Lemelson-MIT Program
Who We Are Awards Outreach News
Invention Dimension Search Site Map Contact Us
Inventor of the Week

Inventor of the Week Archive

Browse for a different Invention or Inventor


Structured custom design of integrated circuits

Carver Carver Mead has made many of the Information Age's most significant advances in microcircuitry, including HEMT, VLSI, and neuromorphic electronic systems.

Born in 1934 in Bakersfield, California, Mead attended a small local grade school in the Sierra Nevada mountains, along with twenty fellow students and only one or two teachers. Yet, with the inspiration of a trigonometry textbook provided by one of those teachers, and the practical help of his father, who brought electrical equipment home from work for his son to experiment on, Mead decided early on a career in math or science.

In 1952, Mead enrolled at the California Institute of Technology in Pasadena, and has worked there ever since. He earned a BS (1956), MS (1957), and PhD (1960) in Electrical Engineering; he began teaching after earning his Master's, and is currently Gordon and Betty Moore Professor of Engineering and Applied Science. Mead's career at CalTech has been a series of triumphs in microelectronics: his once revolutionary ideas have repeatedly become standards of the industry.

For example, Mead created the "HEMT" (High Electron Mobility Transistor) system of circuitry that amplifies microwave communication signals. HEMT is now the standard amplifying device in fiberoptic and satellite links, essential to the intenet access and cellular phone use that many people now enjoy and take for granted every day.

Mead's early work in solid state electronics led to his most recognized invention: the development of structured custom design of microchips. In 1969, Mead and a colleague proposed the creation of VLSI (Very Large Scale Integrated) circuits, which would allow for millions of transistors to work together on a single silicon chip, including custom features as small as 0.15 micron.

The electronics industry was almost universally skeptical about analog VLSI. Within ten years (1978), Mead had made VLSI circuits a success, and published the essential textbook on their design, "Introduction to VLSI Systems." Within another ten years, when Mead published his second major book on the subject (1989), "Analog VLSI and Neural Systems," custom design of microchips using VLSI circuits had become - as it remains today - universal. Because Mead uses VLSI, in his books and in the classroom, as a way of teaching both microchip design and general priciples of computing, his work has inspired a whole generation of technology innovators.

For some time, Mead has concentrated his research on neuromorphic electronic systems, that is, technology that imitates the human brain and nervous system. He is not the first electrical engineer, of course, to work in this field. But over ten years ago, Mead had already succeeded in creating an analog silicon retina and inner ear. He believes that by focusing on the nervous systems' sensors first he can best understand how its central processing unit works.

Carver Mead continues that effort today, along with many other projects, including directing and consulting for a number of high-tech firms. He has earned over forty patents and numerous awards, in the US and abroad. On April 22 of this year, Mead won the Lemelson-MIT Prize for Invention and Innovation, and was honored at the Annual Ceremony, held at the Exploratorium in San Francisco.

Invention Dimension
Inventor of the Week Inventor of the Week
Inventor's Handbook Inventor's Handbook
Games & Trivia Games & Trivia
Links & Resources Links & Resources