holdings (when X; =0 V t),
turnover would have an exact one-factor structure, 7, = ¢F,;. Moreover, the loading of
individual turnover on the common factor is identical. In other words, the turnover is
identical cross all stocks. This is not surprising. In the case of one-fund separation for stock
investments, investors trade in one stock portfolio, which has to be the market portfolio.
Thus, they trade all the stocks in same proportions (in shares). Consequently, the turnover
must be the same for all stocks.*

In the general case when two-fund separation holds for stock investments, turnover has an
approximate two-factor structure as given in (14). It is important to note that the loading of
stock 7’s turnover on the second factor is proportional to its share weight in the hedging port-
folio. Thus, empirically if we can identify the two common factors, F,;; and Fy;, the stocks’
loadings on the second factor allow us to identify the hedging portfolio. In our empirical
analysis, we explore this information that the cross-section of volume conveys. As we discuss
below, the hedging portfolio has important properties that allow us to better understand the
behavior of returns. Merton (1971) has discussed the properties of hedging portfolios in a

4For a discussion on the implications of mutual fund separation on the cross-sectional behavior of volume,
see Lo and Wang (2000a). See also Tkac (1996).



continuous-time framework as a characterization of equilibrium. Our discussion here follows

Merton in spirit, but is in a discrete-time, equilibrium environment.

3.2 Time Series Implications for the Hedging Portfolio

By the definition of the hedging portfolio in (12), it is easy to show that its current return
gives the best forecast of future market return.

Let @141 denote the dollar return on the market portfolio in period ¢ + 1 and Q11
denote the dollar return on the hedging portfolio. Then,

Qui+1 =V Qr1 and  Quep1 = S5, Q1. (15)

For an arbitrary portfolio S, its dollar return in period ¢, which is @), = S'Q;, can serve as

a predictor for the dollar of the market next period:

Qut+1 = 00 + 01Q, + Eprpv1-

The predictive power of S is measured by the R? of the above regression. We can solve for
the portfolio that maximizes the R%. The solution, up to a scaling constant, is the hedging

portfolio. Thus, we have the following result:

Proposition 2 Among the returns of all portfolios, the dollar return of the hedging portfolio,

Sy, provides the best forecast for the future dollar return of the market.

In other words, if we regress the market dollar return on the lagged dollar return of any

portfolios, the hedging portfolio gives the highest R2.

3.3 Cross-Sectional Implications for the Hedging Portfolio

We now turn to examine the predictions of our model on the cross-section of returns. For
expositional simplicity, we introduce some additional notation. Let ()41 be the dollar return
of a stock or a portfolio (of stocks). thﬂ = Qpt+1 — Et[@pr+1] then denotes its unexpected
dollar return and Qp its unconditional mean. Thus, @ wmt+1 and Q nt+1 denote, respectively,

the unexpected dollar returns on the market portfolio and the hedging portfolio, and
0-12w = Var |:QMt+1i| , 01%1 = Var |:©Ht+1] y Ome = Cov QMt—f—h QHt—i—l]

10



denote their conditional variances and covariances. It is easy to show that
2 _ 2 -1 _
Oy =U0qgql, 0n =0xq(00q)” Oox, Oun =U0gx

where 04, and o,y are given in Theorem 1. From Theorem 1, we have

QM = 07012»1 + A20mu (16b)
QH = QOyy + >\ZO'121- (16(3)

Equation (16) characterizes the cross-sectional variation in the stocks’ expected dollar re-
turns.

In order to develop more intuition about (16), we first consider the special case when
Xy =0 V t. In this case, returns are IID over time. The risk of a stock is measured by its

co-variability with the market portfolio. We have the following result:

Proposition 3 When X; =0 V t, we have

E [Qt—&-l’@Mt-&-l} = BuQuin (17)

where

B = Cov [Qt+17 Qkft+1:| /Var [Qlwt+1:| = UDDL/(L/UDDL)

15 the vector of the stocks” market betas. Moreover,

Q = ﬁ]w@]% (18)
where Q,, = ao?, > 0.

Obviously in this case, the CAPM holds for the dollar returns. It can be shown that it also
holds for the returns.

In the general case when X; changes over time, there is an additional risk due to changing
market conditions (dynamic risk). Moreover, this risk is represented by the dollar return of
the hedging portfolio, which is denoted by @Q,; = S,,Q¢. In this case, the risk of a stock is

measured by its risk with respect to the market portfolio and its risk with respect to the

11



hedging portfolio. In other words, there are two risk factors, the (contemporaneous) market
risk and the (dynamic) risk of changing market conditions. The expected returns of the
stocks are then determined by their exposures to these two risks and the associated risk

premia. The result is summarized in the following proposition:

Proposition 4 When X, changes over time, we have

E [Qt+1|QMt+17 QHt+1:| - ﬁMQMt-i—l + 61{@1%4—1 (19)

where

(Bur, By) = Cov [Qtﬂ, (Qmﬂ; Qmﬂ)] {Var [(QMtH,QHtJrlﬂ }_1

o2 oy, !
= (UQM7UQH)( M AQH

Ova  Og
is the vector of the stocks’ market betas and hedging betas. Moreover, The stocks’ expected

dollar returns satisfy

Q = /BJWQ]VI + BHQH (20)

where Qy = @02, + X\y0yy and Qy = Q0 + N ,0%.

Thus, a stock’s risk is measured by its beta with respect to the market portfolio and its beta
with respect to the hedging portfolio. The expected dollar return on the market portfolio
gives the premium of the market risk and the expected dollar return on the hedging portfolio
gives the premium of the dynamic risk. (20) simply states that the premium on a stock is
then given by the sum of the product of its exposure to each risk and the associated premium.

Under constant market conditions (X; = 0, V ¢), the premium for the market risk,
Q, is always positive. However, under changing market conditions, the premium for the
market risk need not always be positive. In particular, when o,,; is significantly negative
(A, is assumed to be positive), Q can become negative. This is simply because that the
premium is determined by the covariance between the market return and investors’ marginal
utility, which depends on both their wealth and the other state variables. The positive
covariance between the market return and investors’ wealth gives a positive premium to

the market portfolio. But the negative covariance between the market return and the state

12



variable X; that drives the utility function gives a negative premium. The total premium on
the market portfolio is the sum of these two components, which can be negative when the
second component dominates.

The pricing relation we obtain in Proposition 4 is in the spirit of Merton’s Intertemporal
CAPM in a continuous-time framework (Merton, 1971). However, it is important to note
that Merton’s result is a characterization of the pricing relation under a (class of) proposed
price processes and no equilibrium is provided to support these price processes. In contrast,
our pricing relation is derived from a dynamic equilibrium model. In this sense, we model
provides an particular equilibrium model for which Merton’s characterization holds.

If we can identify the hedging portfolio empirically, its return provides the second risk
factor. Differences in the stocks’ expected returns can then be fully explained by their
exposures to the two risks (market risk and dynamic risk), as measured by their market

betas and hedging betas.

4 An Empirical Implementation

Our empirical analysis of the implications of the model outlined in Sections 2 and 3 is
comprised of three parts. In the first part, we exploit the model’s cross-sectional implications
to construct the hedging portfolio from volume data. In the second part, we examine the
ability of the hedging portfolio to forecast future market-portfolio returns. And in the third
part, we investigate the role of the hedging-portfolio return as a risk factor in explaining the
cross-sectional variation of expected returns. We focus on the first part in this section, and

consider the second and third parts in Sections 5 and 6.

4.1 The Data

We use an extract of the CRSP Daily Master File called the “MiniCRSP Returns and
Turnover” database described in Lo and Wang (2000a). This extract consists of weekly
return and turnover series for individual stocks traded on NYSE and AMEX from July
1962 to December 1996 (1800 weeks). We choose weekly holding periods as a compromise
between maximizing the sample size and minimizing the impact of high-frequency return

and turnover fluctuations that are likely to be of less direct economic consequence. We also

13



limit our focus to ordinary common shares (CRSP sharecodes 10 and 11 only).

As documented in Lo and Wang (2000a) and in many other studies, aggregate turnover
seems to be nonstationary, exhibiting a significant time trend and time-varying volatilities.
For example, the average weekly turnover in the period from 1962 to 1966 is 0.57%, but grows
to 1.31% in the period from 1992 to 1996, and the volatilities during these two periods were
0.07% and to 0.23%, respectively. Detrending has been advocated by several other authors
(e.g., Andersen, 1996 and Gallant, Rossi, and Tauchen 1992), and there is no doubt that such
procedures may help to induce more desirable time series properties for turnover. However,
Lo and Wang (2000a) show that the different types of detrending methods, e.g., linear,
logarithmic, or quadratic, yield detrended time series with markedly different statistical
properties. Since we do not have any specific priors or theoretical justification for the kinds
of nonstationarities in aggregate turnover, we use the raw data in our empirical analysis.
To address the issue of nonstationarities, we conduct our empirical analysis on five-year
subperiods only.® For notational convenience, we shall sometimes refer to these subperiods

by the following numbering scheme:

Subperiod 1: July 1962 to December 1966

Subperiod 2: January 1967 to December 1971
Subperiod 3: January 1972 to December 1976
Subperiod 4: January 1977 to December 1981
Subperiod 5: January 1982 to December 1986
Subperiod 6: January 1987 to December 1991
Subperiod 7: January 1992 to December 1996

4.2 Construction of the Hedging Portfolio

Our first step in empirically implementing the intertemporal model of Sections 2 and 3 is
to construct the hedging portfolio from turnover data. From (14), we know that in the
two-factor model for turnover in Proposition 1, stock j’s loading on the second factor F';
yields the number of shares (as a fraction of its total number of shares outstanding) of stock
j in the hedging portfolio. In principle, this identifies the hedging portfolio. However, we

face two challenges in practice. First, the exact two-factor specification (14) is, at best, an

5Obviously, from a purely statistical perspective, using shorter subperiods does not render a nonstationary
time series stationary. However, if the sources of nonstationarity are institutional changes and shifts in general
business conditions, confining our attention to shorter timespans does improve the quality of statistical
inference. See Lo and Wang (2000a) for further discussion.

14



approximation for the true data-generating process of turnover. Second, the two common
factors are generally not observable. We address both of these problems in turn.

A more realistic starting point for modelling turnover is an approximate two-factor model:
Tjt:FN1t+6HjFHt+€jt7 j:l,,_,,J (21)

where Fy; and Fy; are the two factors that generate trading in the market portfolio and
the hedging portfolio, respectively, 0; is the percentage of shares of stock j in the hedging
portfolio (as a percentage of its total number of shares outstanding), and e;; is the error
term, which is assumed to be independent across stocks.

Cross-sectional independence of the errors is a restrictive assumption. If, for example,
there are other common factors in addition to F,; and Fy, then € is likely to be correlated
across stocks. The appropriateness of the independence assumption is an empirical matter,
and in Lo and Wang (2000a), we have found evidence supporting the two- factor structure.
In particular, the covariance matrices of turnover for a collection of turnover-beta-sorted
portfolios generally exhibit two large eigenvalues that dominate the rest. This provides
limited justification for assuming that €, is independent across stocks.

Since we do not have any sufficient theoretical foundation to identify the two common
factors F;; and Fyy, we use two turnover indexes as their proxies: the equally-weighted and
share-weighted turnover of the market. Specifically. let N; denote the total number of shares
outstanding for stock 7 and N = Zj N; the total number of shares outstanding of all stocks.

The two turnover indexes are

J
1
7 = jZTjt =Fuy +nVEFy + " (22a)
j=1
TN
W= Z W]Tjt = Fur +n®" Fye + 7" (22Db)
j=1
where
J J
1 N;
n"" = 5 ZQHj and n°" = Z WjeHj
j=1 J=1

are the average percentage of shares of each stock in the hedging portfolio and the percentage

of all shares (of all stocks) in the hedging portfolio, respectively, and /" and ;" are the
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error terms for the two indexes.® Since the error terms in (21) are assumed to be independent
across stocks, the error terms of the two indexes, which are weighted averages of the error
terms of individual stocks, become negligible when the number of stocks is large. For the
remainder of our analysis, we shall ignore them.

Simple algebra then yields the following relation between individual turnover and the

two indexes:

_ QSW__SW EW _EW )
where
EW sSwW
Ew _ T — eHj d sSwWo__ QHJ' —7n
Tj T L EW sw an ) T L EW swo*
n —nNn n —nNn

These expressions imply that the following relations for 47" and ;)" must hold:

PV =1V (24a)

1 J

5 dopE=1. (24b)
j=1

These relations should come as no surprise since the two-factor specification for turnover,
(21), has only J parameters {6,;}, whereas the transformed two-factor model (23) has
two sets of parameters, {37} and {32]"}. The first relation, (24a), exactly reflects the
dependence between the parameters and the second relation, (24b), comes from the fact
that the coefficients in (23) are independent of the scale of {6, }.

Using the MiniCRSP volume database, we can empirically estimate {37} and {3;}"

by estimating the following constrained regression:

e = BT BTN + e, j=1,...,J (25a)
st. B +6 =1 (25b)

J
> o= (25¢)

j=1

From the estimates { ijw}, we can construct estimates of the portfolio weights of the hedging

5To avoid degeneracy, we need N; # Ny, for some j # k, which is surely valid empirically.
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portfolio in the following manner

Ouj = (N — n)BEY 40" (26)
However, there are two remaining parameters, n”" and n°", that need to be estimated.
It should be emphasized that these two remaining degrees of freedom are inherent in the
model (21). When the two common factors are not observed, the parameters {67} are only
identified up to a scaling constant and a rotation. Clearly, (21) is invariant when Fj; is
rescaled as long as {6,;} is also rescaled appropriately. In addition, when the two factors
are replaced by their linear combinations, (21) remains formally the same as long as {6}
is also adjusted with an additive constant.” Since the hedging portfolio {#;} is defined only

up to a scaling constant, we let

R =1 (27a)
n"" —n*" = ¢ (27b)

where ¢ is a parameter that we calibrate to the data (see Section 5). This yields the final

expression for the J components of the hedging portfolio:
O = ¢ B2 + 1. (28)

The normalization n®" = 1 sets the total number of shares in the portfolio to a positive value.
If ¢ = 0, the portfolio has equal percentage of all the shares of each company, implying that
it is the market portfolio. Nonzero values of ¢ represent deviations from the market portfolio.

To estimate {55 } and {32}, we first construct the two turnover indexes. Figure 1 plots
their time series over the entire sample period from 1962 to 1996. We estimate (25a)—(25b)
for each of the seven five-year subperiods, ignoring the global constraint (25¢).® Therefore,

we estimate constrained linear regressions of the weekly turnover for each stock on equal-

"For example, for any a, we have V j:
Tit = Fug + eHjFHt + &5t = (FMt + aFHt) + (eHj - CL)-FHt + &t = FMt + éHjFHt + €t

where FMt = Fy;t +aFy: and 0~Hj =0u; —a.

8We ignore this constraint for two reasons. First, given the large number of stocks in our sample, imposing
a global constraint like (25¢) requires a large amount of computer memory, which was unavailable to us.
Second, because of the large number of individual regressions involved, neglecting the reduction of one
dimension should not significantly affect any of the final results.
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and share-weighted turnover indexes in each of the seven five-year subperiods of our sample.

Figure 2 plots the histogram of { ijW} for each of the subperiods. There is clearly a wide
distribution of estimated coefficients, ranging from —2 to 10 in the first four subperiods and
—10 to 10 in the last three. Outliers in the raw turnover data are often the source of these
large estimates (see Lo and Wang, 2000a, for a more detailed discussion of outliers).

Table 1 reports summary statistics for these constrained regressions. To provide a clearer
sense of the dispersion of these regressions, we first sort them into deciles based on {ijw ,
and then compute the means and standard deviations of the estimated coefficients {ijw
and {ijw }, their t-statistics, and the R?s within each decile. The t-statistics indicate that
the estimated coefficients are generally significant—even in the fifth and sixth deciles, the
average t-statistic for {B\TEJW} is 4.585 and 6.749, respectively (we would, of course, expect
significant t-statistics in the extreme deciles even if the true coefficients were zero, purely
from sampling variation). The R?s also look impressive, however, they must be interpreted
with some caution because of the imposition of the constraint (25b), which can yield R?
greater than unity and less than zero.” Table 1 shows that negative R?s appear mainly
in the two extreme deciles, except in the last subperiod when they are negative for all the
deciles, presumably an indication that the constraint is not consistent with the data in this
last subperiod.

For comparison, we estimate the unconstrained version of (25a) and compute the same
summary statistics, reported in Table 2. Table 2 also reports the mean and standard devi-
ation within each decile of p-values corresponding to the statistic that (25b) holds. Except
for the last subperiod, the constraint seems to be reasonably consistent with the data, with
average p-values well above 5% for all but the extreme deciles in most subperiod. For exam-
ple, in the first subperiod, the average p-values range from a minimum of 4.0% in decile 1
to a maximum of 32.4% in decile 6, and with a value of 19.4% in decile 10. However, in the
last subperiod, the average p-value is less than 5% deciles 2-6, and close to significance for
most of the other deciles, which explains the negative R?s in Table 1.

Without the constraint, the R?s in Table 2 are well behaved, and of similar magnitude

to those in Tablel that are between 0% and 100%, ranging from 40% to 60%, even in the

9For example, a negative R? arises when the variance of BEJWQEW + B;?JW T exceeds the variance of the
dependent variable 7;;, which can happen when the constraint (25b) is imposed.
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last subperiod. Clearly the two-factor model of turnover accounts for a significant amount

of variation in the weekly turnover of individual stocks.

5 The Forecast Power of the Hedging Portfolio

Having constructed the hedging portfolio up to a parameter ¢ to be determined, we can
examine its time-series properties as predicted by the model of Sections 2 and 3. In particular,
in this section we focus on the degree to which the the hedging portfolio can predict future
stock returns, especially the return on the market portfolio. We first construct the returns
of the hedging portfolio in Section 5.1 by calibrating ¢, and then compare its forecast power

with other factors in Sections 5.2 and 5.3.

5.1 Hedging-Portfolio Returns

To construct the return on the hedging portfolio, we begin by calculating its dollar value
and dollar returns. Let k denote subperiod k, k = 2,...,7, Vj;(k) denote the total market
capitalization of stock j at time period t (the end of week ¢) in subperiod k, Q;i(k) de-
note its dividend-adjusted excess dollar return for the same period, and R;;(k) denote the
dividend-adjusted excess return, and 6;(k) the estimated share (as fraction of its total shares
outstanding) in the hedging portfolio in subperiod k.

For stock j to be included in the hedging portfolio in subperiod k, which we shall refer to
as the “testing period”, we require it to have volume data for at least one third of the sample
in the previous subperiod (k—1), which we call the “estimation period”. Among the stocks
satisfying this criteria, we eliminate those ranked in the top and bottom 0.5% according to
their volume betas (or their share weights in the hedging portfolio) to limit the potential
impact of outliers.'® We let J;(k) denote the set of stocks that survive these two filters and
that have price and return data for week ¢ of subperiod k. The hedging portfolio in week ¢
of sub-period k is then given by:

gHja J € Ju(k)

Orji(k) = (29)
0, J ¢ Ju(k)

10See Lo and Wang (2000a) for the importance of outliers in volume data.
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The dollar return of the hedging portfolio for week ¢ follows naturally:

Qui(k) =Y Ouju(k)Vie Rye. (30)
J
and the (rate of) return of the hedging portfolio is given by
Quje(k)
) = it 1
R t( ) VHt(k) (3 )
where
Vi (k) = 01 (k)Viea (32)

J
is the value of the hedging portfolio at the beginning of the week.
The procedure outlined above yields the return and the dollar return of the hedging
portfolio up to the parameter ¢, which must be calibrated. To do so, we exploit a key
property of the hedging portfolio: its return is the best forecaster of future market returns

(see Section 3). Therefore, for a given value of ¢, we can estimate the following regression

RMt+1 =00+ 01 {RHt or QHt} + Enrt+1 (33)

where the single regressor is either the return of the hedging portfolio R, or its dollar return
for a given choice of ¢, and then vary ¢ to maximize the R.!!

Figures 3 and 4 show how the R? from the regression of R,; on the lagged return and
dollar-return, respectively, of the hedging portfolio varies with the value of ¢ in each of
the subperiods. In all cases, there is a unique global maximum, from which we obtain
¢. However, for some values of ¢, the value of the hedging portfolio changes sign, and
in these cases, defining the return on the portfolio becomes problematic. Therefore, we
eliminate these values from consideration, and for all subperiods except subperiod 4 and 7
(i.e., subperiods 2, 3, 5, 6), the omitted values of ¢ do not seem to affect the choice of ¢ for
the maximum R2.

For subperiods 2 to 7, the values for ¢ that give the maximum R? are 1.25, 4.75, 1.75,
47, 38, and 0.25, respectively, using Ry; as the predictor. Using @) ¢, the values of ¢ are 1.5,

"1 This approach ignores the impact of statistical variation on the “optimal” ¢, which is beyond the scope
of this paper but is explored further in related contexts by Foster, Smith, and Whaley (1997) and Lo and
MacKinlay (1997).
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4.25, 2, 20, 27, and 0.75, respectively. With these values of ¢ in hand, we have fully specified
the hedging portfolio, its return and dollar return. Table 3 reports the summary statistics

for the return and dollar return on the hedging portfolio.

5.2 Optimal Forecasting Portfolios (OFPs)

Having constructed the return of the hedging portfolio in Section 5.1, we wish to compare
its forecast power to those of other factors. According to Proposition 2, the returns of the
hedging portfolio should outperform the returns of any other portfolios in predicting future
market returns. Specifically, if we regress R,,; on the lagged return of any arbitrary portfolio
p, the R? should be less than that of (33).

It is impractical to compare (33) to all possible portfolios, and uninformative to compare
it to random portfolios. Instead, we need only make comparisons to “optimal forecast portfo-
lios”, portfolios that are optimal forecasters of R,,;, since by construction, no other portfolios
can have higher levels of predictability than these. The following proposition shows how to

construct optimal forecasting portfolios (OFPs) (see Lo and Wang, 2001 for details):

Proposition 5 Let I'y and 'y denote the contemporaneous and first-order autocovariance
matriz of the vector of all returns. For any arbitrary target portfolio q with weights w, =
(Wq1; -+ s wen), define A =Ty 'Tywaw,/T1'. The optimal forecast portfolio of w, is given by

the normalized eigenvector of A corresponding to its largest eigenvalue.

Since I'y and I'y are unobservable, they must be estimated using historical data. Given
the large number of stocks in our sample (over 2,000 in each subperiod) and the relatively
short time series in each subperiod (261 weekly observations), the standard estimators for
'y and I'; are not viable. However, it is possible to construct OFPs from a much smaller
number of “basis portfolios”, and then compare the predictive power of these OFPs to the
hedging portfolio. As long as the basis portfolios are not too specialized, the R?s are likely
to be similar to those obtained from the entire universe of all stocks.

We form several sets of basis portfolios by sorting all the J stocks into K groups of
equal numbers (K < J) according to: market capitalization, market beta, and SIC codes,

and then construct value-weighted portfolios within each group.'? This procedure yields K

12Tt is important that we use value-weighted portfolios here so that the market portfolio, whose return
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basis portfolios for which the corresponding I'y and I'y can be estimated using the portfolios’
weekly returns within each subperiod. Based on the estimated autocovariance matrices, the
OFP can be computed easily according to Proposition 5.

In selecting the number of basis portfolios K, we face the following trade-off: fewer portfo-
lios yields better sampling properties for the covariance matrix estimators, but less desirable
properties for the OFP since the predictive power of the OFP is obviously maximized when
when K =J. As a compromise, for the OFPs based market capitalization and market betas,
we choose K to be 10, 15, 20, and 25. For the OFP based on SIC codes, we choose 13
industry groupings, described in more detail below.

Specifically, for each five-year subperiod in which we wish to evaluate the forecast power
of the hedging portfolio (the testing period), we use the previous five-year subperiod (the
estimation period) to estimate the OFPs. For the OFP based on 10 market-capitalization-
sorted portfolios, which we call “CAP10”, we construct 10 value-weighted portfolios each
week, one for each market-capitalization decile. Market-capitalization deciles are recomputed
each week, and the time series of decile returns form the 10 basis portfolio returns of CAP10,
with which we can estimate I'y and I'y. To compute the OFP, we also require the weights
w, of the target portfolio, in this case the market portfolio. Since the testing period follows
the estimation period, we use the market capitalization of each group in the last week of the
estimation period to map the weights of the market portfolio into a 10 x 1-vector of weights
for the 10 basis portfolios. The weights of the OFP for the basis portfolios CAP10 follow
immediately from Proposition 5. The same procedure is used to form OFPs for CAP15,
CAP20, and CAP25 basis portfolios.

The OFPs of market-beta-sorted basis portfolios are constructed in a similar manner.
We first estimate the market betas of individual stocks in the estimation period, sort them
according to their estimated betas and then form small groups of basis portfolios, calculating
value-weighted returns for each group. We consider 10, 15, 20 and 25 groups, denoted by
“Betal0”, “Betalb”, and so on. The same procedure is then followed to construct the OFPs

for each of these sets of basis portfolios.

we wish to predict, is a portfolio of these basic portfolios (recall that the target portfolio w, that we wish
to forecast is a linear combination of the vector of returns for which I'y is the k-th order autocovariance
matrix).
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Finally, the industry portfolios are based on SIC-code groupings. The first two digits
of the SIC code yield sixty to eighty industry categories, depending on the sample period,
and some of categories contain only one or two stocks. On the other, the first digit yields
only eight broad industry categories. As a compromise, we use a slightly more disaggregated

grouping of 13 industries, given by the following correspondence: !

# SIC Codes Description
1 1-14 Agriculture, forest, fishing, mining
2 15-19, 30, 32-34  Construction, basic materials (steel, glass, concrete, etc.)
3 2021 Food and tobacco
4 22,23, 25,31, 39 Textiles, clothing, consumer products
5 24,2627 Logging, paper, printing, publishing
6 28 Chemicals
7 29 Petroleum
8 35-36, 38 Machinery and equipment supply, including computers
9 37,4047 Transportation-related
10 48-49 Utilities and telecommunications
11 50-59 Wholesale distributors, retail
12 60-69 Financial
13 70-89, 98-99 Recreation, entertainment, services, conglomerates, etc.

Each week, stocks are sorted according to their SIC codes into the 13 categories defined above,
and value-weighted returns are computed for each group, yielding the 13 basis portfolios
which we denote by “SIC13”. The autocovariance matrices are then estimated and the OFP

constructed according to Proposition 5.

5.3 Hedging Portfolio Return as A Predictor of Market Returns

Table 4 reports the results of the regressions of R,;; on various lagged OFP returns and on
the hedging portfolios R, and @);. For completeness, we have also included four additional
regressions, with lagged value- and equal-weighted CRSP index returns, the logarithm of the
reciprocal of lagged market-capitalization, and the lagged three-month constant-maturity

Treasury bill return as predictors.!* Table 4 shows that the hedging portfolios outperforms

13We are grateful to Jonathan Lewellen for sharing his industry classification scheme.

4We also considered nine other interest-rate predictors (six-month and one-year Treasury bill rates,
three-month, six-month, and one-year off-the-run Treasury bill rates, one-month and three-month CD
and Eurodollar rates, and the Fed Funds rate (all obtained from the Federal Reserve Bank of St. Louis,
http://www.stls.frb.org/fred/data/wkly.html). Each of these variables produced results similar to those for
the three-month constant-maturity Treasury bill return, hence we omit those regressions from Table 4.
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all of the other competing portfolios in forecasting future market returns in three of the six
subperiods (subperiods 2, 4, and 6). In subperiod 3, only one OFP (Beta20) outperforms
the hedging portfolio, and in subperiod 5, Beta20 and SIC13’s OFPs outperform the hedging
portfolio, but only marginally. And in subperiod 7, the equal-weighted CRSP index return
outperforms the hedging portfolio.

However, several caveats should be kept in mind with regard to the three subperiods in
which the hedging portfolios were surpassed by one or two competing portfolios. First, in
these three subperiods, the hedging portfolio still outperforms most of the other competing
portfolios. Second, there is no consistent winner in these subperiods. Third, the performance
of the hedging portfolios are often close to the best performer. Moreover, the best performers
in these subperiods performed poorly in the other subperiods, raising the possibility that
their performance might be due to sampling variation. In contrast, the hedging portfolios
forecasted R,,; consistently in every subperiod. Indeed, among all of the regressors, the hedg-
ing portfolios were the most consistent across all six subperiods, a remarkable confirmation

of the properties of the model of Sections 2 and 3.5

6 The Hedging-Portfolio Return as a Risk Factor

To evaluate the success of the hedging-portfolio return as a risk factor in the cross section
of expected returns, we implement a slightly modified version of the well-known regression
tests outlined in Fama and MacBeth (1973). The basic approach is the same: form portfolios
sorted by an estimated parameter such as market beta coefficients in one time period (the
“portfolio-formation period”), estimate betas for those same portfolios in a second non-
overlapping time period (the “estimation period”), and perform a cross-sectional regression
test for the explanatory power of those betas using the returns of a third non-overlapping
time period (the “testing period”). However, in contrast to Fama and MacBeth (1973), we

use weekly instead of monthly returns, and our portfolio-formation, estimation, and testing

150n the other hand, the results in Table 4 must be tempered by the fact that the OFPs are only as good
as the basis portfolios from which they are constructed. Increasing the number of basis portfolios should,
in principle, increase the predictive power of the OFP. However, as the number of basis portfolios increases,
the estimation errors in the autocovariance estimators 7y and 7; also increase for a fixed set of time series
observations, hence the impact on the predictive power of the OFP is not clear.
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periods are five years each.'6
Specifically, we run the following bivariate regression for each security in the portfolio-

formation period, using only those securities that exist in all three periods:'”
Rjt = Oéj + ﬁjMRMt —+ /BfRHt —+ €4t (34)

where R, is the return on the CRSP value-weighted index and Rp; is the return on the
hedging portfolio. Using the estimated coefficients {3} and {3/}, we perform a double sort
among the individual securities in the estimation period, creating 100 portfolios correspond-
ing to the deciles of the estimated market and hedging-portfolio betas. We re-estimate the
two betas for each of these 100 portfolios in the estimation period, and use these estimated

betas as regressors in the testing period, for which we estimate the following cross-sectional

regression:
Ryt = Yot + 1By + Y28y + Mt (35)
where R, is the equal-weighted portfolio return for securities in portfolio p, p = 1,...,100,

constructed from the double-sorted rankings of the portfolio-estimation period, and B% and
Apt are the market and hedging-portfolio returns, respectively, of portfolio p obtained from
the estimation period. This cross-sectional regression is estimated for each of the 261 weeks
in the five-year testing period, yielding a time series of coefficients {7y}, {71:}, and {72 }.
Summary statistics for these coefficients and their diagnostics are then reported, and this
entire procedure is repeated by incrementing the portfolio-formation, estimation, and testing
periods by five years. We then perform the same analysis for the hedge-portfolio dollar-return
series {Qp}-

Because we use weekly instead of monthly data, it may be difficult to compare our

results to other cross-sectional tests in the extant literature, e.g., Fama and French (1992).

Therefore, we apply our procedure to three other benchmark models: the standard CAPM in

6Qur first portfolio-formation period, from 1962 to 1966, is only four and a half years because the CRSP
Daily Master file begins in July 1962. Fama and MacBeth’s (1973) original procedure used a seven-year
portfolio-formation period, a five-year estimation period, and a four-year testing period.

ITThis induces a certain degree of survivorship bias, but the effects may not be as severe given that we
apply the selection criterion three periods at a time. Moreover, while survivorship bias has a clear impact
on expected returns and on the size effect, its implications for the cross-sectional explanatory power of the
hedging portfolio is less obvious, hence we proceed cautiously with this selection criterion.
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which R, is the only regressor in (34) and 100 market-beta-sorted portfolios constructed, a
two-factor model in which the hedging-portfolio return factor is replaced by a “small-minus-
big capitalization” or “SMB” portfolio return factor as in Fama and French (1993), and a
two-factor model in which the hedging-portfolio return factor is replaced by the OFP return
factor described in Section 5.2.18

Table 5 reports the the correlations between the different portfolio return factors, returns
on CRSP value- and equal-weighted portfolios, return and dollar return on the hedging
portfolio, returns on the SMB portfolio and, OFP, Beta20, and the two turnover indices.
Table 6 reports the summary statistics for the return betas from the five risk models on
returns: the single-factor market model and the four two-factors models.

Table 7 summarizes the results of all of these cross-sectional regression tests for each of
the five testing periods from 1972 to 1996. In the first subpanel, corresponding to the first
testing period from 1972 to 1976, there is little evidence in support of the CAPM or any
of the two-factor models estimated.'® For example, the first three rows show that the time-
series average of the market-beta coefficients, {71;}, is 0.000, with a t-statistic of 0.348 and
an average 2 of 10.0%.2° When the hedging-portfolio beta 3 is added to the regression,
the R? does increase to 14.3% but the average of the coefficients {4y} is —0.002 with a
t-statistic of —0.820. The average market-beta coefficient is still insignificant, but it has now
switched sign. The results for the two-factor model with the hedging-portfolio dollar-return
factor and the two-factor model with the SMB factor are similar.

In the second testing period, both specifications with the hedging-portfolio factor exhibit
statistically significant means for the hedging-portfolio betas, with average coefficients and
t-statistics of —0.012 and —3.712 for the hedging-portfolio return factor and —1.564 and
—4.140 for the hedging-portfolio dollar-return factor, respectively. In contrast, the market-

18Specifically, the SMB portfolio return is constructed by taking the difference of the value-weighted returns
of securities with market capitalization below and above the median market capitalization at the start of
the five-year subperiod.

19The two-factor model with OFP as the second factor is not estimated until the second testing period
because we use the 1962-1966 period to estimate the covariances from which the OFP returns in the 1967—
1971 period are constructed. Therefore, the OFP returns are not available in the first portfolio-formation
period.

20The t-statistic is computed under the assumption of independently and identically distributed coefficients
{71¢}, which may not be appropriate. However, since this has become the standard method for reporting
the results of these cross-sectional regression tests, we follow this convention to make our results comparable
to those in the literature.
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beta coefficients are not significant in either of these specifications, and are also of the wrong
sign. The only other specification with a significant mean coefficient is the two-factor model
with SMB as the second factor, with an average coefficient of 0.299 for the SMB factor and
a t-statistic of 4.433.

For the three remaining test periods, the only specifications with any statistically sig-
nificant factors are the SMB and MPP two-factor models in the 1992-1996 testing period.
However, the R?s in the last two testing periods are substantially lower than in the earlier
periods, perhaps reflecting the greater volatility of equity returns in recent years.

Overall, the results do not provide overwhelming support for any factor in explaining the
cross-sectional variation of expected returns. There is, of course, the ubiquitous problem of
lack of power in these cross-sectional regression tests, hence we should not be surprised that
no single factor stands out.?! However, the point estimates of the cross-sectional regressions
show that the hedging-portfolio factor is comparable in magnitude and in performance to

other commonly proposed factors.

7 Conclusion

By deriving an explicit link between economic fundamentals and the dynamic properties of
asset returns and volume, we have shown that interactions between prices and quantities in
equilibrium yield a rich set of implications for any asset-pricing model. Indeed, by exploiting
the relation between prices and volume in our dynamic equilibrium model, we are able to
identify and construct the hedging portfolio that all investors use to hedge against changes
in market conditions. Moreover, our empirical analysis shows that this hedging portfolio has
considerable forecast power in predicting future returns of the market portfolio—a property of
the true hedging portfolio—and its abilities to explain cross-sectional variation in expected
returns is comparable to other popular risk factors such as market betas, the Fama and
French (1993) SMB factor, and optimal forecast portfolios.

Although our model is purposefully parsimonious so as to focus attention on the essential
features of risk-sharing and trading activity, it underscores the general point that quantities,

together with prices, should be an integral part of any analysis of asset markets, both the-

21See, for example, MacKinlay (1987, 1994).
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oretically and empirically. Our results provide compelling motivation for determining risk
factors from economic fundamentals rather than through statistical means. Although this
is an old theme that has its origins in Black (1972), Mayers (1973), and Merton (1973),
it has become less fashionable as competing approaches such as the statistical approach of
Roll and Ross (1980) and Chamberlain and Rothschild (1983) and the empirical approach
of Fama and French (1992) have become more popular. We hope to revive interest in the
lofty goal of identifying risk factors through the logic of equilibrium analysis in general, and

by exploiting the information contained in trading volume in particular.
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Appendix

A.1 Proof of Theorem 1

We prove Theorem 1 by first deriving the investors’ asset demand under the price function
(8) and then solves the coefficient vector a and b to clear the stock market.
For simplicity in notation, let u; = (Dy; X;), where (-;-) denotes a column vector and

(+,-) denotes a row vector. From (8), we have
Q1= Q1+ Qi

where
Q, =ra+ (1+7)bX, and Qi1 = (1, —=b)ussy

where 1 is an (n X n) identity matrix. We also let A\;; = Ax Xy + A\, Y and Ay = A, (1 + Z}).
We now consider investor ¢’s optimal portfolio choice. Let S; be the vector of his stock
holding in period ¢. His wealth next period is Wiy 1 = W, + S,/Q1 + S/'(1, —b)uyy1, where

we have omitted superscript ¢ for brevity. Then,

_ I
E [G—Wt+1—>\1tDMt+1—>\2tXt+1] — E |:€WzSt’Qt+(St+>\1tb§b'5t+>\2t) Ut+1:|
1) 1 / ! /
E e*Wﬁ*St Qt+§ St+A1eL;—b S+t ) o Se+A1ee;—b' Se+Aot

where o is the covariance matrix for u;. Thus, the investor’s optimization problem is reduced

to

max Stth — %(St + )\UL; —b/St + )\Qt)/O' (St -+ )\115[/; —b,St -+ )\Qt) . (Al)
St

The first order condition is
0=Q:— (0pp —bopx" —opxb +0xxbb') Sy — Me(0pp — bops)t — Aa(0px —boyx). (A.2)
The solution gives the investor’s stock demand
Sy = (oo —bO'DX,—O'DXb,—i—O'XXbb/)il [Qt — Mie(0pp — bops)t — Aar(opx — boxx)] . (A.3)
Summing (A.2) over all investors and imposing the market clearing condition, Y, S; = ¢,
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we have
0=1I[ra+ (14+r)bX;| — oot — N Togpt Xy — A Iogyx. (A.4)
It follows that
ra = (1/1)ogot+ Az00x
(14+7r)b = Acogpt

which uniquely determine the equilibrium a and b. Substitute (A.4) into (A.3), we obtain

investor ¢’s equilibrium stock holding:
St = (I =AY = N (V)Y + A2 Z)(000) ' 0qz
where is (9). Q.E.D.

A.2 Proofs of Propositions 1-4

Proof of Proposition 1

A proof of a more general version of Proposition 1 with multiple funds is given in Lo and

Wang (2000a). Q.E.D.

Proof of Proposition 2

Suppose we use the (dollar) return of portfolio S to predict future market return. The

resulting R? is
R? = (Cov[(S'Q1)Quu1])”/ (Var[S' Qi) Var(Qur.1])
To choose the S to maximize R?, we solve the following problem
m;xx S'oox(b't)

Up to a scaling constant, the solution is Sy = (040) 'ogx. Q.E.D.
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Proof of Proposition 3

When X, =0V ¢, Q, = ra+ Q, = (1, —b)uy. Then, Cov[@t,()m] = Cov[@t,/,’()t] = Oppl,
Var[QMt] = Voppt and (17) follows. Since ooy = 0 in this case, 0,5 = 0 and Q,, = (1/1)0?,.

Thus, Q = 3,,Q, which is (18). Q.E.D.
Proof of Proposition 4

Equation (19) simply follows from the joint normality of Quy1, Quis1, and Querq. (20) can
be verified by substituting in the expressions for 3., By, Qu and Q, which gives (16c).
Q.E.D.

31



References

Abel, A., 1990, “Asset Prices under Habit Formation and Catching Up with the Joneses”,
American Economic Review 80, 38-42.

Andersen, T., 1996, “Return Volatility and Trading Volume: An Information Flow Inter-
pretation”, Journal of Finance 51, 169-204.

Antoniewicz, R.L., 1993, Relative Volume and Subsequent Stock Price Movements, working
paper, Board of Governors of the Federal Reserve System.

Atkins, A. and E. Dyl, 1997, “Market Structure and Reported Trading Volume: NASDAQ
versus the NYSE”, Journal of Financial Research 20, 291-304.

Banz, R., 1981, “The Relation between Return and Market Value of Common Stocks”,
Journal of Financial Fconomics 9, 3—18.

Black, F., 1972, “Capital Market Equilibrium with Restricted Borrowing”, Journal of Busi-
ness 45, 444-454.

Black, F., 1976, “Studies of Stock Price Volatility Changes”, in Proceedings of the 1976
Meetings of the Business and Economic Statistics Section, American Statistical Asso-
ciation, 177-181.

Black, F.; M. Jensen, and M. Scholes, 1972, “The Capital Asset Pricing Model: Some
Empirical Tests”, Studies in the Theory of Capital Markets (M. Jensen ed.), Praeger
Publishers.

Brown, K., Van Harlow, W. and S. Tinic, 1993, “The Risk and Required Return of Com-
mon Stock Following Major Price Innovations”, Journal of Financial and Quantitative
Analysis 28, 101-116.

Campbell, J. and J. Cochrane, 1999, “By Force of Habit: A Consumption-Based Explana-
tion of Aggregate Stock Market Behavior”, Journal of Political Economy 107, 205-251.

Campbell, J., Grossman S. and J. Wang, 1993, “Trading Volume and Serial Correlation in
Stock Returns”, Quarterly Journal of Economics 108, 905-939.

Campbell, J., A. Lo and C. MacKinlay, 1996, The Econometrics of Financial Markets,
Princeton University Press.

Chamberlain, G. and M. Rothschild, 1983, “Arbitrage and Mean-Variance Analysis on
Large Asset Markets”, Econometrica 51, 1281-1301.

Chan, L. and J. Lakonishok, 1995, “The Behavior of Stock Prices Around Institutional
Trades”, Journal of Finance 50, 1147-74.

Conrad, J., Hameed, A. and C. Niden, 1994, “Volume and Autocovariances in Short-Horizon
Individual Security Returns”, Journal of Finance 49, 1305-1329.

32



Epps, T. and M. Epps, 1976, “The Stochastic Dependence of Security Price Changes
and Transaction Volumes: Implications for the Mixture of Distribution Hypothesis”,
Econometrica 44, 305-321.

Fama, E. and K. French, 1992, “The Cross-Section of Expected Stock Returns”, Journal
of Finance 47, 427-465.

Fama, E. and J. MacBeth, 1973, “Risk, Return, and Equilibrium: Empirical Tests”, Journal
of Political Economy 81, 607-636.

Foster, D., Smith, T. and R. Whaley, 1997, “Assessing Goodness-of-Fit of Asset Pricing
Models: The Distribution of the Maximal R-Squared”, Journal of Finance 52, 591-607.

Gallant, R., Rossi, P. and G. Tauchen, 1992, “Stock Prices and Volume”, Review of Finan-
cial Studies 5, 199-242.

Hiemstra, C. and J. Jones, 1994, “Testing for Linear and Nonlinear Granger Causality in
the Stock Price-Volume Relation”, Journal of Finance 49, 1639-1664.

He, H., and J. Wang, 1995, “Differential Information and Dynamic Behavior of Stock
Trading Volume”, Review of Financial Studies 8, 919-972.

Hu, S., 1997, “Trading Turnover and Expected Stock Returns: Does It Matter and Why?”,
working paper, National Taiwan University.

Jain, P. and G. Joh, 1988, “The Dependence between Hourly Prices and Trading Volume”,
Journal of Financial and Quantitative Analysis 23, 269-282.

James, C., and R. Edmister, 1983, “The Relation between Common Stock Returns, Trading
Activity and Market Value”, Journal of Finance 38, 1075-1086.

Jegadeesh, N. and S. Titman, 1993, “Returns to Buying Winners and Selling Losers: Im-
plications for Stock Market Efficiency”, Journal of Finance 48, 65-91.

Karpoft, J., 1987, “The Relation between Price Changes and Trading Volume: A Survey”,
Journal of Financial and Quantitative Analysis 22, 109-126.

Lakonishok, J. and S. Smidt, 1986, “Volume for Winners and Losers: Taxation and Other
Motives for Stock Trading”, Journal of Finance 41, 951-974.

Lakonishok, J. and T. Vermaelen, 1986, “Tax-Induced Trading Around Ex-Dividend Days”,
Journal of Financial Economics 16, 287-319.

Lamoureux, C. and W. Lastrapes, 1990, “Heteroskedasticity in Stock Return Data: Volume
vs. GARCH Effects”, Journal of Finance 45, 487-498.

Lamoureux, C. and W. Lastrapes, 1994 “Endogenous Trading Volume and Momentum in
Stock-Return Volatility”, Journal of Business and Economic Statistics 12, 253-160.

Lamoureux, C. and J. Wansley, 1987, “Market Effects of Changes in the Standard & Poor’s
500 Index”, Financial Review 22, 53—69.

33



LeBaron, B., 1992, “Persistence of the Dow Jones Index on Rising Volume”, working paper,
University of Wisconsin.

Lim, T., Lo, A., Wang, J. and P. Adamek, 1998, “Trading Volume and the MiniCRSP
Database: An Introduction and User’s Guide”, MIT Laboratory for Financial Engi-
neering Working Paper No. LFE-1038-98.

Llorente, G., R. Michaely, G. Saar and J. Wang, 2000, “Dynamic Volume-Return Relations
for Individual Stocks”, Review of Financial Studies, forthcoming.

Lo, A. and C. MacKinlay, 1997, “Maximizing Predictability in the Stock and Bond Mar-
kets”, Macroeconomic Dynamics 1(1997), 102-134.

Lo, A., H. Mamaysky and J. Wang, 2000, “Asset Prices and Trading Volume under Fixed
Transaction Costs”, working paper, MIT.

Lo, A. and J. Wang, 2000a, Trading Volume: Definitions, Data Analysis, and Implications
of Portfolio Theory, Review of Financial Studies 13, 257-300.

Lo, A. and J. Wang, 2000b, “Trading Volume”, to appear in Advances in Economic Theory:
Fight World Congress, Econometric Society Monograph.

Lo, A. and J. Wang, 2001, “Optimal Forecast Portfolios”, work in progress, MIT.

MacKinlay, C., 1994, “Multi-Factor Models Do Not Explain Deviations From the CAPM”,
Journal of Financial Economics 38, 3-28.

MacKinlay, C., 1987, “On Multivariate Tests of the CAPM”, Journal of Financial Eco-
nomics 18, 341-371.

Mayers, D., 1972, “Nonmarketable Assets and Capital Market Equilibrium Under Uncer-
tainty”, in M. Jensen, ed., Studies in the Theory of Capital Markets. New York:
Praeger Publishers.

Merton, R., 1971, “Optimal Consumption and Portfolio Rules in a Continuous-Time Model”,
Journal of Economic Theory 3, 373-413.

Merton, R., 1973, “An Intertemporal Capital Asset Pricing Model”, FEconometrica 41, 867—
887.

Michaely, R., 1991, “Ex-Dividend Day Stock Price Behavior: The Case of the 1986 Tax
Reform Act”, Journal of Finance 46, 845-860.

Michaely, R. and J. Vila, 1995, “Investors’ Heterogeneity, Prices and Volume Around the
Ex-Dividend Day”, Journal of Financial and Quantitative Analysis 30, 171-198.

Michaely, R. and J. Vila, 1996, “Trading Volume with Private Valuation: Evidence from
the Ex-Dividend Day”, Review of Financial Studies 9, 471-509.

34



Michaely, R., J.-L. Vila and J. Wang, “A Model of Trading Volume with Tax-Induced
Heterogeneous Valuation and Transaction Costs” Journal of Financial Intermediation
5, 340-371, 1996.

Morse, D., 1980, “Asymmetric Information in Securities Markets and Trading Volume”,
Journal of Financial and Quantitative Analysis 15, 1129-1148.

Smidt, S., 1990, “Long-Run Trends in Equity Turnover”, Journal of Portfolio Management
, Fall, 66-73.

Shleifer, A., 1986, “Do Demand Curves for Stocks Slope Down?”, Journal of Finance 41,
579-590.

Stickel, S., 1991, “The Ex-Dividend Day Behavior of Nonconvertible Preferred Stock Re-
turns and Trading Volume”, Journal of Financial and Quantitative Analysis 26, 45-61.

Stickel, S. and R. Verrecchia, 1994, “Evidence that Volume Sustains Price Changes”, Fi-
nancial Analysts Journal (November-December), 57-67.

Tauchen, G., and M. Pitts, “The Price Variability-Volume Relationship On Speculative
Markets”, Econometrica 51, 485-506.

Tkac, P., 1996, “A Trading Volume Benchmark: Theory and Evidence”, working paper,
Department of Finance and Business Economics, University of Notre Dame.

Wang, J., 1994, “A Model of Competitive Stock Trading Volume”, Journal of Political
Economy 102, 127-168.

Ying, C., 1966, “Stock Market Prices and Volume of Sales”, Econometrica 34, 676—686.

35



Equal-Weighted Turnover

Weekly Turnover(%)
2
L

.
. !;;'.:
o -
T T T T T T T T
1962 1967 1972 1977 1982 1986 1992 1996
Year
(a)
Share-Weighted Turnover

< -
o -

Weekly Turnover(%)
2
L

R SIS
pioas TR YRR

T T T T T T T T
1962 1967 1972 1977 1982 1986 1992 1996

Year

(b)

Figure 1: Time series of equally- and share-weighted turnover indices from 1962 to 1997.
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Figure 2: Histogram of turnover betas on the equally-weighted turnover index for each of the 5-year
subperiod from 1962 to 1997.
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Figure 3: R? of the return of the candidate hedging portfolio in predicting future market returns as a

function ¢ for the second to the seventh 5-year subperiods from 1962 to 1996.
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Figure 4: R? of the dollar return of the candidate hedging portfolio in predicting future market returns as
a function ¢ for the second to the seventh 5-year subperiods from 1962 to 1996.
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Table 1

Summary statistics for the restricted volume betas using weekly returns and volume data for N SE
and AME  stocks from 1962 to 1996. Turnover over individual stocks is regressed on the equally-
weighted and share- weighted turnover indices, subject to the restriction that the two regression

coefficients, ﬁEW and 65“’, must add up to one. The stocks are then sorted into ten deciles by
57?‘”. The summary statistics are then reported for each decile.

pEW H(BEW) Bsw H(BEW)

July 1962 to December 1966 (234 Weeks)

1 218 —0906 0119 —49394 19023 1906 0119 103944 38 755—25204 27817 4
2 219 —0657 0069 —26187 12805 1657 0069 65 488 30 083 56 5 195
3 219 —0432 0064 —10917 5 956 1432 0064 35879 17907 550 204
4 218 —0188 0082 —3 812 2732 1188 0082 22907 10 555 571 178
5 219 0107 0097 1273 1243 0893 0097 11365 4570 515 16 0
6 219 0494 0119 4 585 1943 0506 0119 4847 2401 50 6 16 5
7 218 0927 0145 6 749 2 258 0073 0145 0639 1190 50 7 155
8 219 1520 0229 8 229 2893 —-0520 0229 —2714 1348 49 2 154
9 219 2568 0434 10 410 3491 —1568 0434 —6292 2401 49 4 152
10 218 6563 4100 11 682 3880 —5563 4100 —-9500 3332 471 153
January 1967 to December 1971 (261 Weeks)
1 242 —0783 0134 —36725 17343 1783 0134 84302 38946 —1753 976 2
2 243 —-0529 0056 —18772 8 459 1529 0056 53969 22871 58 2 16 1
3 242 —0315 0068 —7905 4 099 1315 0068 32431 13771 56 4 16 3
4 243 —0054 0089 —1139 1845 1054 0089 18479 7855 55 2 143
5 242 0264 0087 3 269 1482 0736 0087 9228 3260 54 1 132
6 243 0623 0126 6 035 2217 0377 0126 3723 1871 53 5 134
7 243 1110 0154 8 367 2719 -—-0110 0154 —-0735 1178 54 4 130
8 242 1782 0205 10 314 3151 —-0782 0205 —4477 1630 53 2 132
9 243 2661 0330 12 249 3120 —-1661 0330 —-7609 2149 54 6 110
10 242 5410 2540 13 019 4172 —4410 2540 —-10260 3383 526 14 2
January 1972 to December 1977 (261 Weeks)
1 262 —2013 0845 —13276 4901 3013 0845 20755 8319-11476 50349
2 263 —-1069 0129 —10986 3 890 2069 0129 21239 7045 254 44 6
3 263 —0697 0096 —6 014 2 466 1697 0096 14600 5619 44 3 271
4 263 —0359 0105 —2 825 1444 1359 0105 10 608 4044 50 3 22 8
5 263 0015 0114 0 062 0765 0985 0114 6 620 2466 530 192
6 263 0485 0156 2577 1159 0515 0156 2792 1354 52 8 154
7 263 1084 0187 4684 1801 —-0084 0187 —-0322 0870 514 145
8 263 1888 0289 6 827 2426 —0888 0289 —3180 1421 52 8 14 2
9 263 3161 0501 8 894 3311 —-2161 0501 —-6060 2431 525 140
10 262 7770 4940 11 202 4447 —-6770 4940 —9480 3965 523 138
January 1977 to December 1981 (261 Weeks)
1 242 —-3096 0347 —22164 4 591 4096 0347 29341 5815 —8727 6958 8
2 243 —2284 0192 —15799 4 883 3284 0192 22701 6846 327 23 6
3 243 —1654 0208 —10524 4628 2654 0208 16 861 7 167 489 20 8
4 243 —1021 0156 —5 505 2335 2021 0156 10884 4304 541 18 4
5 243 —0394 0189 —1833 1180 1394 0189 6387 2655 55 6 171
6 243 0355 0250 1277 1045 0645 0250 2472 1438 555 16 5
7 243 1330 0308 3 864 1519 —-0330 0308 —-0894 0971 53 6 157
8 243 2599 0457 6 198 2242 —1599 0457 —-3782 1560 54 5 157
9 243 4913 0809 8 860 2983 —3913 0809 —7038 2487 553 145
10 242 10090 4231 11 202 3618 —-9090 4231 —-9980 3311 552 134
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Table 1 (continued)

o HEY) o HBEY)

January 1982 to December 1986 (261 Weeks)

1 227 —6 968 3038 —5 636 2 328 7968 3038 6525 2577 46 6 159
2 228 —2257 0624 -3 249 1604 3257 0624 4724 2199 527 20 2
3 228 —0640 0380 —1223 0967 1640 0380 3180 1667 455 1369
4 227 0501 0283 1166 0 841 0499 0283 1177 0903 55 4 224
5 228 1357 0231 3 540 1655 —0357 0231 —0954 0786 413 907
6 228 2077 0201 5319 2159 —-1077 0201 —-2758 1216 —-195 6863
7 227 2754 0196 7 402 2342 —-1754 0196 —4710 1531 28 3 52 8
8 228 3431 0201 9244 2667 —2431 0201 —6 548 1922 32 1018
9 228 4168 0237 11 354 2905 —3168 0237 —-8630 2248 —1631 16786
10 227 5399 1170 14 045 5229 —4399 1170 —11392 4405 —3481 10271
January 1987 to December 1991 (261 Weeks)
1 216 —8487 7040 —7093 3763 9487 7040 8082 4137 50 2 16 8
2 217 —2866 0725 —4 616 2439 3866 0725 6263 3224 54 8 18 8
3 217 —0843 0494 —1832 1512 1843 0494 4097 2537 56 8 210
4 217 0441 0330 1196 1277 0559 0330 1423 1268 570 199
5 217 1502 0317 4 887 3062 —-0502 0317 —1693 1583 57 8 188
6 217 2510 0280 8434 4070 —-1510 0280 —-5074 2582 512 187
7 217 3389 0234 12 139 4615 —2389 0234 —-8567 3325 42 2 156
8 217 4157 0196 15 329 4607 —-3157 0196 —-11637 3513 238 198
9 217 4836 0212 18 370 4580 —3836 0212 —-14572 3673 =270 66 1
10 217 5743 0402 21 430 5101 —4743 0402 —-17682 4229 —9219 46821
January 1992 to December 1996 (261 Weeks)
1 241 —4275 2858 —2409 1092 5275 2858 3097 1342 —4236 33367
2 241 —1074 0384 1277 0741 2074 0384 2538 1369 —1477 26312
3 242 —0245 0155 —0371 0 301 1245 0155 1944 0899 —-147 5082
4 241 0189 0100 0298 0203 0811 0100 1296 0534 —1351 8993
5 241 0520 0098 0779 0313 0480 0098 0729 0330—13539 57552
6 242 0865 0106 1226 0414 0135 0106 0196 0177 —1976 6691
7 241 1303 0159 1725 0641 —-0303 0159 —-0400 0260 —1303 9317
8 242 2022 0254 2 391 0824 —-1022 0254 —1202 0480 —-589 6845
9 241 3271 0498 3061 1027 —-2271 0498 —2117 0769 —249 2258
10 241 8234 9836 3 844 1360 —7234 9836 —3237 1190 —2199 11457
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Table 3

Summary statistics for the returns and dollar returns of the hedging portfolio con-
structed from individual stocks’ volume data using weekly returns and volume data
for N SE and AME stocks from 1962 to 1996.

Sample Period

Statistic
Entire 67-71 72-76 77-81 82-86 87-91 92-96
Hedging Portfolio Return Ry
Mean 0.013 0.001 0.005 0.007 0.011 0.052 0.003
S.D. 0.198 0.029 0.039 0.045 0.046 0.477 0.013

Skewness 24.092 0.557 0.542 —0.330 0.270 10.200 —0.214
Kurtosis ~ 747.809 1.479 7.597 0.727 1.347 130.476 0.945
0.017 0.199 0.141 0.196 0.125 0.004 —0.165

1
2 —0.058 0.018 0.006 0.071 0.036 —0.070  —0.028
3 0.104 —-0.028 —0.036 —0.010 0.073 0.099 —0.003
4 0.184 0.070 0.043 0.045 —0.113 0.182 —0.010
5 —0.086 0.114 0.144 —-0.026 —0.103 —0.099 —0.025
6 0.079  —0.003 0.258 —0.089  —0.093 0.072 0.020
7 0.217 0.037 0.083 —0.031 —0.173 0.218 0.098
3 —0.098 0.002 —-0.124  —0.008 0.006 —0.111 —-0.130
9 0.048 —0.002 —0.008 —0.060 0.011 0.041 0.006
10 —-0.044 —-0.017 0.174 —-0.037 —0.117 —0.055 0.035

Hedging Portfolio Dollar Return — p¢
Mean 2.113 0.072 1.236 2.258 5.589 3.244 0.281
S.D. 16.836 3.639  11.059  21.495 25423  20.906 1.845

Skewness 0.717 0.210 —-0.144 —-0.495 —0.080 2.086 0.215
Kurtosis 14.082  —0.085 0.500 2.286 6.537 13.286 2.048
0.164 0.219 0.251 0.200 0.098 0.157 —0.122
0.082 0.014 0.148 0.052 0.125 —0.015 —0.095
0.039 0.003 0.077 0.010 0.071  —0.041 0.037
0.021 0.061 0.084 0.127  —0.037  —0.066 0.014
0.036 0.116 0.102  —0.002 0.061 —-0.016 —0.027
—-0.010 —0.044 0.127  —-0.094 —0.053 0.057 —0.014
—0.006 0.034 0.013 —-0.060 —0.014 0.010 0.107
—0.046 0.006 —0.085 —0.028 —0.127 0.016 —0.075
0.027  —0.016 0.045 —0.006 0.047 0.0065  —0.006
—0.001  —0.030 0.042 0.026 0.014 —0.082 0.031
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Table 5

Correlation matrix for weekly returns on the CRSP value-weighted index (Ryw:), the CRSP
equal-weighted index (Rgw+:), the hedging-portfolio return (Rp:), the hedging-portfolio dollar-
return ( g¢), the return of the small-minus-big capitalization stocks portfolio (Rsapt), the return
return Roppy of the optimal-forecast portfolio (OFP) for the set of 25 market-beta-sorted basis

five-year subperiods.

portfolios, and the equal-weighted and share-weighted turnover indices (77"

CRSP weekly returns and volume data for N SE and AME

Wt EWt ot Qme SM t EW W
July 1962 to December 1996 (1,800 Weeks)

Wt 100 0 887 —132 156 140 —269 106 81
EWt 887 1000 —158 46 535 —253 126 55
Ht -132 —158 1000 403 —107 -110 149 168

Qut 156 46 403 1000 —133 —67 75 99

SM ¢ 140 535 —107 —133 1000 —48 46 58

¢ —269 —253 —110 —67 —48 100 0 —49 —24

TEW 106 126 149 75 46 —49 1000 862

W 81 55 16 8 99 -58 —24 862 1000
January 1967 to December 1971 (261 Weeks)

Wt 1000 926 956 915 627 —76 2 191 263
EWt 926 1000 923 884 845 —719 328 369
Ht 956 923 1000 974 707 —650 220 296

Qut 915 884 974 1000 69 8 —60 1 229 298

sm ¢ 627 845 707 698 1000 —46 6 397 382

¢ —762 719 —650 —601 —466 100 0 -75 —104

TEW 191 328 220 229 397 -75 1000 931

W 263 369 296 298 382 -104 931 1000
January 1972 to December 1977 (261 Weeks)

Wt 100 0 845 133 142 —69 -595 190 276
EWt 845 1000 —115 —182 441 —454 243 354
He 133 —115 1000 866 —552 -83 28 —19

Qme 142 —182 86 1000 —704 -116 —41 —42

sm ¢ —69 441 —552 —704 1000 150 113 163

. —595 —454 —83 —116 150 100 0 67 —124

TEW 190 243 28 —41 113 -67 1000 873

W 276 354 —19 —42 16 3 —124 873 1000
January 1977 to December 1981 (261 Weeks)

Wt 100 0 902 854 823 238 226 126 157
EWt 902 1000 885 820 59 3 127 76 81
Ht 85 4 885 1000 871 512 93 76 86

Qut 823 820 871 1000 490 10 4 110 123
sM ¢+ 238 593 512 490 1000 -167 -83 —127
s 226 127 93 104 -167 100 0 107 104
TEW 126 76 76 110 -83 107 1000 949
W 157 81 86 123 —127 10 4 949 1000
Vo0l2.10.04.01 Tables
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Table 5 (continued)

Wt EWt ot  Qmt SM t . TEW W
January 1982 to December 1986 (261 Weeks)

Wt 100 0 921 —170 61 -28 —235 271 286
EWt 921 1000 —341 —102 30 6 -306 360 316
He —-170 =341 1000 733 —545 135 —122 78

Qmt 61 —102 733 1000 —411 80 13 42

s ot —28 306 —545 —411 1000 -159 199 65

¢ —235 —306 135 80 —159 1000 —207 —179

TEW 271 360 —122 13 199 —-207 1000 932

W 28 6 316 —78 42 65 -179 932 1000
January 1987 to December 1991 (261 Weeks)

Wt 100 0 912 —404 —360 81 189 —150 —170
EWt 912 1000 —443 —465 446 363 —167 —209
Ht —404 —443 1000 581 —238 —26 2 432 437

QHt -360 —465 581 1000 —371 —328 253 240

SM ¢ 81 446 —238 —371 1000 451 —114 -169

" 189 363 —262 —328 451 1000 —185 —197

TEW -150 —167 432 253 114 —185 1000 947

5w —-170 —209 437 240 —169 -197 947 1000
January 1992 to December 1996 (261 Weeks)

Wt 100 0 843 955 665 —12 -131 155 104
EWt 843 100 0 732 405 46 1 —52 18 2 54
He 955 732 1000 848 —197 —-87 153 112

Qe 66 5 405 848 1000 —416 02 120 92

sm ¢ —12 461 —197 —416 1000 113 30 —101

¢ —131 -52 —87 02 113 100 0 -30 -33

TEW 155 182 153 120 30 -30 1000 927

W 10 4 54 112 92 -101 -33 927 1000
Tables
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are reported for each decile.

Vo0l2.10.04.01

Table 6a

Summary statistics for market betas estimated with weekly returns data for N SE and AME
stocks from July 1962 to December 1996 in five-year subperiods. Returns of individual stocks are

regressed on the returns of the CRSP value-weighted returns index, yielding the beta coefficient 3 JM .
The betas are sorted into deciles and means and standard deviations of the estimated coefficients

EI\/[
A

t(BM)

—2

()

January 1967 to December 1971 (261 Weeks)

1 242 0432 0136 4103 1990 72 52
2 243 0710 0058 5 532 1 881 119 62
3 242 0880 0041 6343 2233 149 7
4 243 1020 0044 6811 2 476 173 86
5 242 1168 0 040 7122 2 345 181 81
6 243 1307 0038 7166 2293 18 4 86
7 243 1463 0050 7 682 2 180 207 79
8 242 1648 0061 7 554 2165 199 82
9 243 1 881 0077 8290 2158 234 s
10 242 2 282 0239 8 814 2190 267 82
January 1972 to December 1977 (261 Weeks)
1 262 0 300 0 146 2774 1853 37 43
2 263 0537 0047 4493 2051 81 64
3 263 0680 0038 5161 2 067 10 3 67
4 263 0792 0030 5671 2 331 120 79
5 263 0896 0030 6334 2422 14 3 85
6 263 1004 0031 7011 2793 16 9 97
7 263 1113 0032 7 365 3120 182 112
8 263 1242 0 046 7 550 2 788 189 101
9 263 1428 0065 8337 2957 219 106
10 262 1818 0240 9085 2949 254 104
January 1977 to December 1981 (261 Weeks)
1 242 0262 0111 2324 1549 25 31
2 243 0490 0048 4046 1 885 68 52
3 243 0643 0038 4689 1 806 86 55
4 243 0761 0032 5475 2 047 112 65
5 243 0870 0033 6103 2485 136 87
6 243 0977 0026 6479 2609 151 91
7 243 1091 0037 7162 2709 176 98
8 243 1223 0 040 7631 2793 192 101
9 243 1397 0066 8050 2609 211 93
10 242 1756 0220 9013 2762 26 6 97
January 1982 to December 1986 (261 Weeks)
1 227 0 208 0 157 1645 1354 13 23
2 228 0456 0046 3744 1681 58 45
3 228 0590 0040 4327 1973 79 60
4 227 0718 0032 4931 1833 98 61
5 228 0823 0033 5617 2084 121 72
6 228 0928 0027 6269 2493 14 4 84
7 227 1032 0034 7189 2524 176 90
8 228 1141 0035 7 576 2795 195 100
9 228 1302 0060 8050 2810 217 99
10 227 1667 0231 8 231 3201 227 113
Tables
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Table 6a (continued)

glbf
A

t(BM)

January 1987 to December 1991 (261 Weeks)

1 216 0268 0219 3368 2845 62 75
2 217 0540 0061 4659 2807 96 88
3 217 0701 0036 5479 2726 123 94
4 217 0 839 0 040 6 750 3427 16 7 118
5 217 0956 0032 7920 3860 215 136
6 217 1056 0025 8350 4121 231 14 3
7 217 1151 0031 8979 4061 250 145
8 217 1264 0033 9 001 4 202 256 150
9 217 1418 0054 9490 4345 2717 150
10 217 1737 0217 8926 4058 277 145
January 1992 to December 1996 (261 Weeks)
1 241  —0001 0448 0394 0788 —02 06
2 241 0368 0050 2301 1312 23 26
3 242 0515 0033 2990 1614 39 39
4 241 0 636 0037 3337 1652 48 42
5 241 0763 0040 3972 1837 67 54
6 242 081 0030 4676 2134 89 63
7 241 1000 0035 4959 2187 99 68
8 242 1139 0045 5651 2620 125 90
9 241 1336 0076 5591 2484 123 85
10 241 1820 0340 5760 2794 138 93
Tables

Page 12 of 23



Table 6b

Summary statistics for market and hedging-portfolio return betas estimated with weekly returns
data for N SE and AME stocks from July 1962 to December 1996 in five-year subperiods.
Returns of individual stocks are regressed on the returns of the CRSP value-weighted returns index
and the hedging-portfolio return index Ry, yielding two beta coefficients BJM and ﬁf R The pairs

are sorted into deciles according to their market betas and means and standard deviations of the
estimated coefficients are reported for each decile.

M t(BM) BH HBE )

January 1967 to December 1971 (261 Weeks)

1 242 —1250 0605 —1451 0 755 2027 0640 3571 1514 224 129
2 243 —-0297 0155 —0 405 0248 1196 0436 2347 0939 179 110
3 242 0147 0101 0233 0207 0806 0419 1611 0796 159 96
4 243 0420 0070 0744 0 350 0553 0358 1224 0758 16 8 95
5 242 0648 0060 1192 0578 0391 0359 0777 0834 167 87
6 243 0852 0057 1639 0711 0213 0373 0339 0913 171 91
7 243 1053 0061 2234 0908 0056 0336 —0128 1064 188 84
8 242 1263 0063 2493 1092 —-0049 0345 —0450 1177 187 83
9 243 1527 0091 3113 1368 —0227 0331 —-0953 1273 208 88
10 242 2080 0341 3 541 1540 —-0496 0367 —1438 1357 221 99
January 1972 to December 1977 (261 Weeks)
1 262 0316 0157 3025 1924 —-0099 0134 —-0811 1230 47 46
2 263 0565 0048 4706 2104 —-0110 0151 —0853 1404 94 68
3 263 0714 0040 5427 2168 —-0129 0159 —1055 1361 115 74
4 263 0839 0032 6 023 2371 —-0166 0154 —1378 1271 136 85
5 263 0947 0029 6673 2567 —-0171 0171 —1327 1365 16 0 91
6 263 1054 0033 7197 2820 —0187 0188 —1454 1397 180 101
7 263 1180 0038 7296 3077 —0247 0212 —-1697 1444 18 6 112
8 263 1315 0046 7 866 2768 —0265 0213 —1931 1402 205 103
9 263 1511 0068 8120 2948 —-0312 0211 —-2135 1294 217 104
10 262 1930 0238 9378 3010 -0439 0297 2717 1329 273 104
January 1977 to December 1981 (261 Weeks)
1 242 —0244 0295 —0523 0519 0350 0202 2335 1052 57 57
2 243 0137 0059 0493 0341 0250 0162 1997 1151 80 69
3 243 0308 0040 1246 0 600 0186 0149 1634 1232 93 62
4 243 0428 0034 1 858 0 850 0162 0155 1459 1393 118 78
5 243 0528 0027 2 380 1019 0151 0164 1324 1454 143 81
6 243 0629 0032 2 666 1139 0151 0156 1325 1415 16 4 85
7 243 0742 0035 3124 1163 0131 0143 1233 1385 184 91
8 243 0867 0037 3 464 1357 0122 0142 1122 1303 201 10 4
9 243 1035 0068 4205 1742 0093 0143 0795 1259 232 107
10 242 1414 0249 4 829 2215 0033 0172 0226 1405 256 129
January 1982 to December 1986 (261 Weeks)
1 227 0202 0164 1573 1343 —-0079 0164 —0465 1360 17 27
2 228 0457 0044 3672 1724 —-0049 0160 —-0023 1877 65 52
3 228 0590 0040 4440 2107 —-0049 0182 0040 2123 94 76
4 227 0714 0032 4 864 1793 —-008 0147 —-0671 1578 10 4 63
5 228 0818 0031 5 598 2078 —-0093 0150 —0821 1510 128 74
6 228 0923 0028 6 362 2448 —-0121 0180 —1006 1772 159 83
7 227 1028 0033 7141 2651 —-0107 0161 —1017 1570 188 95
8 228 1136 0036 7 454 2830 —-0127 0161 —1218 1470 199 101
9 228 1299 0059 8 007 2886 —0178 0204 —1765 1910 233 105
10 227 1660 0235 8 147 3360 —-0229 0237 —-1913 2052 24 4 125
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Table 6b (continued)

BM t(BM) pH LA

January 1987 to December 1991 (261 Weeks)

1 216 0205 0257 2 267 2359 —-0082 0174 —-0724 1657 51 61
2 217 0484 0048 4 365 2830 —-0048 0116 —0351 2057 107 92
3 217 0637 0041 4923 2456 —0063 0092 —1080 1579 136 93
4 217 0775 0039 5373 2931 —0075 0098 —1012 1644 151 114
5 217 0898 0035 6 868 3184 —0064 0106 —0957 1623 208 119
6 217 1005 0028 7740 3675 —0063 0112 —0756 1587 239 13 6
7 217 1098 0028 8 356 4074 —-0059 008 —0864 1389 26 4 151
8 217 1215 0038 8771 4157 —-0068 0103 —0927 1461 278 157
9 217 1362 0050 8 651 4134 —0064 0108 —0849 1342 276 158
10 217 1699 0239 8413 3661 —0119 0207 —0893 1280 284 146
January 1992 to December 1996 (261 Weeks)
1 241 —1 526 1776 —1784 1521 2 269 1841 2727 2043 99 101
2 241 —0031 0209 —0 058 0 347 0660 0456 0921 0764 62 81
3 242 0582 0153 0 790 0 406 0027 0450 0059 0554 64 86
4 241 108 0138 1370 0 602 —0469 0440 —0521 0 488 64 73
5 241 1506 0118 1833 0738 —0799 0413 —0881 0497 80 80
6 242 1965 0132 2 156 0935 —1279 0507 —1260 0603 7T 74
7 241 2487 0177 2776 1078 —1737 0452 —1750 0709 100 84
8 242 3166 0213 3067 1182 —2344 0521 —2064 0805 103 86
9 241 4062 0327 3380 1432 —-3300 0673 —2464 0997 104 88
10 241 6789 2540 4211 2113 —6058 2827 —3342 1684 124 99
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Table 6¢

Summary statistics for market and hedging-portfolio dollar-return betas estimated with weekly
returns data for N SE and AME  stocks from July 1962 to December 1996 in five-year subperiods.
Returns of individual stocks are regressed on the returns of the CRSP value-weighted returns index
and the hedging-portfolio dollar-return index g, yielding two beta coefficients BJM and @HQ. The

pairs are sorted into deciles according to their market betas and means and standard deviations
of the estimated coefficients are reported for each decile.

pM t(BM) pHe t(B79)

T

January 1967 to December 1971 (261 Weeks)

1 242 —0535 0460 -0 707 0541 0011 0004 2699 1171 157 110
2 243 0142 0101 0270 0237 0006 0003 1838 0984 147 99
3 242 0440 0073 0916 0409 0005 0003 1406 0982 16 2 98
4 243 0652 0054 1580 0761 0003 0003 0799 1106 167 86
5 242 0831 0049 2 049 0913 0002 0003 0352 1105 16 9 88
6 243 1007 0051 2 331 0959 0001 0003 0133 1091 181 82
7 243 1187 0053 2 835 1204 0000 0003 —0236 1334 199 81
8 242 1393 0062 3195 1510 —-0001 0003 —0550 1333 213 89
9 243 1651 0085 3343 1373 —-0001 0003 —-0673 1252 220 90
10 242 2280 0472 3 555 1261 —-0003 0003 —0982 1032 231 96
January 1972 to December 1977 (261 Weeks)
1 262 0341 0155 3248 1949 —-0001 0001 —-0932 1226 54 50
2 263 0595 0052 4 836 2049 —-0001 0001 —1111 1512 101 71
3 263 0754 0041 5 620 2246 —-0001 0001 —1461 1461 125 82
4 263 088 0032 6 182 2451 —-0001 0001 —1522 1370 14 4 93
5 263 0995 0035 6 844 2524 —-0001 0001 —1786 1524 169 94
6 263 1108 0032 7 368 2953 —0001 0001 —1856 1686 189 113
7 263 1241 0041 7 399 2780 —-0002 0001 —2173 1476 191 106
8 263 1387 0046 7T 2589 —-0002 0001 —2507 1341 201 96
9 263 1591 0075 8113 2846 —-0002 0001 —-2765 1308 215 101
10 262 2023 0241 9674 3046 —-0003 0001 —3359 1458 281 106
January 1977 to December 1981 (261 Weeks)
1 242 —-0289 0362 —0 550 0562 0001 0001 2288 0986 58 55
2 243 0179 0075 0613 0410 0001 0000 1679 1150 75 65
3 243 0388 0047 1446 0 700 0000 0000 1287 1305 98 82
4 243 0532 0033 2148 0937 0000 0000 1009 1416 122 74
5 243 0641 0034 2671 1173 0000 0000 0679 1558 137 80
6 243 0748 0033 3 050 1397 0000 0000 0522 1634 154 92
7 243 0869 0034 3 509 1410 0000 0000 0445 1648 182 94
8 243 1008 0045 3 885 1477 0000 0000 0263 1380 195 97
9 243 1180 0060 4 509 1745 0000 0000 0125 1507 233 108
10 242 1552 0261 5 386 2 286 0000 0001 —0747 1582 256 119
January 1982 to December 1986 (261 Weeks)
1 227 0215 0159 1734 1437 0000 0001 —0094 1384 21 34
2 228 0460 0042 3784 1757 0000 0001 0362 1793 72 65
3 228 0600 0045 4331 1756 0000 0001 0010 1792 91 77
4 227 0738 0035 4 989 1786 0000 0001 —0401 1350 105 65
5 228 0844 0033 5618 2 363 0000 0001 —0556 1542 128 84
6 228 0957 0030 6 491 2431 0000 0001 —0 801 1 466 158 89
7 227 1063 0033 6 964 2727 0000 0000 —1065 1332 174 96
8 228 1181 0039 7 554 2724 0000 0000 —1309 1255 196 99
9 228 1359 0067 8 092 2949 0000 0001 —1613 1607 226 103
10 227 1743 0250 8 443 3476 —-0001 0001 —2273 1878 24 3 122
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Table 6¢ (continued)

gM H(BM) gH® t(BH?) )

January 1987 to December 1991 (261 Weeks)

1 216 0225 0226 2499 2477 —-0001 0001 —0378 1768 51 63
2 217 0501 0053 4629 2998 0000 0001 —0013 2282 110 97
3 217 0660 0039 5 205 2573 0000 0001 —0845 1507 129 89
4 217 0794 0039 6 035 3 358 0000 0001 —0718 1 985 16 5 122
5 217 0918 0031 7190 3599 0000 0001 —0843 1638 205 129
6 217 1017 0028 7 886 3813 0000 0001 —0909 1458 233 134
7 217 1111 0028 8 692 3 965 0000 0001 —1058 1384 26 3 143
8 217 1222 0034 9 086 4338 —0001 0001 —1153 1438 279 158
9 217 1364 0050 9211 4311 —-0001 0001 —1390 1264 287 157
10 217 1701 0233 8 494 3768 —0001 0001 —1302 1310 280 145
January 1992 to December 1996 (261 Weeks)
1 241 —0990 1628 —0 866 0807 0013 0016 1839 1487 57 81
2 241 0169 0122 0378 0 368 0003 0003 0871 0855 62 75
3 242 0526 0092 1026 0 504 0000 0003 0140 0709 57 76
4 241 0846 0099 1609 0750 —0001 0003 —0212 0641 7 82
5 241 1177 0088 2072 0883 —0003 0003 —0714 0586 75 76
6 242 1509 0100 2 499 1100 —-0005 0003 —1118 0619 85 83
7 241 1877 0124 2 985 1229 —-0008 0003 —1559 0721 93 73
8 242 2365 0160 3276 1458 —-0011 0004 —1815 0828 108 93
9 241 3101 0250 3724 1624 —-0016 0005 —2343 1033 114 86
10 241 5284 2356 3925 1876 —0036 0026 —2855 1246 111 88
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Table 6d

Summary statistics for market and SMB-portfolio return betas estimated with weekly returns data
for N SE and AME stocks from July 1962 to December 1996 in five-year subperiods. Returns of
individual stocks are regressed on the returns of the CRSP value-weighted returns index and the
return to a portfolio of small-minus-big capitalization stocks Rgaspt, yielding two beta coefficients
ﬁjw and ﬁfM B The pairs are sorted into deciles according to their market betas and means and

standard deviations of the estimated coefficients are reported for each decile.

pM #H(BM) pSM H(BEM )

January 1967 to December 1971 (261 Weeks)

1 242 0124 0213 0699 0914 1311 0874 2937 1402 91 60
2 243 0423 0049 2 398 1224 0927 0802 2339 1689 124 55
3 242 0572 0041 3017 1373 0909 0832 2221 1835 150 59
4 243 0708 0037 3 715 1 560 0871 0862 2075 1829 177 62
5 242 0824 0032 3951 1573 0848 0769 2027 1793 18 8 68
6 243 0926 0028 4498 1834 0860 0768 2030 1711 213 67
7 243 1039 0034 4 865 1880 0834 0782 1916 1805 225 66
8 242 1178 0046 5 444 2198 0881 0785 1981 1789 26 1 70
9 243 1369 0065 5697 2 066 0868 0752 1893 1710 26 9 s
10 242 1717 0207 6 248 1855 0952 0704 2038 1474 314 80
January 1972 to December 1977 (261 Weeks)
1 262 0317 0168 3 059 2073 0873 0711 3374 1434 87 59
2 263 0564 0048 4884 2163 0889 0557 3563 1426 132 66
3 263 0713 0040 5 686 2201 0913 0576 3457 1693 155 70
4 263 0830 0030 6 254 2429 0970 0630 3439 1933 176 78
5 263 0933 0031 6 687 2 548 1016 0689 3476 2133 193 84
6 263 1040 0034 7 548 2 847 0929 0741 3056 2209 219 92
7 263 1157 0036 7 600 3 020 1120 0766 3427 2396 225 103
8 263 1287 0043 8 095 2 965 1138 0836 3316 2536 243 100
9 263 1471 0065 8 326 2 893 1235 0800 3451 2180 252 96
10 262 1857 0221 9475 2 904 1364 0947 3533 1946 295 93
January 1977 to December 1981 (261 Weeks)
1 242 0183 0123 1503 1310 0676 0665 2053 1335 40 32
2 243 0411 0046 3313 1603 0636 0549 2159 1533 82 46
3 243 0548 0038 4052 1717 0703 0549 2393 1582 110 53
4 243 0661 0032 4529 1767 0779 0534 2588 1422 129 58
5 243 0765 0028 4834 1 906 0865 0583 2611 1480 142 63
6 243 0871 0031 5 958 2352 0792 0652 2456 1822 181 76
7 243 0982 0035 6 551 2577 0773 0620 2331 1782 201 83
8 243 1108 0039 7148 2 594 0844 0622 2548 1910 229 87
9 243 1288 0060 8 094 2751 0718 0668 2049 2221 258 89
10 242 1638 0219 8 809 2915 0785 0641 2089 1790 302 96
January 1982 to December 1986 (261 Weeks)
1 227 0215 0157 1690 1373 0672 0797 1519 1326 27 30
2 228 0463 0045 3 872 1687 0510 0557 1389 1612 74 45
3 228 0599 0041 4429 1988 0568 0628 1370 1884 96 65
4 227 0727 0032 4952 1881 0765 0677 1905 1508 115 63
5 228 0831 0034 5 857 2103 0705 0675 1870 1827 145 74
6 228 0938 0027 6513 2 604 0796 0726 1964 1881 169 86
7 227 1040 0033 7154 2593 0722 0764 1781 1876 191 89
8 228 1150 0035 7769 2 697 0662 0700 1747 1822 213 97
9 228 1317 0060 8188 2903 0842 0794 2014 1878 238 100
10 227 1681 0226 8 286 3 262 1117 0872 2302 1690 24 4 115
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Table 6d (continued)

BM H(BM) BEM HBEM )

January 1987 to December 1991 (261 Weeks)

1 216 0254 0234 3138 2773 0614 0845 1176 2242 77 78
2 217 0522 0056 4668 2949 0658 0711 1474 2816 12 8 10 2
3 217 0672 0037 5535 2743 0789 0594 2735 2159 16 5 106
4 217 0808 0037 6 285 3 354 0910 0672 2632 2306 190 120
5 217 0928 0032 7766 3749 0806 0663 2461 2556 247 133
6 217 1025 0027 8 062 3971 0841 0733 2353 2326 251 136
7 217 1119 0027 9163 4334 0812 0728 2345 2327 28 6 147
8 217 1228 0036 9188 4 240 0855 0666 2490 2026 296 150
9 217 1378 0052 9 637 4477 0985 0762 2710 1779 313 149
10 217 1726 0258 9 021 4098 1102 0765 2504 1678 303 150
January 1992 to December 1996 (261 Weeks)
1 241 —0002 0442 0 400 0794 0790 1087 1307 1222 08 17
2 241 0368 0049 2 310 1338 0445 0657 0934 1902 37 37
3 242 0514 0032 2983 1688 0480 0743 0757 2492 59 57
4 241 0634 0036 3432 1692 0547 0674 1273 2213 70 57
5 241 0763 0040 3937 1858 0618 0673 1495 1824 81 59
6 242 0881 0030 4761 2149 0597 0615 1560 1975 110 66
7 241 1000 0035 5035 2168 0670 0666 1696 1872 119 69
8 242 1139 0046 5704 2653 0634 0685 1522 2029 14 3 90
9 241 1336 0074 5651 2 501 0946 0787 2365 1519 14 6 85
10 241 1820 0343 5955 2 850 1462 1490 2671 1667 171 99
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Table 6e

Summary statistics for market and optimal-forecast-portfolio return betas estimated with weekly
returns data for N SE and AME  stocks from July 1962 to December 1996 in five-year subperiods.
Returns of individual stocks are regressed on the returns of the CRSP value-weighted returns index
and the return Ropp; of the optimal-forecast portfoho (OFP) for the set of 25 market-beta-sorted

basis portfolios, yielding two beta coefficients 5M and ﬂOF P The pairs are sorted into deciles

according to their market betas and means and standard deviations of the estimated coefficients
are reported for each decile.

)
)

—2

B t(B") Br tB, ) ()
January 1967 to December 1971 (261 Weeks)
1 242 0161 0 146 0932 0904 —0592 0368 —2771 1784 120 83
2 243 0551 0081 2 543 0975 —-0361 0378 —1126 0941 116 73
3 242 0777 0051 3 464 1350 —-0272 0371 —0748 0930 149 84
4 243 0945 0050 3 968 1409 —-0176 0344 —0434 0923 16 3 80
5 242 1107 0044 4333 1512 —-0130 0391 —-0227 1030 176 80
6 243 1261 0046 4 668 1711 —-0065 0464 —0041 1141 189 88
7 243 1450 0056 5035 1709 0032 0429 0197 1082 201 84
8 242 1649 0071 5241 1841 0029 0422 0219 1139 214 84
9 243 1952 0104 5 636 1612 0220 0452 0533 0989 226 84
10 242 2629 0414 6 970 1899 0777 0625 1570 1258 280 84
January 1972 to December 1977 (261 Weeks)
1 262 0310 0163 2 392 1681 —0102 0596 —0 083 1153 45 56
2 263 0572 0044 3 795 1657 0014 0512 0156 1054 85 61
3 263 0712 0038 4 402 1743 0075 0497 0218 1122 110 74
4 263 0840 0036 4 968 1900 0107 0517 0273 1130 131 86
5 263 0955 0029 5573 2078 0213 0551 0533 1136 152 93
6 263 1067 0038 6 260 2 496 0182 0582 0446 1275 186 114
7 263 1187 0032 6 049 2 153 0279 0566 0583 1174 173 98
8 263 1317 0045 6 317 2415 0374 0651 0673 1131 187 110
9 263 1502 0068 6 882 2 338 0357 0653 0629 1225 213 110
10 262 1910 0301 7 252 2 322 0595 0923 0844 1262 234 107
January 1977 to December 1981 (261 Weeks)
1 242 0267 0122 2338 1633 0004 0567 —0264 1267 28 36
2 243 0504 0045 4172 1865 —0125 0471 —0531 1344 74 53
3 243 0654 0037 4711 1906 —0119 0458 —0288 1097 90 61
4 243 0771 0032 5299 2060 —0095 0533 —0233 1224 113 69
5 243 0883 0035 6066 2495 —0141 0427 —0314 1193 138 94
6 243 0994 0029 6702 2464 —0180 0480 —0425 1172 162 91
7 243 1110 0038 6825 2666 —0219 0503 -0404 1074 170 99
8 243 1249 0043 7680 2723 —0262 0491 —0582 1214 199 105
9 243 1436 0067 7727 2431 —0456 0595 —0974 1153 203 89
10 242 1805 0223 9143 2722 0540 0596 —1194 1184 273 97
January 1982 to December 1986 (261 Weeks)
1 227 0179 0160 1301 1135 —0392 0716 —0 748 1140 14 23
2 228 0436 0050 3 347 1602 —-0287 0524 —-0488 1135 54 41
3 228 0574 0035 4237 1976 —-0175 0623 —0103 1435 83 60
4 227 0695 0033 4 886 1780 —-0267 0504 —0546 1188 107 63
5 228 0801 0031 5 254 1993 —-0306 0580 —0668 1157 119 72
6 228 0905 0030 6 063 2337 —-0228 0657 —0450 1228 149 82
7 227 1013 0032 6 586 2595 —-0215 0605 —0381 1197 167 91
8 228 1119 0032 7 549 2 587 —-0199 0513 —0 384 1128 205 95
9 228 1280 0059 7 641 280 —-0243 0669 —-0395 1146 214 102
10 227 1645 0240 8 210 3135 —-0173 0751 —-0223 1137 239 112
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Table 6e (continued)

~ o~

BM t(BM) B, t(B,

January 1987 to December 1991 (261 Weeks)

1 216 0231 0247 2 664 2457 0663 1210 1187 1077 56 66
2 217 0500 0060 4482 2731 0588 0746 1261 1194 109 87
3 217 0657 0035 5034 2403 0663 0727 1511 1267 130 89
4 217 0793 0041 6 255 3 263 0627 0707 1299 1478 172 115
5 217 0919 0033 7248 3 555 0536 0688 1162 1498 212 128
6 217 1018 0028 7919 3734 0591 0679 1189 1511 23 4 130
7 217 1114 0028 8 658 4 462 0512 0736 0954 1603 258 156
8 217 1218 0034 9 028 4 089 0539 0643 1169 1353 279 147
9 217 1366 0055 9412 4 311 0719 0683 1506 1404 297 153
10 217 1694 0220 8 709 4024 0541 0838 0987 1228 28 5 150
January 1992 to December 1996 (261 Weeks)
1 241 0006 0439 0424 0810 0066 0971 0146 1134 - 01 11
2 241 0384 0052 2278 1372 0135 0517 0708 1769 29 45
3 242 0530 0032 3 100 1 858 0132 0611 1001 2203 54 66
4 241 0648 0037 3 542 1780 0165 0483 0800 1874 60 60
5 241 0769 0037 4105 1971 0080 0468 0335 1668 76 67
6 242 0883 0031 4629 2 057 0052 0446 0090 1323 90 64
7 241 1002 0034 5077 2225 —-0002 0516 —0068 1414 106 75
8 242 1141 0045 5 363 2594 —-0005 0671 —-0017 1437 122 90
9 241 1337 0077 5627 2418 0037 0549 0069 1260 127 85
10 241 1823 0341 5754 2 820 0079 0795 0228 1058 138 95
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Table 7

Cross-sectional regression tests of various linear factor models along the lines of Fama and
MacBeth (1973) using weekly returns for N SE and AME  stocks from 1962 to 1996,
five-year subperiods for the portfolio-formation, estimation, and testing periods, and 100
portfolios in the cross-sectional regressions each week. The five linear-factor models are:
the standard CAPM (BZJ,VI ), and four two-factor models in which the first factor is the
market beta and the second factors are, respectively, the hedging portfolio return beta
(ﬁf R). the hedging portfolio dollar-return beta (ﬁf @), the beta of a small-minus-big cap
BSJV[B)
2

portfolio return ( , and the beta of the optimal forecast portfolio based on a set of 25

market-beta-sorted basis portfolios (@? FRy,

Model Statistic Yot Y1t Yot R ()

January 1972 to December 1976 (261 Weeks)

Ryt = ot + 1B + Mean:  0.002  0.000 10.0
S.D.: 0.015  0.021 10.9
t-Stat: 1.639 0.348

Ryt = vot + 718" + 7288 + p¢ Mean: 0.004 —0.002 —0.002  14.3

(¢ = 1.25) S.D.: 0.035  0.035 0037  10.9
t-Stat: 2.040 —1.047 —0.820

Ryt = ot + ’yltﬁlj,w + ’ygtﬁfQ + pt Mean: 0.004 —0.002 —0.104 15.5

(¢ = 1.50) S.D.: 0.032 0034  3.797  10.9
t-Stat: 2.162 —1.081 —0.442

Ryt = vot + 718" + 72055 + p¢ Mean: 0.001 0.000  0.063  12.1
S.D.: 0.014  0.024  1.142  10.8

t-Stat: 1.424 0.217 0.898
January 1977 to December 1981 (261 Weeks)

Rye = o + 1B + pe Mean:  0.001  0.003 11.7
S.D.: 0.011 0.022 12.8
t-Stat: 1.166 2.566

Ryt = ot + 1B + 7208+ i Mean: 0.003  —0.001  —0.012 13.1

(6 = 4.75) S.D.: 0.014 0.020 0.051 12.4
t-Stat: 3.748  —0.902 —3.712

Ryt = vor + 718" + 72 B9 + e Mean: 0.003 —0.001 —1.564 12.5

(¢ = 4.25) S.D.: 0.013 0.020 6.104 12.2
t-Stat: 3.910  —0.754  —4.140

Ry = ot + B0 + 7285 B + 5 Mean: 0.001 0.000 0.299  14.9
S.D.: 0.011 0.017 1.088 13.4
t-Stat: 2.251  —0.164 4.433

Ryt = Yor + 1B +9289FF + ,,  Mean: 0003 0001 0001 141
S.D.: 0.018 0.023 0.036 11.6

t-Stat: 2.735 0.843 0.632
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Table 7 (continued)

Model Statistic Yot Y1t Yot R ()
January 1982 to December 1986 (261 Weeks)

Ryt = Yor + 1B + Mean: 0.006  —0.001 9.4
S.D.: 0.011 0.019 11.1
t-Stat: 8.169 —1.044

Ryt =0t + 718" + 7288 + ¢ Mean: 0.006 —0.001 —0.006 9.6

(¢ = 1.75) S.D.: 0.011  0.020  0.055 9.4
t-Stat: 8.390 —0.780 —1.732

Ryt = vot + 718" + 72889 + 1t Mean: 0.006 —0.002 —0.740 10.4

(¢ = 2.00) S.D.: 0.011  0.019 19.874 9.5
t-Stat: 8.360 —1.297 —0.602

Ryt = Yot + 180" + 72055 + p¢ Mean: 0.005 —0.002 0.038  10.0
S.D.: 0.012  0.019 1.154 8.4
t-Stat: 7451 —1.264  0.531

Ryt = Yo + 168 +72,89FF + 1 Mean: 0.005  —0.001 0.000  11.7
S.D.: 0.011 0.020  0.021  10.8
t-Stat: 7545 —0.818  0.199

January 1987 to December 1991 (261 Weeks)

Ryt = Yot + B + o Mean: 0.002  0.000 5.9
S.D.: 0.013  0.023 8.7
t-Stat: 2.649  0.204

Rpe = Yot + Y1 + 72 B R + e Mean: 0.002 0.000 0.000 5.4

(¢ = 47) S.D.: 0.016  0.019  0.060 6.1
t-Stat: 2.254 0105  0.132

Ryt = ot + 7uB0 + 72189 + p¢ Mean: 0.002  0.000  0.189 6.0

(¢ = 20) S.D.: 0.016  0.019 18.194 6.7
t-Stat: 2434  —0.147  0.168

Ryt = ot + 7108 + 92858 4, Mean: 0003 0.000 —0.075 7.8
S.D.: 0.014  0.020 1.235 8.2
t-Stat: 3.101 0.158  —0.979

Ry = ot + 7B + 72,60FP + 1 Mean: 0.003  —0.001 0.000 6.4
S.D.: 0.015  0.021 0.021 7.3
t-Stat: 2.731  —0.385 —0.234
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Table 7 (continued)

Model Statistic Yot Y1t Yot R ()
January 1992 to December 1996 (261 Weeks)
Ryt = Yor + 1B + Mean: 0.002 0.001 5.7
S.D.: 0.013  0.020 7.7
t-Stat: 2.679 1.178
Ryt = ot + 718" + 7288 + p¢ Mean: 0.002 0.001  —0.004 6.9
(¢ = 38) S.D.: 0.013  0.020  0.091 6.8
t-Stat: 2.785 1.164  —0.650
Ryt = vot + 718" + 72889 + 1t Mean: 0.003 0.000 —1.584 6.2
(¢ = 27) S.D.: 0.015  0.022  12.992 6.6
t-Stat: 3.279  —0.178  —1.970
Ryt = vot + 718" + 72058 + p¢ Mean: 0.002 0.001 0.154 6.7
S.D.: 0.015  0.019  1.157 7.0
t-Stat: 1.653 0861  2.147
Ryt = Yo + 168 +72089FF + 1 Mean: 0.001  0.002  0.002 7.9
S.D.: 0.016  0.020  0.015 7.4
t-Stat: 0.895 1.236 2407
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