HST 721 Auditory Nerve Lecture October, 2004

1

Hair Cell Afferent Innervation

Hair Cell Afferent Innervation

Unmyelinated type-II axons are too small to record fromAll ANF data are from Type-I / radial fibers innervating IHCs

IHC Afferent Innervation

Each radial fiber (RF) contacts a single IHC by a single terminal swelling

Each terminal swelling consists of a single synaptic plaque

Each synaptic plaque is continuous sheet of specialized (thickened) membrane pre- and post-synaptically, with a synaptic ribbon and associated halo of vesicles

IHC Afferent Innervation

Each IHC is contacted by 10 to 30 radial fibers

Fibers/IHC varies from base to apex

Rate Coding in the Auditory Nerve

- •ANFs fire without acoustic stimulation: spontaneous rate (SR) varies from 0 -120 sp/sec
- •With tones at some frequency-intensity combos, ANFs increase average rate
- •Although there is post-onset adaptation, response continues as long as tone continues
- •Response is probabilistic: tone-off rate sometimes exceeds tone-on rate

Tuning curves, CF and the cochlear frequency map

Tuning curve defines iso-response contour: frequencies-intensities within curve evoke rate increase.

Characteristic Frequency (CF) defines where along cochlear spiral each radial fiber originates

Tuning curves, CF and the cochlear frequency map

Tuning characteristics arise largely in the cochlear mechanics stageBM iso-response contours show similar tuning to ANF isoresponse tuning curves.

Click Response, Latency and BM traveling waves

Click Response, Latency and BM traveling waves

•Increasing "latency" with decreasing CF reflects BM traveling wave delay

■Interpeak time in PST for low-CF fibers = 1/CF

•Increasing phase delays in mechanical measurements of basilar membrane motion showed traveling wave delays

At low CFs (< 4 kHz), PST peaks mirror peaks in BM motion
At high CFs (> 4 kHz), ANF cannot follow individual cycles of BM motion

Click Response: the CAP

•Compound Action Potential, recorded from round window

 Click-evoked CAP dominated by basal ANFs

Tuning and Non-linearities: two-tone suppression

1.1.1.1111

100-

1 1 1 1 1 1 1 1 1 1 1

Two-tone suppression is seen in BM response

•Single tone is always excitatory •With a fixed CF tone, 2nd tone above or below CF will suppress

Tuning and Non-linearities: two-tone suppression

•A simple scheme to explain how transducer nonlinearity produces two-tone suppression

•Visual Basic Distortion Simulator:

http://oto.wustl.edu/cochlea/

Same scheme produces distortion products (DPs),
e.g. 2f1-f2, when driven with two tones f1 and f2
DPs are seen in BM motion, ANF response and ear canal sound pressure

Tuning Curves, Threshold spread and SR groups

Threshold at CF for ANFs from one animal:At each CF region, >60dB threshold spread

Threshold difference is correlated with SRSR vs Threshold suggests three ANF subgroups

Tuning Curves, Threshold spread and SR groups

Intracellular labeling experiments show:

- •high SR fibers are large, mitochondrion-rich fibers on pillar side
- ■low/medium SR fibers are small, mitochondrion-poor fibers on modiolar side of IHC

Tuning Curves, Threshold spread and SR groups

Central Projections:

Many cochlear nucleus regions receive input from all 3 SR groupsOne region, the small cell cap, only receives input from low and medium SR fibers

Rate vs. Synchrony Coding in ANFs

- Information is carried in ANFs as action potentials or "spikes"
- Spikes are stereotyped voltage pulses of identical amplitude
- •Information is coded in ANFs by changes in average rate or in fine timing of spikes

Rate vs Synchrony Coding

Synchrony also seen in INT (interspike interval) histograms
Preferred intervals in INT histogram during tones = 1/CF
INT histograms of SR: Poisson process with a dead time
Interspike intervals are random.

Adaptation in AN response <u>]</u>] 500 SP/S Post Stimulus Time 10 M 1 Histogram TONE BURSTS 100 msec 500 600 5 kHz m 4 kHz Max sustained rate: 200 - 300 sp/sec 3 kHz component А.с. SR suppressed after :omponen D.c. tone burst offset 2 kHz 0 ^L 0 Έ 20 40 60 80 100 ഹ Post stimulus time (msec) 20 msec Tone burst On **Tone burst On**

AN discharge rate adapts: onset > steady stateAdaptation fit by two exponentials:

 τ_1 =3 msec and τ_2 =60 msec

- •Adaptation NOT in hair cell.
- •Adaptation arises in synaptic transmission: vesicle depletion

Adaptation decreases ANF response to "probe" tone for at least 100 msec after "masker" tone offsetThis phenomenon is the basis for "forward masking" seen psychophysically

Saturation and dynamic range

•Dynamic range is defined as the range of SPLs over which discharge rate increases

Dynamic range (DR) is < 30 dB in all ANFs:
High-SR fibers: hard saturation and small DRs (~20 dB);
Low-SR fibers: sloping saturation and larger DRs (~30dB)

Saturation and dynamic range

Basilar membrane motion does not saturate

• IHC shows wide dynamic range (>50 dB)

Saturation arises at the IHC/ANF synapse

Saturation of ANF response and the "Rate-Place" code

Frequency (kHz)

•Cochlea is like a filter bank

Brain might use Rate vs. Place to infer spectrum

Saturation non-linearity compromises fidelity

Saturation of ANF response and the "Rate-Place" code

ANF response rate vs CF for a vowel at two SPLs

At low SPLs, formants are visible in rate-vs-place profileAt high SPLs, the formant peaks are less obvious

•Spectral information is also present in synchrony of response

Flowchart View

