ISN Logo ISN : Enhancing Soldier Survivability

About the ISN


nav separator

SRA1Strategic Research Area 1
SRA2Strategic Research Area 2
SRA3Strategic Research Area 3
SRA4Strategic Research Area 4
SRA5Strategic Research Area 5


Student Opportunities


Contact Us
photo of rays of pink lights photo of engineer with spinning machine main content

ResearchslashSRA 03

Project 3.3.2: Electromechanical Interactions in Blast-Induced Traumatic Brain Injury

This project will investigate the new kinds of electromechanical interactions and their role in blast-induced traumatic brain injury (TBI)—including fundamental physics, simulation, experiments, neurological impacts, diagnosis and clinical guidance, and prevention/mitigation. The motivation for this project is the recent discovery by the PIs of a potential new electromechanical mechanism for blast TBI: because of piezoelectric properties of bone, a blast wave impacting bone such as the skull can generate large short-range electric fields, whose in-brain magnitudes are estimated to be comparable to fields with known neurological effects. We propose to answer the key questions raised by this possibility, using new measurements of the properties of human cranial bone and electromechanical full-head blast-wave simulations to determine the spatiotemporal distribution of blast-induced electromagnetic pulses. This information will be used to improve blast-survivability of soldiers in the field, by updating injury models, evaluating different mitigation strategies (e.g. helmet designs), and developing diagnostic tools for technology transition to Army/industry partners.


Project 3.3.2 Researchers

Prof. Raul Radovitzky, Department of Aeronautics and Astronautics
Dr. Simona Socrate, Institute for Soldier Nanotechnologies
Prof. Steven Johnson, Department of Mathematics

Back to SRA 3

MIT Building NE47, 4th Floor, 77 Massachusetts Avenue Cambridge, MA 02139 (617) 324-4700