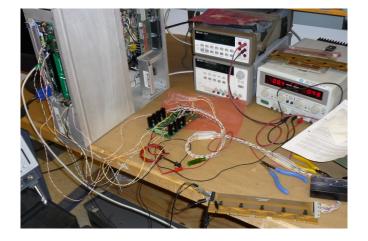
APV Readout and Experiment Trigger The OLYMPUS experiment

Alexander Winnebeck

Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn



of Physics and Astronomy

APV readout system

3 stage readout electronics (ADC, supply board, APV board)

Tests at Bates

Goals for testing

- Demonstrate the readout system
- Check interfacing between readout system and MIT APV boards
- Testing qualitatively the noise
- Identify weak points in the systems
- © Test the customs in Cologne and Boston with a CARNET ATA

MIT APV board

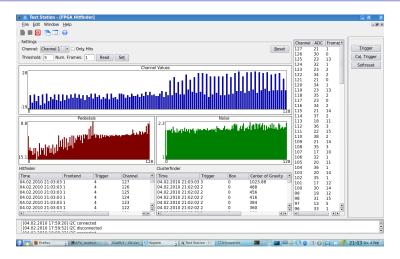
- 5 APVs per board
- MIT (Miro) design
- Edge connectors for detector

Supply board

Specifications

- Generate voltages for APVs
- I²C level translators
- Differential line driver
- \bullet Tested cable length to APVs $\lesssim 5\,\text{m}$

ADC module



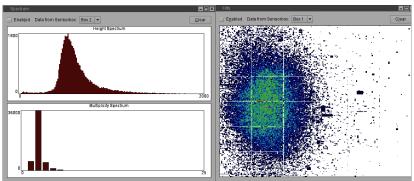
Specifications

- FPGA based VME module
- 3 ADC mezzanine cards
 - 4 APVs per card
 - 12 bit resolution
 - Up to 65 MSPS/s
 - Variable clock source and frequency
- Firmware
 - Base line determination and subtraction
 - Zero suppression
 - (1d cluster)

Test results

- APVs configured via I²C
- Data and heart beat observing, pedestal determination

Improvements of APV board


Suggestions for APV boards

- \bullet 100 Ω resistor between GND2 and VDD direct at APV chip
- Numerous decoupling capacitors for supply voltages
- Connection of SDATA in and SDATA out on APV board
- Termination of clk, trigger on APV board
- Pull-up resistors for I2C lines on APV board
- APV addresses should be configured via soldering connections

Further activities

- Integration of readout system into Olympus DAQ
- Successful beam tests with 24 APVs (silicon strip detectors) in proton beam at COSY

Trigger for OLYMPUS

Specifications

- FPGA based VME module
- I/O Mezzanine cards (NIM/LVDS/ECL)
- VHDL firmware
- Fully configurable via VME Simulated and tested √

OLYMPUS Trigger

Trigger features

- Synchronized to 10 MHz DORIS clock
- 8 parallel trigger conditions
 - Trigger and veto pattern
 - Event ID / priority
 - 24 bit pre-scaler
- Scaler events (Δt : 10 ns .. 42 s)
- Latching 32 bit scaler for
 - All trigger conditions
 - Event and system reset
 - Lifetime and spilltime
- Adjustable trigger re-arm procedure

