HST 721 Efferent Control Lecture October 2004

1

Hypotheses for MEM Function

A. Stapedius

- 1. Extend Dynamic Range a gain control system
- 2. Protect the Inner Ear from Acoustic Injury
- **3. Control Masking from Continuous Background Noise**

B. Tensor Tympani

1. Aid in Middle-Ear Aeration

Suppressive Masking

Response to transient suppressed; yet masker elicits no response

Suppressive masking ~ Two-Tone suppression

Two-Tone Suppression Contours

Two-Tone Suppression

- Measured in basilar membrane motion
- Arises from OHC-based non-linearity
- Requires simultaneous stimuli

MEMs counteract suppressive masking

MEM reflex (Stapedius) useful for high-frequency signals embedded in low frequency noise

Olivocochlear Peripheral Circuitry

Unmyelinated

Myelinated

Afferent Excitation/Suppression

Cochlear Suppression

Olivocochlear Central Circuitry

LOC 90% Ipsilateral vs. MOC 66% Contralateral

MOC Sound-Evoked Reflex

Ipsilaterally Evoked Reflex

Contralaterally Evoked Reflex

MOC Effects: Biggest at High Frequencies

MOC Effects: Suppression in BM motion

Basilar Membrane

Murugasu E and Russell IJ (1996). The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J. Neuroscience 16: 325-332.

Brown MC and Nuttall AL (1984). Efferent control of cochlear inner hair cell responses in the guinea pig. J. Physiol. 354: 625-646.

MOC Effects: Differences between IHCs & OHCs

Turtle Hair Cells (OHC homologues)

Art JJ, Fettiplace R and Fuchs PA (1984) Synaptic hyperpolarization of turtle cochlear hair cells. J Physiol. 356:525-550.

MOC Effects: Suppression in IHCs and ANFs

Guinan, JJ (1996) Physiology of Cochlear Efferents. In "The Cochlea", eds. P Dallos, AN Popper and RR Fay. New York, Springer, pp 435-500.

MOC Effects: Biggest at CF

Guinan, JJ (1996) Physiology of Cochlear Efferents. In "The Cochlea", eds. P Dallos, AN Popper and RR Fay. New York, Springer, pp 435-500.

Brown MC and Nuttall AL (1984). Efferent control of cochlear inner hair cell responses in the guinea pig. J. Physiol. 354: 625-646.

MOC Reflex Affects OtoAcoustic Emissions

How MOC activity suppresses cochlea ?

OHC motility decreases w/ Hyperpolarization

Santos-Sacchi, J. (1991) Reversible inhibition of voltage dependent outer hair cell motility and capacitance. J. Neurosci. 11: 3096-3110

What channels are involved in MOC effects?

Chick Hair Cells in vitro

Fuchs PA, Murrow BW (1992) A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc R Soc Lond B Biol Sci 248:35-40.

Hypothesis: Two stage effect 1. ACh activated Ca entry

2. Ca-activated K entry

α 9 nicotinic ACh receptor

Sridhar T, Liberman MC, Brown MC and Sewell WF. A novel cholinergic "slow effect" of efferent stimulation on cochlear potentials in the guinea pig. J. Neurosci. 1995; 15:3667-3678.

In vitro: heterologous expression

Elgoyhen AB et al. (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705-715.

α9 Knockout: Cochlear function normal

α 9 Knockout is functionally de-efferented

22

Hypotheses for MOC Function

- 1. Extend dynamic range a gain control system
- 2. Mediate selective attention: auditory vs. visual high vs. low frequency
- **3. Control masking from background noise**
- 4. Shape normal cochlear development
- **5.** Protect the inner ear from acoustic injury

Excitatory Masking

Response to signal decreases (adaptation)

Excitatory Masking - Line Busy + Adaptation

Adaptation

Line Busy

Adaptation component of Excitatory Masking

- Arises at the synapse vesicle depletion
- Does not require stimulus simultaneity
- Mechanism underlying forward masking

MOC counteracts excitatory masking

MOC reflex increases response to transients

By reducing response to steady noise

Unilateral De-efferentation and Acoustic Injury

Intersubject Variability in Vulnerability to Acoustic Injury

Is Variability due to Differences in MOC Reflex Strength?

Assaying MOC Reflex Strength

Measure Post-Onset Adaptation in 36 Awake Guinea Pigs

MOC Reflex Strength predicts vulnerability

Activating the LOC via IC stimulation

Activating the LOC via IC stimulation

