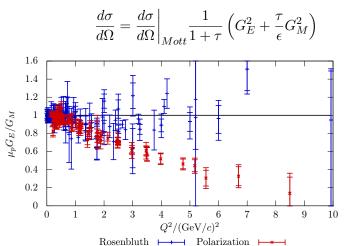
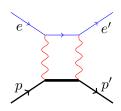
Alexander Winnebeck

Massachusetts Institute of Technology, LNS

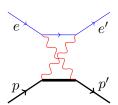

26th April, 2012

Form Factor Ratio Discrepancy

Introduction


•0000

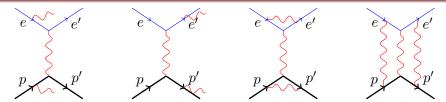
Plot by Bernauer


 \Rightarrow 2 photon exchange

Principal of Measurement

Introduction

00000



Not able to calculate hard 2γ contribution ⇒ Measure it!

$$\begin{split} R &= \frac{\sigma(e^+p)}{\sigma(e^-p)} \approx \frac{(1\gamma)^2\alpha^2 + 2\alpha^3(1\gamma)(2\gamma)}{(1\gamma)^2\alpha^2 - 2\alpha^3(1\gamma)(2\gamma)} \\ &\approx 1 + 4\alpha\frac{(2\gamma)}{(1\gamma)} \end{split}$$

Olympus expects \approx 5% effect

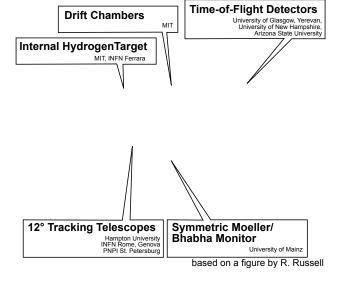
Radiative Corrections

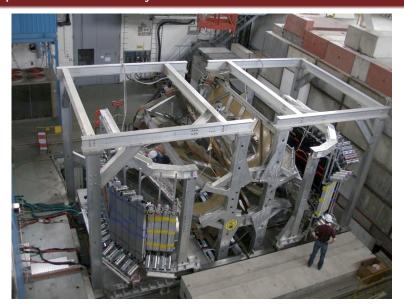
- Processes smear out kinematics
- Elastic yield depends on acceptances, resolutions, and cuts
- → Need to correct for this (comparison between experiments)

Radiative Correction Workshop

- July 2011 @ MIT
- July 2012 @ St. Petersburg, Russia

Alternative: Look at the asymmetry instead of the cross section ratio:


$$A_{e^{\pm}} = \frac{\sigma_{e^-p} - \sigma_{e^+p}}{\sigma_{e^-p} + \sigma_{e^+p}} = \frac{1-R}{1+R} \rightarrow \frac{\alpha(odd)}{\alpha(even)}$$


- Measures deviation from zero
- Radiative corrections to numerator simpler and may cancel each other
- → Result less dependent on the correction

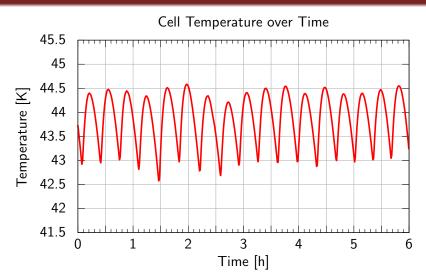
Strategy to Obtain Results

- Have detector working and get data
- Hit and track reconstruction
- Elastic event selection
- Applying radiative corrections with Monte Carlo methods
- Extract Ratio (Asymmetry)

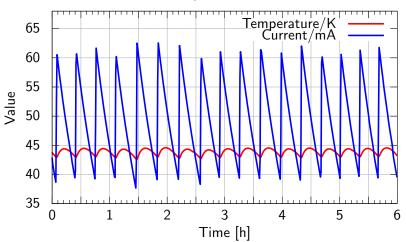
Setup Overview

Target System

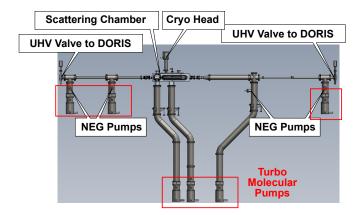
- Windowless internal gas target
- 60 cm long storage cell
- Elliptical cross section (27 mm x 9 mm)
- $100 \, \mu \text{m}$ thick aluminum wall
- Cryo cooled $(43.5\pm1 \text{ K})$
- $\rho = \mathcal{O}10^{15} \, \text{atoms/cm}^2$
- Hydrogen generator (electrolysis)


INFN Ferrara, MIT

First Results

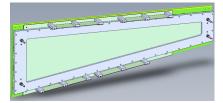


Target Cell Temperature during Run



Target Cell Temperature during Run

Cell Temperature over Time



Vacuum System

- Pressure outside experiment: $2 \cdot 10^{-10}$ mbar ($7 \cdot 10^{-8}$ mbar)
- Build-up time $0 \leftrightarrow 0.8 \, \text{sccm}$: $90 \, \text{s}$

GEM Tracker

- Active area: 840 mm x $250/110 \, \text{mm}$
- Patched triple GEM stack
- 2D readout board with 18.4° stereo angle
- 12 APVs per detector

MIT, DESY, Hampton, Bonn

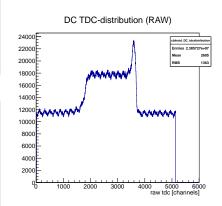
Status

 Aluminum parts manufactured

First Results

- Readout boards delivered.
- 14/24 GEM foils delivered
- APV cards ready and tested
- Voltage divider in assembly
- Supply boards in assembly
- Readout electronics tested
- DAQ and offline ready
- Assembly: May/June (MIT)
- Testing: July (DESY)

Wire Chambers


Introduction

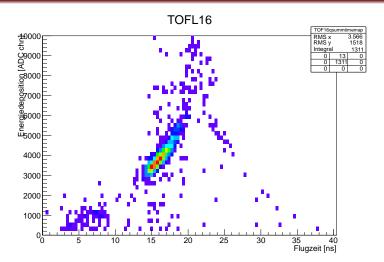
Specifications

- 3 in 1 chambers
- ArCO₂ (90:10) drift gas
- $V_{sense} = 3800 \, V$

Status

- No hot wires anymore
- 8 out of 318 cells disconnected
- → Repair in June
 - High occupancy in inner chamber

Time of Flight Detectors


Introduction

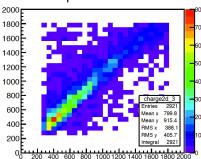
- 18 detectors per sector
- Double sided PMT readout
 - → Noise suppression
 - \rightarrow Hit location: $(t_1 t_2)/2$
 - \rightarrow Mean time: $(t_1 + t_2)/2$
- Measure ToF, E_{den}
- Derive trigger signals
 - ORs, top bottom coincidence
 - Subsection OR
 - Kinematic trigger

Noise improved after installation of transformer

TOF Spectrum

Large angle TOF bar with trigger on 12 degree particle

Luminosity Monitoring


Need precise relative luminosity measurements to compare relative cross sections

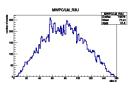
First Results

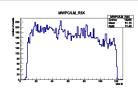
- 12° tracking telescopes
 - Elastic ep at $\epsilon > 0.97$ (TPE $\lesssim 1\%$)
 - Count tracks with protons in coincidence in TOFs
- Symmetric Møller Bhabha Detector
 - Count symmetric events

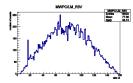
Lumi GEMs

Cluster amplitude correlation

Plot by J. Diefenbach

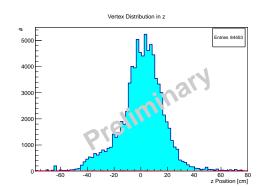

Specs and Status

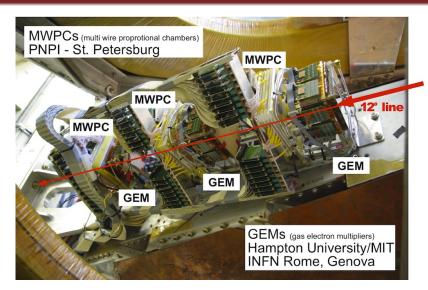

- 3 detectors per arm
- Triple GEM stack with 2D readout
- 23 out of 24 APVs working fine
- $\delta_{res} \approx 200 \, \mu \mathrm{m}$

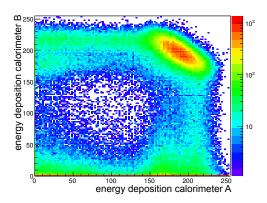

Hampton, INFN, MIT

The End

Multi Wire Proportional Chambers

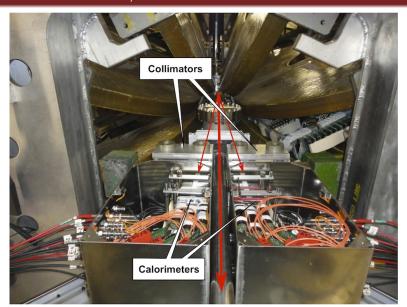



Specifications


- 3 chambers per arm
- 3 planes per detector
- 1 hot + 2 warm wires out of 2700
- $\eta_c = 0.98-0.99$

PNPI

12° Tracking Telescopes


Plot by J. Diefenbach

Introduction

- Pure QED processes
- Independent measurement

First Results

- Quasi dead time free $(t_d = 20 \, \text{ns})$
- Left/right coincidence with 1 GeV each
- Possible to see also elastic ep

Main Trigger System

MIT

- Single level scheme
- VME based FPGA board
- Dynamic configurable at runtime
- 16 parallel trigger conditions (incl. veto + pre-scaler)

First Results

- Main trigger (≈75%)
- 2 Luminosity trigger
- 8 Calibration trigger
- Counters for inputs and trigger conditions

Plan to install 2^{nd} level trigger with information from wire chambers

Data Acquisition System

- Easy to use DAQ GUI
- Online data display
- Data backup
 - Raid + mirror server
 - DESY computing center
 - External hard drive
- Automated data mapping and pre-processing
- Run database + Elog

Run I (1st-27th February)

- 1 billion triggers collected
- 1710 runs

First Results

- Raw data on disc: 3.4 TB
- DAQ active: 19d 11h 14m (74%)
- Average dead time: 25%

Univ. of Bonn/HISKP

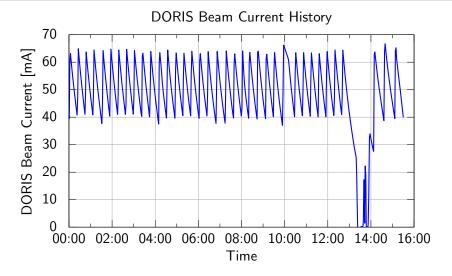
MIT, Univ. of Bonn/HISKP

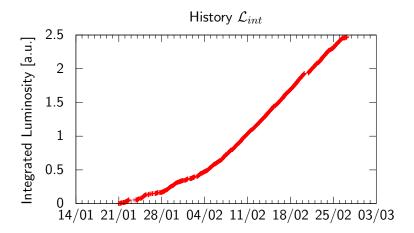
Slowcontrol

- Single system
- Web front end
- PostgreSQL DB back end

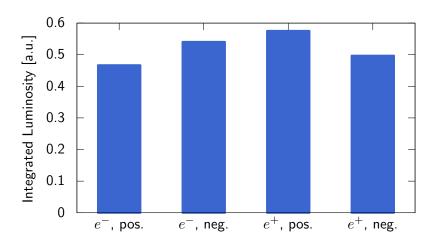
Monitoring

- Monitor online data stream
- Simple histograms + first analysis
- Checks DAQ and trigger

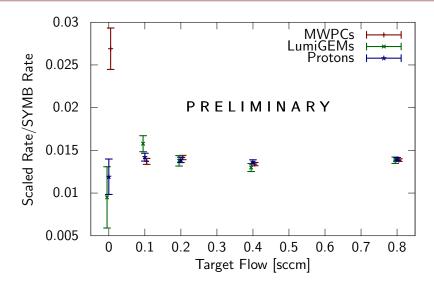

•000000

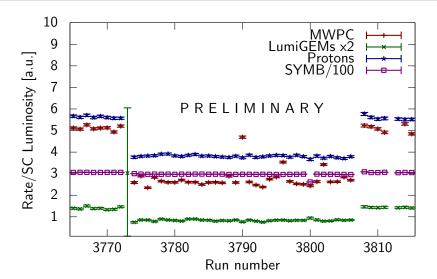

Operation schedule

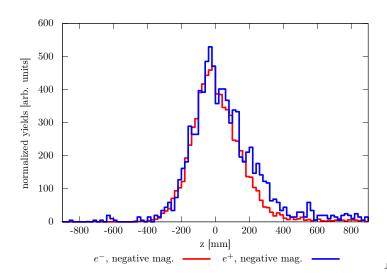
- Switch beam species every day (≤ 30 min)
- Switch magnet polarity 4 times a day (+ - +, + + -)
- Target flow 0.8 sccm (2 empty target runs per day)
- Beam current 60.40 mA
- Beam refill every 20 min (takes 1-2 min)


Smooth machine operation and very good collaboration with machine group

Machine Stability




Integrated Luminosity per Configuration


Luminosity Monitors vs. Target Flow

Luminosity Monitors Stability

Vertex Distribution (preliminary)

J. C. Bernauer

Summary

Introduction

- Smooth and stable machine operation
- Detectors worked stable
- DAQ, online monitoring, and slowcontrol easy to use and reliable
- Collected a good data sample (4M elastic events)
- Most of the reconstruction implemented
- Detailed treatment of radiative effects and corrections

Outlook

Introduction

- Upgrades
 - GEM tracker
 - Improved 12° trigger scintillators
 - 2nd level trigger
- Complete reconstruction
- Analysis including radiative corrections

Looking forward run II (Oct 22nd - Dec 21st) to collect full statistics we need.

OLYMPUS Collaboration

Introduction

- Arizona State University, USA
- DESY, Hamburg, Germany
- Hampton University, USA
- INFN Bari, Ferrara, Rome, Italy
- Massachusetts Institute of Technology, USA
- Petersburg Nuclear Physics Institute, Russia
- Universität Bonn, Germany
- Universität Mainz, Germany
- University of Glasgow, UK
- University of New Hampshire, USA
- Yerevan Physics Institute, Armenia

