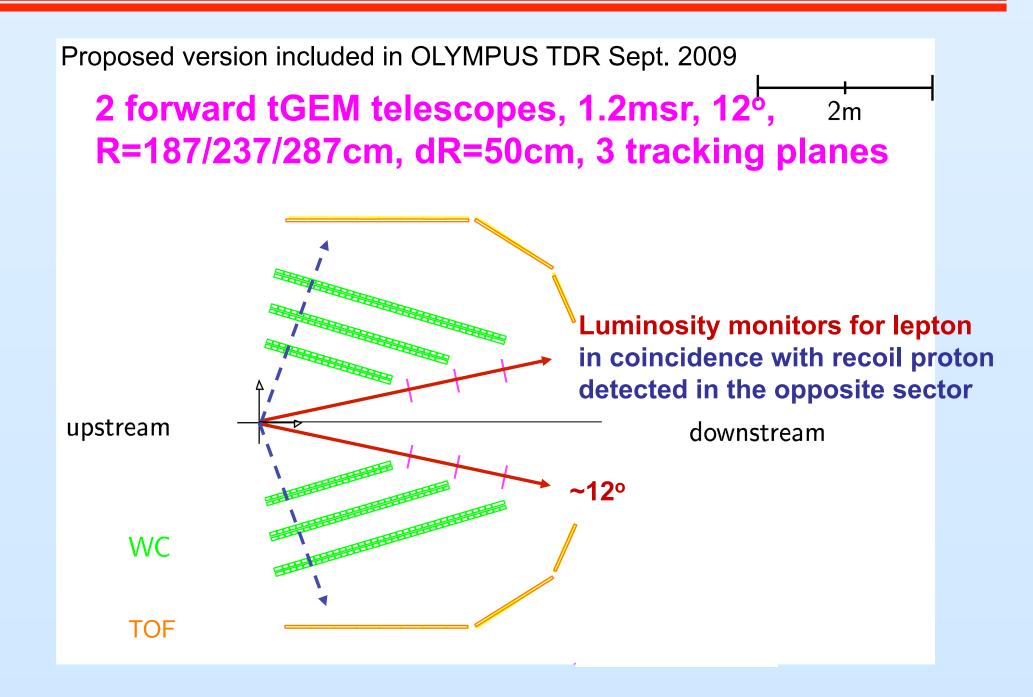
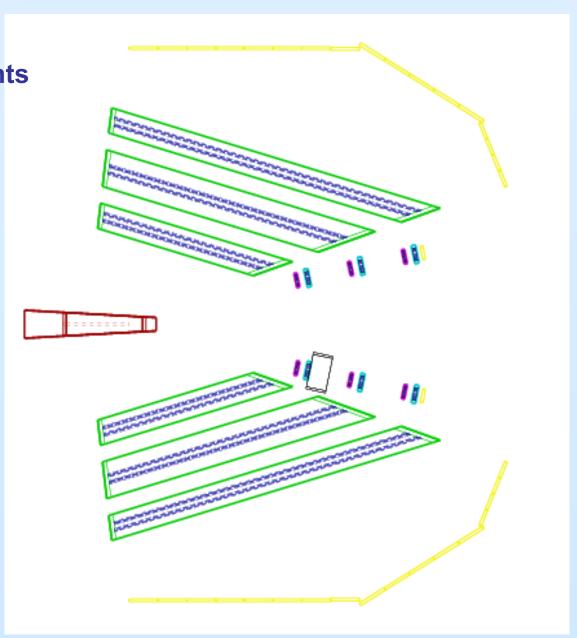
Status of the Forward Elastic Scattering Luminosity Monitor

Michael Kohl

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606



Monitoring the Luminosities


- Pressure, temperature, flow, current measurements
 - limited in precision
- Moller/Bhabha scattering
 - 1.3 degrees for symmetric Moller setup
 - requires knowledge of Moller/Bhabha cross sections
- Small-angle elastic scattering
 - high count rate, no TPE at high epsilon / low Q²
 - single-arm and in coincidence with recoil proton
 - event-by-event with full track reconstruction
 - different acceptances for e⁺ and e⁻
 - requires knowledge of angular xsec. dependence

Luminosity Monitors: GEM Telescopes

Luminosity Monitors: GEM+MWPC

- MWPC telescopes with 3 x/u/v elements interleaved with GEM elements
- Scintillator for triggering and timing
- High redundancyNo interferenceTwo independent groups
- Well suited for efficiency and alignment calibration
- Both GEM and MWPC telescopes can operate independently

Luminosity Monitors: GEM+MWPC

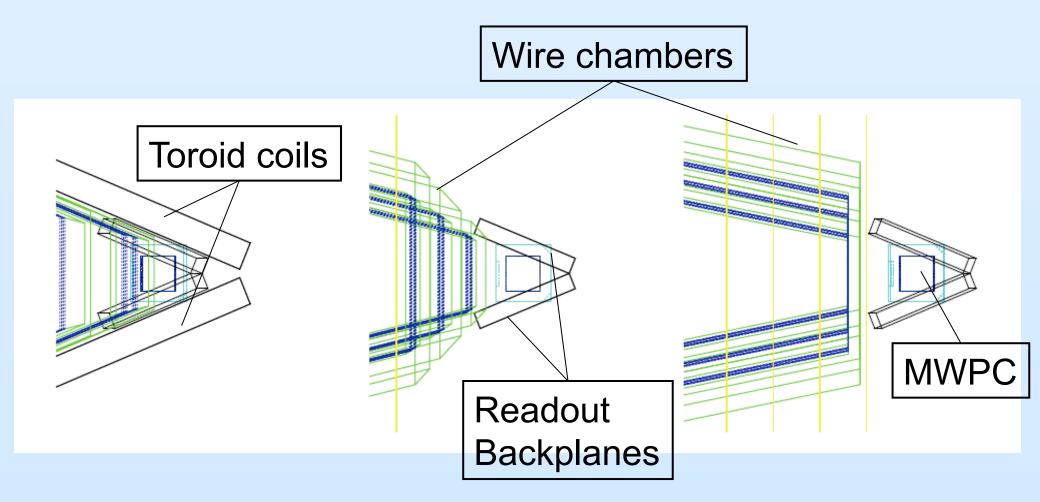

	$\delta z [\mathrm{cm}]$	$\delta\theta$	$\delta\phi$	$\delta p/p \ [\%]$
GEMs alone	1.67	0.137°	0.301°	4.57
GEMs alone $+$ $MWPC$ material	1.74	0.142°	0.309°	4.86
MWPCs alone $+$ GEM material	3.94	0.294°	0.407°	9.58
GEMs + MWPCs	1.60	0.132°	0.308°	4.43

Table 1: Obtained track resolutions for various configurations of the luminosity monitor, based on a GEANT3 simulation with Kalman filter technique for reconstruction.

- Each system alone is not deteriorated too much by the other
- Both systems combined give superior resolution
- Concept paper for TDR, Sec. 4 sent out in April, included in current version of TDR; revision/improvement still ongoing

MWPC: Confined space ... but they fit

MWPC closest to target at 200 cm

0-degree view

12 degrees

19.45 degrees

Luminosity Monitors – Basic Properties

Proposed version included in OLYMPUS TDR Sept. 2009

E_0	Q^2	$p_{e'}$	ϵ	θ_p	p_p	Rate
[GeV]	$[(\mathrm{GeV/c})^2]$	$[\mathrm{GeV/c}]$			$[\mathrm{MeV/c}]$	$[h^{-1}]$
4.5	0.801	4.073	0.9736	58.7°	992	1846
2.0	0.167	1.911	0.9774	71.8°	418	49792

Table 4.1: Kinematics and count rates of the luminosity control measurement for beam energies of 2.0 and 4.5 GeV at $\theta_e = 12^{\circ}$. The assumed solid angle is 1.2 msr determined by the area of rearmost tracking plane farthest from the target.

- Two symmetric GEM telescopes at 12°
- Two-photon effect negligible at high-ε / low-Q²
- Sub-percent (relative) luminosity measurement per hour at 2.0 GeV, per day at 4.5 GeV
- 1.2 msr = $10 \times 10 \text{ cm}^2$ at $\sim 290 \text{ cm}$ distance (rearmost plane)
- Three GEM layers with ~0.1 mm resolution with ~50 cm gaps
 → Match vertex resolution (z) of ~ 0.1 1 cm at 12° with proton in BLAST
- Issue of acceptance loss and different average angle due to track bending can be alleviated with reduced toroid field

Luminosity Monitor based on GEMs

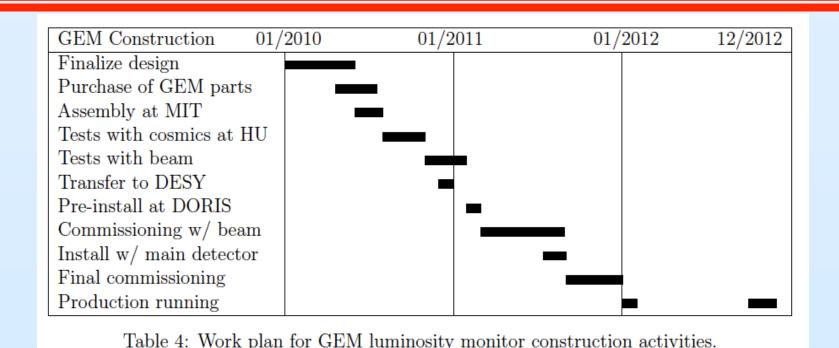
- Forward-angle electron/positron telescopes with good angular and vertex resolution
- Two telescopes with 3 triple-GEM detectors, left-right symmetric
- Coincidence with proton in opposite sector of main detector
- Single-arm tracks
- High rate capability
- Readout based on APV chip

MIT prototype:

Telescope of 3 Triple GEM prototypes (10 x 10 cm²) using TechEtch foils

F. Simon et al., NIM A598 (2009) 432

Providing GEM detectors


Collaboration HU-MIT-Rome

- TechEtch/MIT to provide GEM foils
- Assembly of detectors at MIT and MIT-Bates
- Rome: Readout system developed for Hall A / SBS
- Testing at HU and DESY

Funding

- Secured NSF Nuclear Physics/ARRA basic research grant (\$405k) postdoc + travel; 1 graduate student supported by HU NSF group 2 undergraduate stipends for summer 2010
- Secured \$216k within NSF MRI-R2 for luminosity monitors (\$125k),
 1 graduate stipend + travel for commissioning
- Subaward to MIT (\$77k) within MRI grant: Permission requested from NSF for engineering services and ordering of parts, NSF approval awaited

Tasks & Timeline for LuMo Construction

- Above schedule from TDR
- Experiencing slight delays, yet keep goal of providing GEMs by end of 2010
- Assembly of GEM detectors at MIT in summer 2010 ongoing
- New research building at HU with lab space available for testing in fall
- Extensive testing of chambers and Rome readout system at HU
- No beam test other than test experiment at DORIS in spring 2011

Realization of Detectors

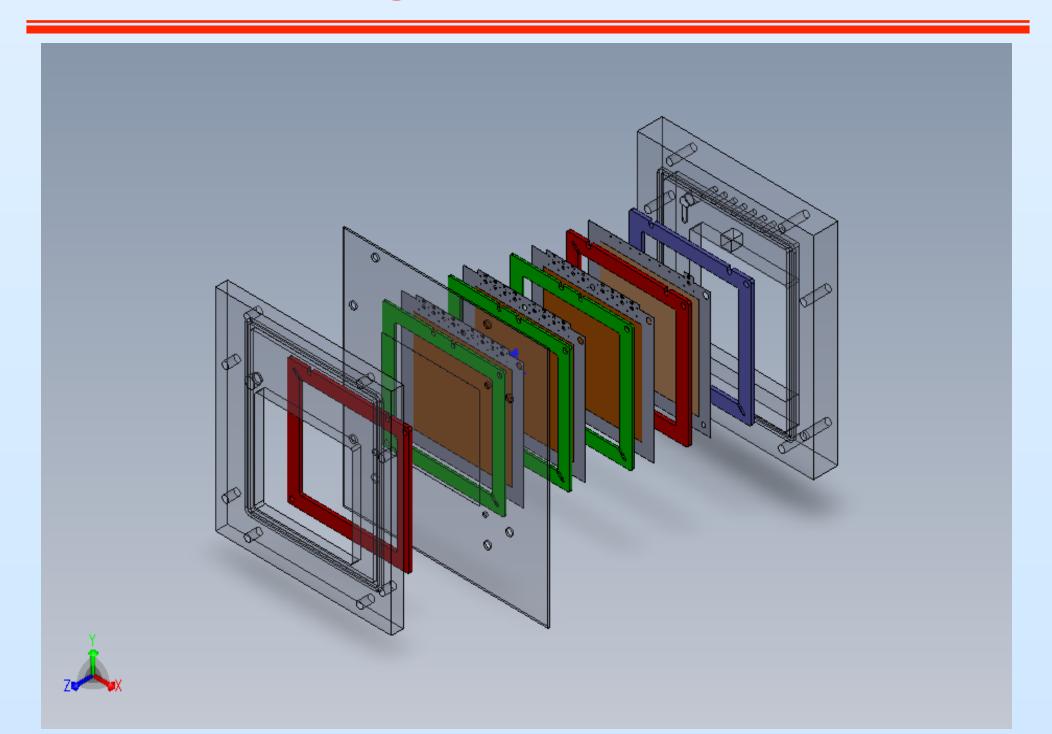
- Construction project fully funded (NSF, MRI-R2), grants are active
- Postdoc position filled by J. Diefenbach eff. July 1, 2010
 - Work at Mainz and DESY through mid August 2010: Readout system, DESY testrun
 - Work at HU from end of August December 2010: Complete GEMs, testing
- HU-MIT Research Agreement (subaward) in preparation to enable Bates engineering services:
 - Drawings, direct ordering of parts, technical support for manufacturing
 - Mechanical parts to be available by ~July 20, 2010 parts to be ordered now
 - Design of readout board ongoing to become available ~September 2010
- Three GEM projects ongoing at MIT
 - GEM2D: O-ring sealed aluminum testbox; purpose to test readout foils
 - OLYMPUS: LuMos; glued stack, simple and compact design
 - STAR/FGT: Large, segmented GEM foils, glued stack, most sophisticated design
- Ordered 10x10 cm² GEM and HV foils (designed by D. Hasell) from TechEtch
 - so far 12/35 GEM foils delivered, 12/12 HV foils; 16/16 GEM foils for GEM2D

Realization of Detectors (cont'd)

- HU group currently visiting MIT and Bates from June 7 – August 8, 2010
 - Two HU undergraduate students (Miles Campbell, Joshua McMahon)
 - One HU graduate student (Ozgur Ates)
 - Three undergraduate students in MIT MSRP funded by HU/REU program (Laura Havener, Matthew Anthony, Raspberry Simpson)
 - Frame preparation and cleaning (FGT frames and GEM2D frames
 - Testing of GEM foils (Optical scanning; HV testing & conditioning)
 - Gluing of gas pressure foils, HV foils, GEM foils
- Establish one complete GEM2D box with Bonn readout system within July 2010 – need test readout board
- For OLYMPUS GEMs, prepare everything but final readout board by August 6;
 complete assembly when readout boards become available
 - complete assembly when readout boards become available (~September 2010)

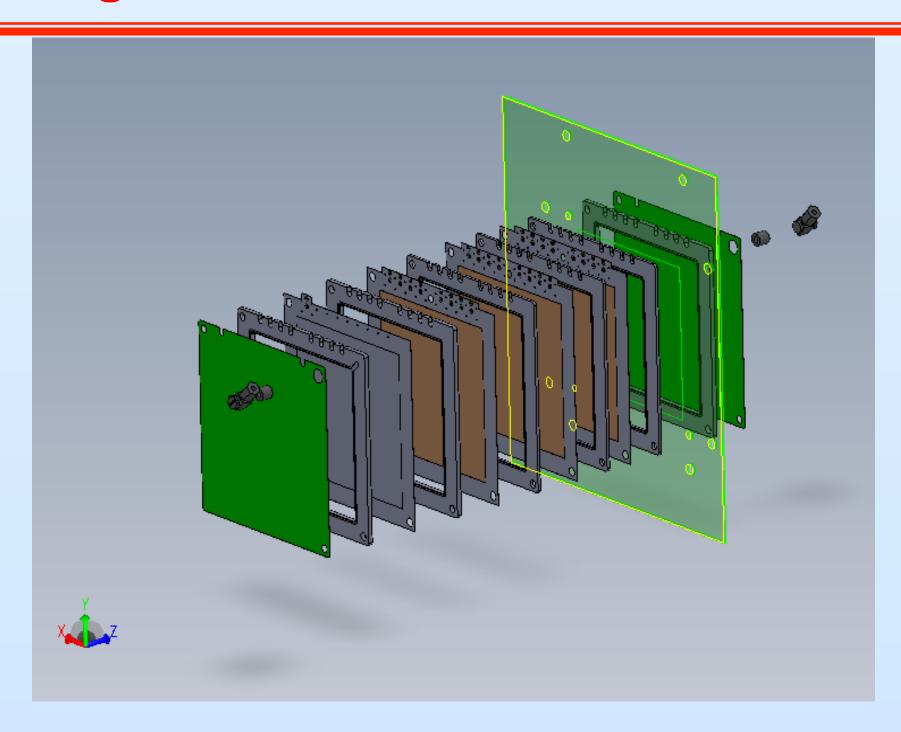
HU-MIT students ...

from left: Michael Kohl, Miles Campbell, Raspberry Simpson, Joshua McMahon, Ozgur Ates, Matthew Anthony, Laura Havener, Richard Milner

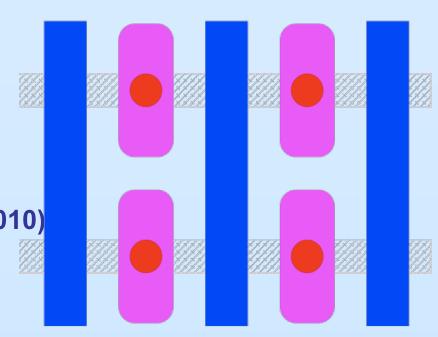

... at work

Realization of Detectors (cont'd)

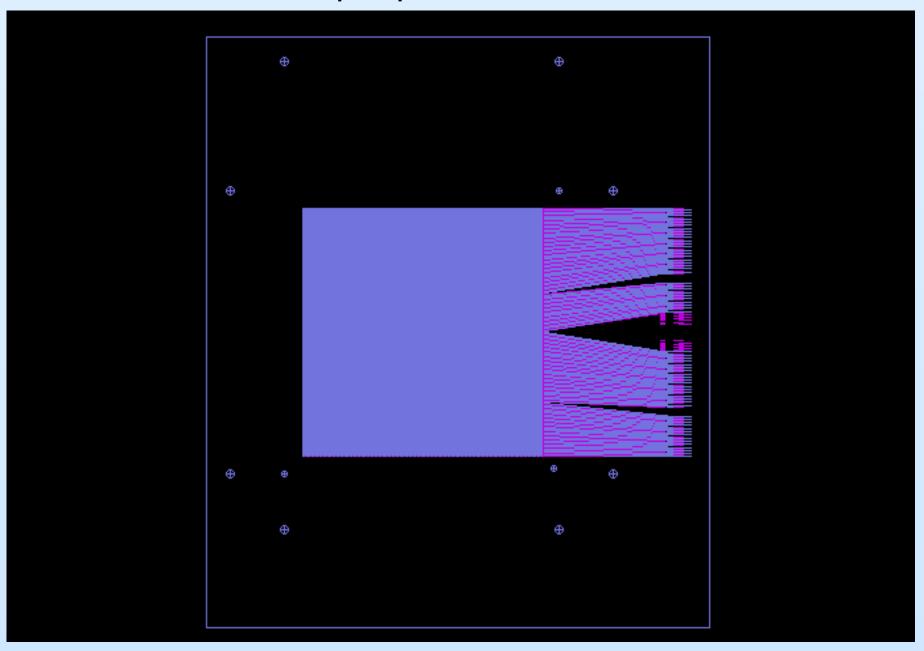
- Prepare cosmic ray test stand at HU
 - Collaboration with M.E. Christy (HU)
 - Scintillators, eventually with SOS wire chambers for good track definition
- Implement test readout in September 2010 (Rome group)
 - New APV based system to be tested at DESY in July 2010
- Testing with cosmic rays / sources from September December 2010
 - Signal to noise studies, cluster performance
 - Study gains and charge sharing
 - Operation stability, discharges
 - Efficiency versus voltage
 - Efficiency distributions versus x and y
 - Spatial resolution
- Transfer detectors to DESY by Dec. 2010
- Mount 3 GEMs in DORIS test experiment in Feb. 2011 for spring test run; replace during accesses and install in OLYMPUS


GEM2D Design of AI Testbox

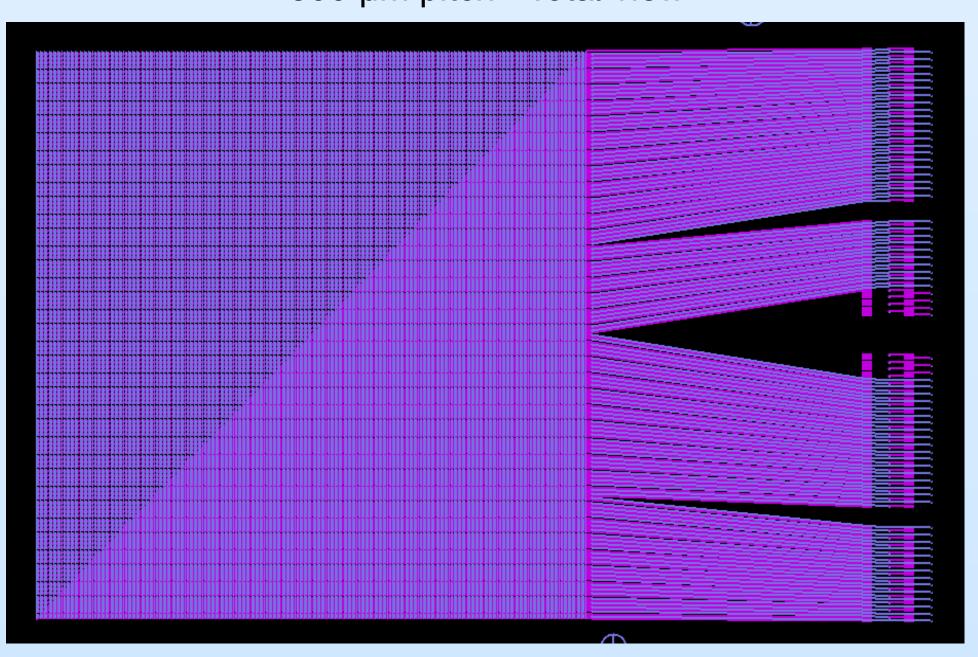
GEM Design Criteria / Issues


- Want 12.5x12.5 cm² total area gluing instead of bolting w/ O-rings
- Identical design for all chambers preferred easy replacements
- Can use inner frame design of new GEM2D prototype (D. Hasell) with minor modifications (like glue troughs, gas feed, HV supplying), for everything but readout
- Bob Abruzzio has produced modified drawings, ready to be ordered as soon as subaward is in place, hopefully still this week
- HV supplying: Soldering of wires to straps on GEM/HV layers located in frame cutouts, to be connected to passive voltage divider board – no "fancy" integration into frame
- Gas feeds to be glued directly onto G10 frame

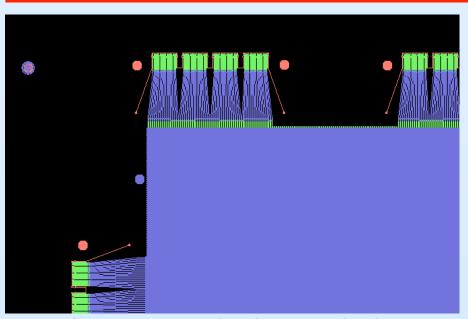
Design of OLYMPUS LuMo GEMs


GEM Readout Board

- Readout pitch of MIT prototype: 635 μm, COMPASS: 400 μm
- Number of electronics channels per chamber:
 [100+100]/0.635(0.800,0.400) ~= 315 (250, 500), read out by 3(2, 4) APV chips
- Want 12.5x12.5 cm² total area, 10x10 cm² active area
- Straps to extend out on the sides with strips to fit into connectors on Rome APV readout cards: 4 straps/connectors per card = 128 channels;
- Pitch of 800 μm (2 cards on one side, design existing) and 400 μm (2 cards each on 2 sides). Design to be finalized
- Readout technology with strips and pads, on 2-sided foil, vias-connected on rear side
- Previous technique based on laser ablation discontinued
- Complete construction of GEMs when readout boards become available (~Sept. 2010)


Strips & Pads Readout (D. Hasell)

800 µm pitch - Total view



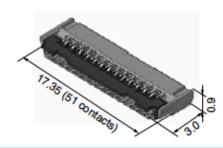
Strips & Pads Readout (D. Hasell)

800 µm pitch - Total view

Connection to Frontend Cards (Rome)

from Rome R&D for Jlab SBS

Panasonic ideas for life


FPC CONNECTORS FOR FPC CONNECTION

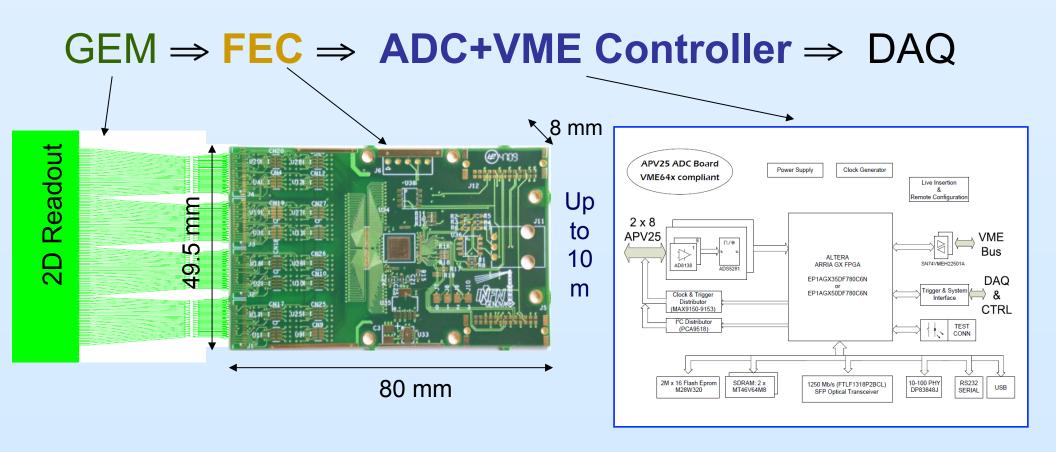
FEATURES

1. Low-profile, space-saving design (pitch: 0.3mm)

The 0.9mm height, 3.0mm depth contributes to the miniaturization and thickness reduction of target products.

* The total depth including the lever is 3.2mm.

80 mm


- Use 800 or 400 μm pitch
- 2 cards 1 side4 cards 2 sides
- Use straps without any additional connectors
- Use adapter piece if any other readout system is to be used

Summary

- GEM detector construction underway at MIT-Bates
- Substantial manpower with 6 students for two months available
- J. Diefenbach joining the Hampton group as postdoctoral associate
- Tight schedule for ordering of parts due to required research agreement
- Construction to be complete by September, testing by December
- Project still on track for completion by end of 2010

Backup slides

Readout Electronics

- Frontend card (APV + VME) by INFN Rome -> see next talk, by S. Frullani
- First test of 10x10 GEMs from INFN and UVa at PREX/Hall A in March 2010
- Second test, with new APV readout toward end of PREX in May 2010
- System to become available for OLYMPUS GEMs in August 2010

Luminosity Monitor MC Tasks

- Continue to work on GEANT4 simulation
 (Ozgur Ates, HU graduate student of HU nuclear physics group)
 - use new, faster codes with better bookkeeping features
 - higher MC statistics
- Simulations of phase space integral(s) (acceptance) expected counts, acceptance-averaged cross section
- Study of systematic effects (beam offset, slope, width; etc.) on counts per bin
- Simulation of backgrounds (Moller/Bhabha; Inelastics)

Luminosity Monitors: Cost estimate

Proposed version included in OLYMPUS TDR Sept. 2009

Item	Amount	Cont.(%)	Total/k\$	Remarks
Support frame	3	20	1.8	\$500/frame (2+1 spare)
GEM chamber mechanics	9	20	10.8	1000/chamber (6+3)
GEM foils $10 \times 10 \text{ cm}^2$	40	20	9.6	\$200/GEM foil (27+13)
Readout layer	9	20	21.6	\$2000/board (6+3)
Hybrids	80	20	19.2	\$200/hybrid (54+26)
APV25 chips	80	20	2.4	\$25/chip (54+26)
Cables	18	20	2.2	Signal and HV (6+3)
FEE	2880	20	34.6	$10/\text{channel } (6+3) \times 320$
Readout system	1		5.0	
HV distribution	9	20	0.5	\$50/chamber
Power Supply		20	5.0	HV pods
Gas system	9	20	3.2	300/line (6+3)
Misc. items			9.1	
Total			125.0	

Table 4.3: Cost estimate for the OLYMPUS luminosity monitors based on two plus one spare forward-angle GEM telescopes, each based on three triple-GEM detectors.