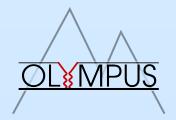
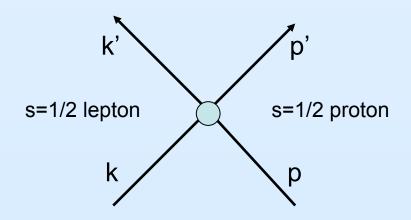
OLYMPUS Collaboration Meeting, DESY, Jan. 24-25, 2011

Physics Update

Michael Kohl

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606





^{*} Supported by NSF grants PHY-0855473 and 0959521, and DOE Early Career Award DE-SC0003884

Elastic ep Scattering Beyond OPE

$$P \equiv \frac{p+p'}{2}, \quad K \equiv \frac{k+k'}{2}$$

Kinematical invariants:

$$Q^{2} = -(p - p')^{2}$$

$$\nu = K \cdot P = (s - u)/4$$

Next-to Born approximation:

$$\begin{array}{lcl} T_{h'\lambda'_N,h\lambda_N}^{non-flip} & = & \frac{e^2}{Q^2}\bar{u}(k',h')\gamma_\mu u(k,h) \\ & & \\ (\mathsf{m_e} = 0) & & \\ & \times & \bar{u}(p',\lambda'_N)\left(\tilde{G}_M\,\gamma^\mu - \tilde{F}_2\frac{P^\mu}{M} + \tilde{F}_3\frac{\gamma.KP^\mu}{M^2}\right)u(p,\lambda_N) \end{array}$$

The T-matrix still factorizes, however a new response term F₃ is generated by TPE Born-amplitudes are modified in presence of TPE; modifications $\sim \alpha^3$

$$egin{array}{lll} ilde{G}_M(
u,Q^2) &=& G_M(Q^2) + \delta ilde{G}_M & ilde{G}_E \equiv ilde{G}_M - (1+ au)\, ilde{F}_2 \ ilde{F}_2(
u,Q^2) &=& F_2(Q^2) + \delta ilde{F}_2 & ilde{G}_E(
u,Q^2) = G_E(Q^2) + \delta ilde{F}_3 \ ilde{F}_3(
u,Q^2) &=& 0 + \delta ilde{F}_3 & ext{New amplitudes are complex!} \end{array}$$

$$\tilde{G}_E \equiv \tilde{G}_M - (1+\tau) \, \tilde{F}_2$$

$$\tilde{G}_E(\nu, Q^2) = G_E(Q^2) + \delta \tilde{G}_E$$

New amplitudes are complex!

Observables involving real part of TPE

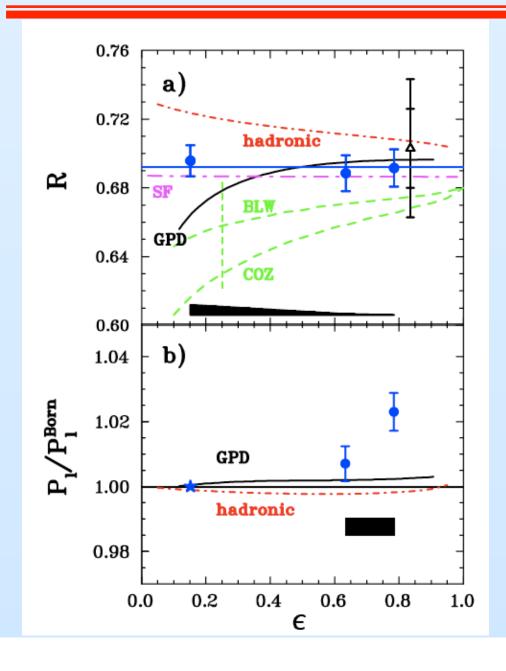
$$P_{l} = -\sqrt{\frac{2\varepsilon(1-\varepsilon)}{\tau}} \frac{G_{M}^{2}}{d\sigma_{red}} \left\{ R \right. + \left. \frac{\Re\left(\delta\tilde{G}_{M}\right)}{G_{M}} + \frac{\Re\left(\delta\tilde{G}_{E}\right)}{G_{M}} + Y_{2\gamma} \right\}$$

$$P_{l} = \sqrt{(1+\varepsilon)(1-\varepsilon)} \frac{G_{M}^{2}}{d\sigma_{red}} \left\{ 1 + 2 \frac{\Re(\delta\tilde{G}_{M})}{G_{M}} + \frac{2}{1+\varepsilon} \varepsilon Y_{2\gamma} \right\}$$

$$\frac{P_{t}}{P_{l}} = -\sqrt{\frac{2\varepsilon}{(1+\varepsilon)\tau}} \left\{ R \right. + \frac{\Re\left(\delta\tilde{G}_{M}\right)}{G_{M}} + \frac{\Re\left(\delta\tilde{G}_{E}\right)}{G_{M}} + 2\left(1-R\frac{2\varepsilon}{1+\varepsilon}\right) Y_{2\gamma} \right\}$$

$$\frac{\partial \sigma_{red}}{\partial \sigma_{red}} \left\{ G_{M}^{2} \right. + \frac{\varepsilon R^{2}}{\tau} + 2 \frac{\Re(\delta\tilde{G}_{M})}{G_{M}} + 2R \frac{\varepsilon \Re(\delta\tilde{G}_{E})}{\tau G_{M}} + 2\left(1+\frac{R}{\tau}\right) \varepsilon Y_{2\gamma} \right\}$$

$$\Re(\tilde{G}_{E}) = G_{E}(Q^{2}) + \Re(\delta\tilde{G}_{E}(Q^{2},\varepsilon))$$


$$\Re(\tilde{G}_{M}) = G_{M}(Q^{2}) + \Re(\delta\tilde{G}_{M}(Q^{2},\varepsilon))$$

$$R = G_{E} / G_{M} \qquad Y_{2\gamma} = 0 + \frac{\Re(\delta\tilde{G}_{M})}{1-\varepsilon} \frac{\Re(\tilde{F}_{3}(Q^{2},\varepsilon))}{G_{M}}$$
Beyond Born Approximation

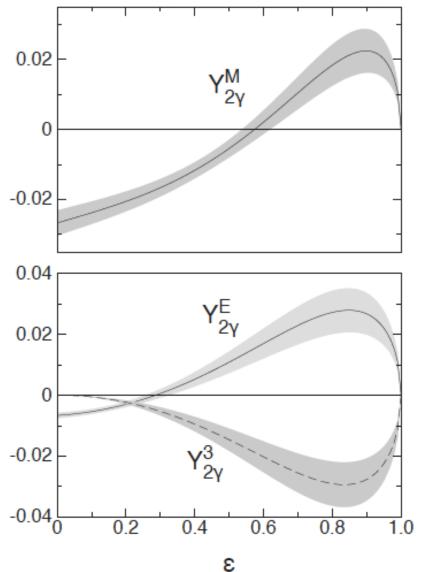
P.A.M. Guichon and M.Vanderhaeghen, Phys.Rev.Lett. 91, 142303 (2003) M.P. Rekalo and E. Tomasi-Gustafsson, E.P.J. A 22, 331 (2004)

Slide idea: L. Pentchev

E04-019 (Two-gamma)

Jlab – Hall C $Q^2 = 2.5 (GeV/c)^2$

 G_E/G_M from P_t/P_I constant vs. ϵ

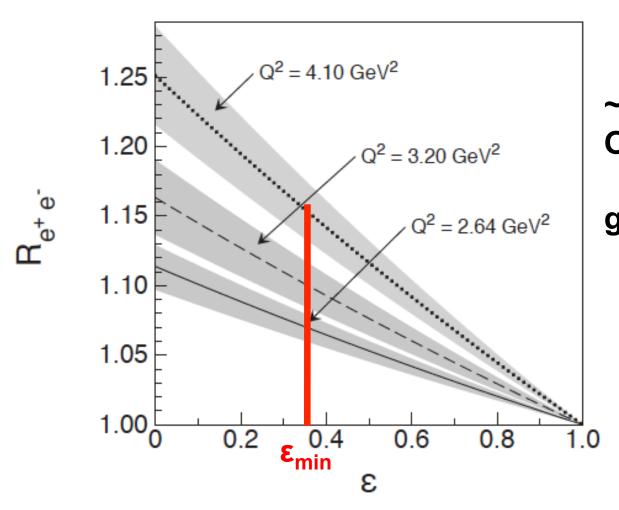

- no effect in P_t/P_t
- → some effect in P_I

Expect larger effect in e+/e-!

M. Meziane et al., hep-ph/1012.0339v1 submitted to PRL

Empirical extraction of TPE amplitudes

J. Guttmann, N. Kivel, M. Meziane, and M. Vanderhaeghen, hep-ph/1012.0564v1



$$Q^2 = 2.5 (GeV/c)^2$$

$$Y_{2\gamma}^{M}(\nu, Q^{2}) \equiv \mathcal{R}\left(\frac{\delta \tilde{G}_{M}}{G_{M}}\right), \quad Y_{2\gamma}^{E}(\nu, Q^{2}) \equiv \mathcal{R}\left(\frac{\delta \tilde{G}_{E}}{G_{M}}\right),$$
$$Y_{2\gamma}^{3}(\nu, Q^{2}) \equiv \frac{\nu}{M^{2}} \mathcal{R}\left(\frac{\tilde{F}_{3}}{G_{M}}\right), \tag{3}$$

Empirical extraction of TPE amplitudes

J. Guttmann, N. Kivel, M. Meziane, and M. Vanderhaeghen, hep-ph/1012.0564v1

~6% effect for OLYMPUS@2.0GeV

grows with Q²!

From the TDR (2009):

~6% effect on R

E_0	θ_e	$p_{e'}$	θ_p	p_p	Q^2	ϵ	Counts		
[GeV]		$[{ m GeV/c}]$		$[\mathrm{GeV/c}]$	$[({\rm GeV/c})^2]$				
2.0	24	1.69	56.4	2.45	0.6	0.905	22613100		
	32	1.51	48.1	2.26	0.9	0.828	4321570		
	40	1.46	41.3	2.07	1.2	0.736	1141960		
	48	1.27	35.7	1.89	1.6	0.636	389822		
	56	1.10	31.0	1.73	1.8	0.538	162355		
	64	0.97	27.1	1.59	2.0	0.447	78744	40k e	vents =
	72	0.85	23.8	1.47	2.2	0.367	(42954)		
								170 St	at. precision

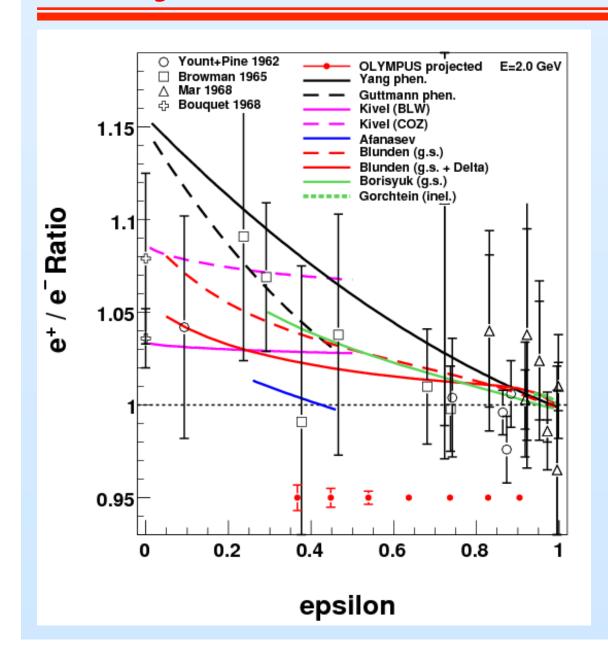
Table 1.2: Kinematics for 2.0 GeV beam energy and count estimate per 8° bin for 500 h at $2 \cdot 10^{33}$ / (cm²s).

Unfortunately, Q^2 is not quite at 2.5 (GeV/c)² (at E=2.3 GeV it would be! – price is a factor ~2 in rate)

From the Letter of Intent (2007):

E_0	θ_e	$p_{e'}$	θ_p	p_p	Q^2	ϵ	Counts
[GeV]		$[\mathrm{GeV/c}]$		[GeV/c]	$[(\mathrm{GeV/c})^2]$		
4.5	24	3.18	39.1	4.01	2.5	0.867	437082
	32	2.60	31.0	3.41	3.6	0.751	60093
	40	2.12	25.4	2.91	4.5	0.625	14427
	48	1.74	21.2	2.51	5.2	0.505	4986
	56	1.44	18.0	2.19	5.7	0.402	2195
	64	1.22	15.5	1.94	6.2	0.318	1138
	72	1.04	13.5	1.74	6.5	0.250	662
3.0	24	2.35	48.3	3.15	1.2	0.892	5594080
	32	2.02	39.7	2.80	1.8	0.800	860732
	40	1.72	33.2	2.48	2.4	0.691	207325
	48	1.46	28.2	2.20	2.9	0.581	69017
	56	1.24	24.2	1.97	3.3	0.477	28964
	64	1.07	20.9	1.78	3.6	0.387	14356
	72	0.93	18.2	1.62	3.9	0.311	8029
2.3	24	1.90	53.7	2.68	0.8	0.901	23563000
	32	1.68	45.3	2.44	1.2	0.820	4158760
	40	1.46	38.5	2.21	1.6	0.723	1056590
	48	1.27	33.1	2.00	1.9	0.620	355293
	56	1.10	28.6	1.81	2.2	0.519	147671
	64	0.97	24.9	1.66	2.5	0.428	71950
	72	0.85	21.8	1.53	2.7	0.348	39498

~5% effect on R
75% of the rate


~10% effect on R
9% of the rate

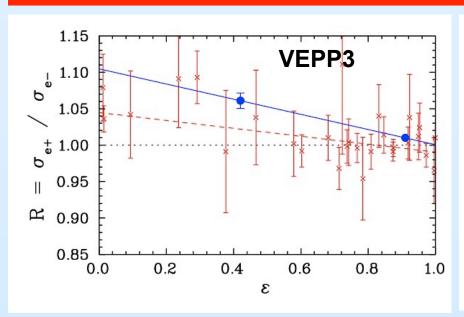
40k events = 1% stat. precision

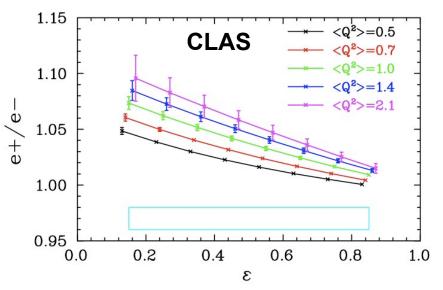
Table 3: Kinematics for three beam energies and count estimate per 8° bin for 1000 h at $2 \cdot 10^{33}$ / (cm²s). For the higher beam energy the backward lepton angle acceptance is limited by the forward proton angle > 23°. Bold face corresponds to kinematics within the acceptance of the current BLAST detector configuration.

2x more at 2 GeV

Projected Results for OLYMPUS

Data from 1960's


Many theoretical predictions with little constraint


OLYMPUS:

E= 2 GeV <1% projected uncertainties 500h @ 2x10³³ / cm²s

to be run in 2012

Other Experiments to Verify TPE

Experiment proposals to verify hypothesis:

e+/e- ratio: CLAS/PR04-116 secondary e+/e- beam / ext. target - 2010/11

(now firmly scheduled)

Novosibirsk/VEPP-3 storage ring / intern. target - 2009

(preliminary result: large effect)

OLYMPUS@DESY storage ring / intern. target - 2012

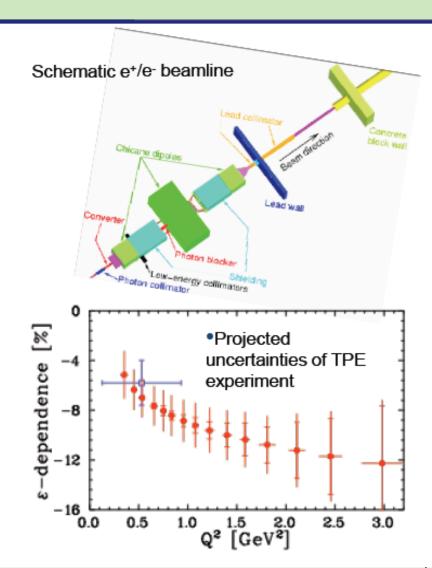
SSA: PR05-15 (Hall A, trans. pol target); MAMI-A4 (trans. pol. beam)

ε-dependence: PR04-019 (polarized), PR05-017 (unpolarized)

10

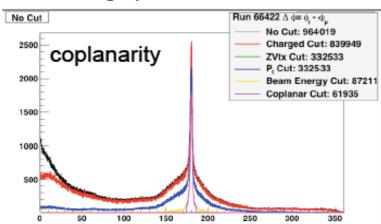
(Unofficial) Novosibirsk Information

Preliminary result for Re+/e- in comparison with calculations of P.G. Blunden et al. ϵ =0.50 Q²=1.43 GeV² 1.10 $Q^2=3.0 \text{ GeV}^2$ 1.09 2.0 GeV² 1.08 1.0 GeV² 0.6 GeV² 1.07 1.06 P.G. Blunden et al., 1.05 Phys. Rev. C 72, 034612 (2005) 1.04 1.03 1.02 1.01 1.00 0.2 0.0 0.4 0.6 8.0 1.0 D. Toporkov, VEPP-3¹¹ ε

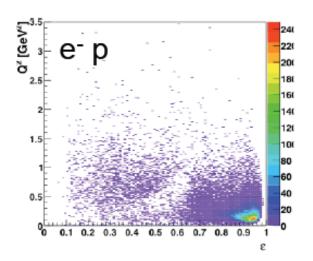

CLAS TPE – 2γ effects in ep scattering

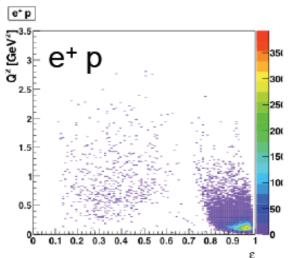
 2γ contributions are expected to be the a major factor in explaining the discrepancy in the ratio G_E^p/G_M^p observed for using the Rosenbluth technique or the polarization transfer technique.

 2γ effects are exposed in comparing e^-p and e^+p elastic scattering cross sections. The $1\gamma/2\gamma$ interference term $\delta_{2\gamma}$ has opposite sign resulting in a measureable difference from unity for the ratio


$$=\frac{\sigma(e^+)}{\sigma(e^-)}\approx 1-2\delta_{2\gamma}.$$

Experiment is currently taking production data. It uses an intense photon beam and converts it to a beam of equal mixture of e⁺ and e⁻ directed onto a LH2 target. The scattered leptons and proton are detected in CLAS.




CLAS TPE - Experimental Progress

- e⁺/e⁻ Chicane tuned
- Achieved luminosity within a factor of two of simulations
- 10⁷ elastic events as of December.
- Identify elastic events by:
 - coplanarity,
 - zero total transverse momentum,
 - beam energy matching (angle/mom)
- Reduce systematic errors by:
 - Identical simultaneous beams
 - Reversing torus field
 - Reversing chicane field
 - Taking triple ratios

One hour of data ...

L. Cardman, PAC37, Jan. 2011