LOGIN
Singapore–MIT Alliance
Skip navigation
Skip navigation Skip main site navigation
 
Skip section subnavigation Skip breadcrumb trail
Go to main navigation

AMM&NS

The Future of Modern Technologies


Description

The Advanced Materials for Micro- and Nano-Systems (AMM&NS) degree programme offers a comprehensive and intensive approach to a field of study that is rapidly defining the frontier of modern technologies. Students are exposed to the broad foundations of advanced materials that encompass processing, microstructure, properties and performance, with a particular emphasis on microelectronics applications. The preparation, characterization, and optimisation of materials comprise the core of this multidisciplinary coursework, which prepares students for the challenges of a variety of advanced industrial problems. The AMM&NS degree programme also promotes concepts that are widely linked to critical advances in the science and engineering of materials.

AMM&NS coursework provides an exceptional opportunity for research collaboration between SMA students, world-renowned faculty and industry experts. Students will have the opportunity to interact with scientists and engineers at a number of research institutes, such as the Institute of Materials Research and Engineering (IMRE) and the Institute of Microelectronics (IME).

| top of page |

Degrees

The Master of Science (S.M.) in AMM&NS
A professional master's degree programme trains students to apply their knowledge of advanced materials to industrial challenges. This one-year programme focuses primarily on the area of microelectronics. The S.M. degree offers students an opportunity to interact with the MIT faculty during the Immersion Programme on the MIT campus. In addition, students will carry out a semester-long industry or research project in Singapore while interacting with the MIT faculty through video conferencing and Net meetings, as well as face-to-face interaction when the MIT lecturers travel to Singapore.

The Doctor of Philosophy (Ph.D.) in AMM&NS
The research doctorate programme prepares students for advanced careers in industrial research and development centres, as well as research institutes or academic departments interested in cutting-edge research with a focus on microelectronics applications. The Ph.D. degree programme includes an expanded choice of elective subjects and a "minor" subject selection outside of the Materials area. Completion of the Ph.D. programme may require three or more years. All Ph.D. students will have the opportunity to spend a semester at MIT to take courses and conduct research with MIT students and faculty.

Career Paths

The SMA programme in AMM&NS provides a unique and innovative educational opportunity for graduate students interested in careers in industry and research. Through a combination of cutting-edge research and a sound understanding of the principles of materials, graduates are poised to accept high-level positions as leaders in microelectronics, biomedical engineering, aviation, and information technology, as well as research positions in premiere academic institutions.

Courses are primarily for graduate students with an interest in the diverse nature of technology. Careers might include opportunities in:

This programme is designed to produce high-calibre professionals with a sound understanding of the application, preparation, characterisation, and optimisation of materials.

| top of page |

Programme Requirements

The S.M. (Professional Master's) degree constitutes a 12-month coursework programme that includes the following curriculum:

The Ph.D. (Research Doctorate) degree programme additionally includes an expanded choice of elective subjects and a "minor" subject selection outside of the Materials area. All the Ph.D. students will have the opportunity to take two courses for a semester in residence at MIT, in addition to performing research in collaboration with MIT students and the faculty.

At this time, they can take any of the many appropriate courses. Examples of some relevant MIT courses include:

| top of page |

Courses

SMA 5101 Thermodynamics and Kinetics of Materials.
Laws of thermodynamics. Entropy and free energy. Energies of defects. Diffusion mechanisms. Transition state theory and field effects. Solution theory. Phase diagrams. Nucleation in condensed phases. Interfaces. Crystal growth - atomistics, dendritic growth, solute redistribution and cellular growth. Phase transformation theories. Coarsening. Spinodal decomposition.

SMA 5102 Properties of Materials.
Hydrodynamic representation of electrons. Origins of Ohms law. Hall effect. Electron energy bands. Electron waves. Effective mass. Origin of mechanical properties. Basic mechanics concepts. Stress at a point. General tensors. Microscopic and macroscopic aspects of plasticity. Dislocations in structural materials and thin films. Basics of viscoelasticity and creep. Fracture mechanics and micromechanisms. Fatigue damage and failure. Mechanical and electrical properties of semiconductors. Dielectric and optical properties. Coupled electrical/mechanical behavior and piezoelectricity. Microscopic origin of magnetization. Exchange and ferromagnetism.

SMA 5103 Materials Selection, Design and Economics.
Theory and application of systems analysis techniques and engineering principles for identifying optimal materials, designs, and processes for specific applications. Topics include:

SMA 5104 Fundamentals of Semiconductor Device Physics .
Drift and diffusion of carriers. Generation and recombination. Current continuity equations in semiconductors. Forward- and reverse-biased p-n junctions. Current injection. Zener and avalanche breakdown. Ideal and non-ideal metal-oxide-semiconductor capacitors. Structure and operation modeling of metal-oxide-semiconductor field effect transistors and bipolar junction transistors. Piezoresistance and silicon-based MEMS devices.

SMA 5105 Reliability and Failure Analysis of Materials, Devices and Packages.
Fundamental modes and mechanisms of failure. Energy balance. Strain energy release rate and crack driving force. Principles of linear and inelastic fracture mechanics. Failure at material interfaces. Experimental techniques. Edge effects in thin films and multilayers. Cyclic deformation and fatigue fracture. Total life and defect-tolerant approaches to fatigue. Introduction to statistics and reliability analysis. Levels and functions of electronics packages. Basic materials issues. Design and assembly of packages ball grid arrays, flip chips, chip-scale packages, and multichip modules. Reliability. Failure mechanisms. Thermal management of IC packages. Circuit and device reliability-interface degradation. MOSFET aging and characterisation. Interconnect reliability-electromigration and stress migration. Accelerated testing. Circuit and process design for reliability.

SMA 5106 Materials Processing for Micro- and Nanosystems.
Materials science and engineering of microfabrication processes for IC's and MEMS. Crystal growth and epitaxy. Diffusion and ion implantation. Thin film reactions, including oxidation and silicidation. Control of structure and property evolution in polycrystalline films. Surface and bulk micromachining. Kinetic phenomena leading to self-organisation. Use of process simulators.

S MA 5107 Atomistic Computer Modeling of Materials .
Atomistic computer modeling as a tool to solve problems in materials science and engineering. Deterministic and stochastic methods. Monte Carlo and molecular dynamics. Energy models (classical and quantum-mechanical). Free energy computation. Phase transformations. Metastability. Order-disorder transformations. Defect properties. Transport properties. Emphasis on solving relevant problems in a variety of materials classes.

SMA 5108 Materials and Processes for Microelectromechanical Devices and Systems.
Presents a unified treatment of the key principles in materials and processing for the design and manufacture of microelectromechanical systems (MEMS). Emphasis on materials and processes commonly used for fabrication for MEMS and not microelectronic systems. Includes discussion of the processing and properties of both thin and thick polycrystalline and amorphous films, wafer and thin film bonding, bulk micromachining techniques, and the relationships between processing and properties of active materials such as piezoelectrics, ferroelectrics and phase-transition materials. Key material properties and parameters and their relationships with microfabrication processes and applications are discussed, including elastic and inelastic deformation, fracture, residual stress, fatigue, creep, adhesion, stiction, and coupled-field constitutive behavior. Materials and process selection and case studies of applications provide a unifying theme.

SMA 5109 Technology Development and Evaluation.
Students explore in-depth projects on a particular materials-based technology. Students are expected to investigate the science and technology of materials advances and their strategic value; explore potential applications for fundamental advances; and determine intellectual property related to the materials technology and applications. Students map progress with presentations, and are expected to create an end-of-term document enveloping technology, intellectual property, applications, and potential commercialisation. In addition to classroom lectures, outside speakers present their expertise in technology, entrepreneurship, intellectual property, and commercialisation of materials technologies.

SMA 5110 Advanced Topics in Materials Science and Engineering.
Statistical mechanics. Excitations in materials and entropy. Atomistic formulations of thermodynamics. Advanced treatments of kinetic processes and phase transformations in condensed phases.

| top of page |
Go to top of pageGo to main navigationGo to additional information