
MIT /LCS/TM-50

AN ENCIPHERING MODULE

FOR

MULTICS

G. Gordon Benedict

July 1974

MAC TECHNICAL MEMORANDUM 50

.AN ENCIPHERING MODULE FOR MULTICS

G. Gordon Benedict

JulyJ 1974

This research was performed in the Computer Systems Research
Division of Project MACJ an M.I . T. Interdepartmental Laboratory)
and was sponsored in part by the Advanced Research Projects
Agency (ARPA) of the Department of Defense under .ARPA Order
No. 2095 which was monitored by Office of Naval Research
Contract No. N00014-70-.A-0362- 0006; in part by the .Air Force
Information Systems Technology Applications Office and by ARPA
under .ARPA Order No. 2641; and in part by Honeywell Information
Systems) Inc.

This Technical Memorandum reproduces a JuneJ 1974J M.I.T.
Electrical Engineering Department S. B. Thesis of the same
title.

An r::nciphering t-lodule for Hultics pttge 2

A.I3STRACT

Recentlv IBH Corporation has declassified an aloori thrrt

for encryption usable for conputer-to-connuter or

computer-to-terminal conununications. Their algorithm Has

implemented in a hardware device called Lucifer. A soft\vare

implementation of Lucifer for Hultics is described. A proof

of t he algorithm' s reversibility for deciphering is

provided. A special hand-coded (assembly language) version

of Lucifer is described whose goal is to attain perfor mance

as close as possible to that of the hardware device.

Performance measurements of this prograrrt are given.

Questions addressed are:

algorithm in softvJare

Hmv complex is it to i mpl ement an

designed primarily for diqital

hardware? Can such a program perform well enouqh for use i n

the I/0 system of a large tine-sharing svstem?

Author: G. Gordon Benedict

Thesis Supervisor: Prof. Jerome H. Saltzer

An Enciphering Module for Multics page 3

CONTENTS

Title Page 1

Abstract 2

Contents 3

Figures 4

Tables 5

Overview 6

Section 1 , Introduction to Enciphering 8

Section 2, Enciphering Algorithms ar.d Lucifer 12

in Particular

Section 3 , A Proof of Lucifer's Reversibility 17

Section 4 , The Multics Software Implementation 19

Section 5, Timing Measurements and Conclusions 22

Appendix A, Operation of the Lucifer Hardware 24

Appendix B, '£he PL/I Implementation 34

Appendix c , The Assembly Language Implementation 43

Appendix D, Introduction to Multics Assembler 62

Bibliography 68

An Enciphering Module for Multics paqe 4

FIGURES

Figure 1, Flowchart 15

Figure 2, Block Diagram 15

Figure 3, Bit Addresses in Registers 25

Figure 4, Hardware Schematic 26

Figure 5, Exploded Key Bit Assignr.~ent 44

Figure 6, Key Bit Assignment 45

Figure 7, Convolution Registers 47

Figure 8, Postrotation Convolution Registers 48

An Enciphering l1odule for Multics page 5

TADLES

Table 1, Key Byte Access Schedule 31

Table 2, Four-bit Permutations 33

Table 3, Convolution Register Rotation Counts 51

An Enciphering Module for Multics page 6

OVERVIEW

This thesis examines the enciphering algorithm recently

released by IBM, Lucifer. This algorithm is described as a

hardware mechanism in "The Design o f Lucifer, a

Cryptographic Device for Data Communications " , by J. Lynn

Smith; this was the primary source document.

A proof of Lucifer's reversibility is given, that it

will in fact correctly decipher its previously-output

ciphertext when provided with the same key used for

enciphering. Two software implementations are described and

their performance measured.

This paper is divided into five sections and four

appendices.

the uses of

"Introduction to Enciphering" briefly explains

enciphering in computer-to-comp uter and

computer-to-terminal communication as a security

enhancement. "Enciphering Algorithms and Lucifer in

Particular" lists some criteria for a good computer-oriented

cipher. The gene~al operation of Lucifer is depicted

\iithout much detail. Sufficient detail is however given for

understanding of "A Simple Proof of Lucifer's

Reversibility". This section provides an informal proof

that Lucifer works in that it correctly deciphers its own

ciphertext. "The Multics Software Implementation"

demonstrates how to use the enciphering p rograms. The final

section, "Timing and Conclusions", presents performance

An Enc iphering Module for Hultics page 7

measurements o f a PL/ I and a Multics assembly lang uage

version of Lucifer. Appendix A, "Operation of t h e Lucifer

Hardware", de tai l s t he operation of the hardware device

described by Smith. Appendix B, "The PL/ I Implementation " ,

details a software version in the PL/ I language designe d to

simulate closely the Lucifer hardware in its

be readable a nd e xportable . Appendix C,

operation and

"The As s embly

version o f Luci fer Language

optimized

with the

Assembler"

Imple mentat i on", details a

for e xecution time . For t hose readers unfamiliar

Mul t i c s hardware , "An L1troduction to 1-1u l tics

b rie f l y explains those features of the Honeywell

model 6180 processor used by Lucifer .

An Enciphering Module for Multics page 8

INTRODUCTION TO ENCIPHERING

Much attention has been paid recently to comnuter and

data security. Computer security consists of r egulating the

use of computer facilities to only t hose people or those

tasks authorized to use them. This has been attempted by

such mechanisms as passwords, protection rings, and

privileged instructions. Data security is becoming more

important with the advent of government and corporate

personal-data files . This problem is magnified if the

computer system

telecommunications.

is available

Given the

to

above

many users

facilities

via

for

regulating computer facility use, access control is one

mechanism that is avai lable for preventing unauthorized

access to data files. However, this mechanism fails when

data is transmitted over telephone lines ,

physical (mail or courier) shipments .

radio links, or

Such co~munications

are easily tapped without the legitimite user's knowledge,

except for the case of a courier. Even more insidious than

the traditional reading of sensitive data is the insertion

of spurious data designed to confuse or misdirect the

operation of a system. One mechanism for minimizing this

problem is enciphering that data, which protects the data

itself rather than the medium of transmi tting the data.

Enciphering i s a process whereby trans formations are

made on the message (cleartext), usually on a bit or

An Enciphering Module for Multics page 9

character level. If the algorithm is known the cipher may

be breakable by analyzing the ciphertext, particularly if

sample cleartext for some of the ciphertext is available.

Since an enciphering algorithm must be reversible to be

useful, a key known by both the message originator and the

i ntended receiver is also used. Thus if the key is

intercepted or deduced the

essence of successful

cipher is

cryptology

now cracked . The

is in devising an

enciphering a l gorithm which is not possible to crack in the

time-span of the message's useful .1ess, and in keeping the

key secret.

Enciphering helps in preventing insertion of spurious

data to confuse a computer, as well as preventing reading of

secret data. This is because a random message inserted onto

~1e communication link will probably decipher to

unrecogniz able garbage. The algorithm implemented i n this

paper is so constructed that if one b it is changed in a

legitimate enciphered message, the deciphered text will

almost certainly be unrecognizable. This prevents t he form

of interference wl1e r ein a saboteur records (taps) t he

ciphertext, changes some bits randomly without even

understanding the message, and inserts the text onto the

telephone lines. Unrecognizable text can usual l v be

rejected by the computer. There still re~ains the p r oblem

of the saboteur who r ecords t he ciphertext and replays it

unchanged later. This can be extreme l~r damaging to

An Enciphering Module for Multics page 10

unrepeatable or irreversible processes. A method of

avoiding this problem is message chaining, whereby a part o f

the previous data exchange is enciphered i n thi s data

exchange, as a verification field. Thus the same message

replayed tomorrow would contain an out- of-date verification

field and be rejected. The operation of such a system is

discussed at length in Smith's paper.

Enciphering can also be used for computer-to-termi na l

communications. The terminal would contain a h a rdwar e

deciphering module; the algorithm described here was

designed with this purpose in mind. The user could ha ve h is

key on a magnetic card, or he could type it in o n the

terminal. The computer would contain a central fi le of all

users' key s and a software or hardware version of t he

enciphering module.

Enciphering can add some security to online file s

against the possibility of random hardware or sof t ware

failures or physical stealing of backup tape s, disk pa cks ,

etc. Enciphering in this application merely a dds another

dimension of security.

This paper details an enciphering algorithm de veloped

by Feistel and Smith of IBM for computer-to- t e r minal

communications. A software version has been p r epar ed,

intended to be used as part of the input/ output s oft wa r e o r

the network interface of Multics. A command t o enc ipher and

decipher o nline segments has also been writt en. A proo f of

An Enciphering Module for Multics page 11

the a l gorithm' s reversibility is also given; this was hinted

at b ut not proved in the Smith and Feistel papers.

An Enciphering Module for Multics page 12

ENCIPHERING ALGORITHMS AND LUCIFER IN PARTICULAR

There are several desiderata in the design of an

enciphering algorithm. One is needed which is easily

implemented in hardware, yet would provide a great measure

of security against cryptanalysts especial l y against

those armed with computers of their own.

Nany traditional algorithms have operated by perfo r ming

one-for-one character substitutions based on the key. For

example, the "Vignere-Vernam" ciphers use a square array o f

characters. To encipher, each character of cleartex t is

used as a column index into this array; the character o f t h e

key corresponding to this character of cleartext (i . e . , t he

nth character of the key corresponds with the nth ch arac t er

of cleartext) is used as a row index. The charac t er at the

intersection is the corresponding ciphertext character. The

key is repeated as many times as necessary to exhaust all

characters of cleartext. The square array can contain

essentially any characters. These ciphers ' weaknes s a r i se

from the key repitition and the simple substitution of a

very short message element (a character). Such ciphers are

subject to frequency analysis, particularly if a sample of

cleartext is available. This oversimp lified account is

drawn from "Cryptology, the Computer, and Data Priva cy" by

M. B. Girdansky.

The algorithm developed by Smith and Feistel uses the

An Encipheri ng Module for Multics p a g e 13

traditional enciphering mechanisms of substitution of

strings and modul o arithmetic on strings. However, by

r epeated cyc l es , essentially a substitution is performed on

not s mal l c haracters b ut 128-bit blocks. Thus such methods

as frequency ana lysis require computation time on t h e

of t he lifetime of t he un i verse.

This algorithm, called Lucifer, has t h e

advantages o f simple hard\vare imp lementation

order

added

with

shift-registers and easy reversibility . A

desc ripti on o f t he algorithm follows and then a

g e ne ral

proo f of

i ts reversibility.

The basic transformations used are one-to-one mappings

and exclusive-ors (mod-2 addition). The inp ut is divided

into equal-sized b locks; each block is processed complete l y

independently of t he others. The follmving description

refers to one blo ck only . It is thus desirab le from a

cryptographic poi nt o f view t o u s e as l a rge a block size as

possible, since t he more bits which affect a given bit of

c i phertext, the harde r will be the job of t he cryptanalyst.

As mentioned before , a basic weakness in many ciphers is t he

small block size.

A block i s b r oken into the t op half and t he bottom

half. Without changi ng t h e bottom half, it is broken i nto

easily manipulable uni ts called bytes. Each byte undergoes

one of two one- to- one trans f orma tion s depending upon a b it

of tile key. This col l ection of transformed by t es i s

An Enciphering Hodule for Multics paqe 14

referred to as confused bytes, and the operation is r eferred

to as confusion. Next, each bit of the confused byt es is

modulo-2 summed with a different bit of t he key . This

operation is referred to as interrup tion . NoH these bytes

are modulo-2 summed with the top half of the cleartext, t he

block p reviously unused . This is called diffusion. The t\vo

halves are swapped; t h is operation is called interchange .

Sixteen such cycles occur. One complete

confusion-interruption-diffusion cycle is called a CID

cycle. The schedule for accessing key bits is so arranged

that every key bit is used for both contr olling the

confusion transformation and for interruption. The

interchange operation occurs on every cycle except the last .

An Enciphering Module for Multics page 15

Figure 1: Flot,.Tchart

Figure 1 shoHs a flowchart of the operation. Thus the

algorithm consists of:

Figure 2: Block Diagram

CID c.ycle r-.
0

lntefc~ange
0 ----- CID cycJ~

n

The only difference bet\veen enciphering and deciphering

is the order in which the key bits are accessed. Within CID

cycle n during deciphering, key bits are accessed in the

An Enciphering Module for Multics p a ge 16

same order as in CID cycle 15 - n in encipheri ng. These

operations, explained in general here , are fully detai led in

Appendix A - Operation of the Lucifer Hardware.

This leads to a simple proof of reversibil i ty, a s

explained in the next section.

An Enciphering Module for Multics page 17

A PROOF OF LUCIFER'S REVEP$IBILITY

Assume there are n + 1 CID cycles and thus n

interchanges. Call output of the CID cycJA n 1 MOjjMl

(where MO is the first half of the message, Ml is the second

half). Call the output of cycle n coli Cl. The double

vertical bar represents concatenation. MO II Ml is

transformed in the following manner by cycle n, which is the

last cycle (the first is numbered 0). Confusion: A

transformation T (Ml) is applied. Which transformation

depends on a bit of the key (one for each byte of r-H) but

since the same key bits will be accessed for the same byte

positions during deciphering the specific transformations

selected is irrelevent, as long as they are all one-to-one.

Interruption: T (Ml) is exclusive-ored with specific key

bits KI. Di f fusion: T (Hl) + KI is exclusive-ored Hith the

top half. The total message is thus T (Ml) + KI + MO II Ml.

Remember that on cycle n no interchange occurs. On

deciphering, this output will be fed into decipher cycle 0,

which is the same as encipher cycle n. Since this cycle is

exactly the same as the last encipher cycle, confusion and

interruption will generate T (Ml) + KI just as before. When

this is exclusive-ored with the top half consisting of T

(Hl) + KI + MO the original MO will be regenerated.

Since the interchange before encipher cycle n occurs

after decipher cycle 0, the output from the interchange will

An Enciphering Module for Multics page 18

also match. Thus the entire n - 1 interchange and n CID for

encipher is equivalent to the 0 CID and 0 interchange.

Thus these cycles can now be effectively stripped off; the

same proof is applied to a Lucifer consisting of n CID

cycles and n - 1 interchanges. Eventual ly a Luci fer of one

CID cycle and zero interchanges remain; this has already

been demonstrated above to be reversible.

In the actual specific operation of

diffusion operation does not consist

exclusive-or; instead the bits are permuted

fashion before diffusion. This does not

Lucifer, the

reversibility, since the ciphertext will

of a

in a

simple

fixed

undergo

affect

the

the

same

permutation and thus each cycle will regenerate the input of

the corresponding encipher cycle. However, this permutation

is necessary for the cipher to be difficult to break. It

ensures that small differences, say a one-bit change, in a

given message block will propagate throughout al l the bits

of that block of ciphertext. Each bit of cleartext

potentially affects every bit of ciphertext, within a

128-bit block.

An Enciphering Module for Multics page 19

THE MULTICS SOFTWARE IMPLEt-mNTATION

Two programs were written as implementations of the IDr·1

hardware versions of Lucifer. One is a s~raightforward PL/I

p rog ram which manipulates the bits in essentially the same

fashion the hardware does. The other is a Multics assembly

l ang uage p rog ram optimized for speed of execution. Detail's

a nd listings of each may be found in the appendices.

Instructions on using them are given h ere.

First, a key must be supplied. This is done by calling

the set_key entry:

declare lucifer_$set_key entry (bit (128));

call lucifer_$set_kcy (key);

Thi s entry saves the key in internal static. Thi s key

will be used for all future enciphering and deciphering

until set_k~y i s called again.

To e ncipher :

declare lucifer_$encipher entry (dimension (*)

bit (128), dimension (*) bit (128), fixed binary precision

(35));

call lucifer_$encipher (cleartext, cip hertext,

c o de);

The p acked bit array,

depos ited in t he e q ual-sized

argume n t wil l b e set to

cleartext, is enciphered and

array ciphertext. Th e code

zero unless the dimensio ns of

c leart ext and ciphertext do not agree, i n which case code

An Enciphering Module for Multics pa qe 20

will be set to one and the enciphering not performed. The

ciphertext and cleartext may be the same v ariab le.

To decipher:

call lucifer_$decipher (ciphertext, cleartext,

code);

This entry is declared the same as encipher, and its

operation is similar.

One problem hrith this implementation is that Lucifer

requires a 128-bit block to encipher each 128-bit block of

the cleartext. If the cleartext is not a multiple of 128

bits the last block could be padded with zeroes, but t he

output ciphertext corresponding to this block cannot be

truncated . If it is information will be lost and it will

not be deciphered correctly. This is because on decipher

the truncated block will be padded to 128 bits (with zeroes,

presumably) which is not identical to t he original out put of

encipher befor e truncation. Therefore t he pri!Tlitive

subroutines lucifer_$encipher and lucifer $decipher require

data to be passed in 128-bit blocks.

To make this more palatable t o Multics users (to whom

data tends to come in multiples of 9-bit characters or

36-bit words anyway) a command has been written to translate

an entire segment. To set the key, t ype:

set_key -key-

\vhere -key- \<!ill be padded or truncated to 128 bits and is

an octal string.

An Enciphering Module for Multics page 21

To encipher a segment, type:

encipher -cleartext- -ciphertext-

The segment whose relative pathname is -cleartext- will be

enciphered. If the optional argument · ciphertext- is not

given e1e original segment will be overwritten; otherwise

the ciphertext will be written onto the segment named

-ciphertext-.

The input will be padded to a mod 128 bit length with

zeroes, and the output segment will be equal in length.

Note that no additional pages can e •,er be required by this

padding, since a page is 36*1024 bits long, a multiple of

128.

To decipher, type:

decipher -ciphertext- -cleartext-

This command operates in the same way as encipher. Since

the ciphertext segment must be a multiple of 128 bits long,

exactly as produced by encipher, the output deciphered text

will be exactly as long. This is because decipher has no

way of knmving how long the original was. This can damage

standard object segments which have significant words

expected to be found at the end of the segment. Note that a

better version of this command would encipher the original

cleartext length into the ciphertext segment.

An Enciphering Module for Multics page 22

TIMING MEASUREMENTS M~D CONCLUSIONS

One of the important questions addressed by this paper

is "Is it possible to take an algorithm designed for

hardware implementation and efficiently translate

easy

it to

soft\'lare?". Performance measurements by Feistel show that

the Lucifer hardware module enciphered a 128-bit block in

about 165 microseconds. A version written in 360 assembly

langugage for the 360 / 67 required about 9 milliseconds . The

current Multics hardware, the Honeywell model 6180, executes

instructions at approximately the same rate as the IBM

360/67. The PL/I version, as expected, was e xtremely slow

and required 10.4 seconds to encipher 72 blocks of 128 bits

each, or 144 milliseconds/block. The assembly language

version required .4 seconds/ 72 blocks, or 5.5

milliseconds/block. Multiplying by ten the number of blocks

passed to lucifer did not substantially reduce the

time/block, suggesting that 5.5 milliseconds represents real

computation and not overhead. Since Multics characters are

nine bits long, Lucifer requires 5.5 * (9/128) = 390

microseconds per

Multics I / O system

character enciphered. Currentlv

requires about 1 00 microseconds

the

per

character for its processing; thus if Lucifer were used for

all I/0 a severe performance degradation could occur.

However this speed p robably suffices for the occasional use

to \'lhich it might be put.

An Enciphering Module for Multics page 23

There are some possibilities for further speed-u~ of

the assembly language version; this is discussed in Appendix

c.

An Enciphering Module for Multics page 24

APPENDIX A - OPERATION OF THE LUCIFER HARDWARE

This appendix explains the details of the operation of

Lucifer as it was originally designed, as a hardware device.

This material is drawn from J. Lynn Smith ' s "The Design of

Lucifer, a Cryptographic Device for Data Communications".

A copy of the PL/I program which implements the

algorithm, duplicating very closely the exact bit flows

within the hardware, is shown and explained in Appendix B.

Several cautions must be made in reading the hardware

diagram given in figure 4. Individual bits of a given byte

are arrayed vertically across registers; bytes are numbered

right-to-left, bits of a byte top-to-bottom. Thus each

vertical column below represents one byte of eight bits.

Therefore if the bytes are adjacent (0, 1, 2 .•• etc) the

storage order in memory (in a two-dimensional array) is

accordin9 to the ordered pairs in each bit position shown

below.

An Enciphering Module for Multics pa<Je 25

Figure 3: Bit Addresses in Registers

7 6 5 4 3 2 1 0~ \..

7,0 6,0 5,0 4,0 3,0 2,0 1,0 o,o 0

7,1 6,1 5,1 4,1 3,1 2,1 1.1 0,1 1

7,2 6,2 5,2 4,2 3,2 2,2 1,2 0,2 2

7,3 6,3 5,3 4,3 3,3 2,3 1,3 0,3 3

7,4 6,4 5,4 4,4 3,4 2,4 1,4 0,4 4

7,5 6,5 5,5 4,5 3,5 2,5 1,5 0,5 5

7,6 6,6 5,6 4,6 3,6 2,6 1,6 0,6 6

7,7 6,7 5,7 4,7 3,7 , 7 1,7 0,7 7

An Enciphering Module for Multics page 26

Figure 4: Hard\vare Schematic

~3.1..'5 (")3~ '10 ~J.....NO)

r- t--- r-- r- .-- r-- N 0 I .LV 1\1 ~ 0 d y ~ 'tJ 'tJ 1

r:-- '-D (i rl ~ ~~ M ~ 1 I I J
~~ ~tll":rJ-t-t---t------f---~.4~~~·~ ' " '~ '~ ·~ '~ 1"

~~ ,~~IT~~~--~--~

(t1J7Tt-1-'--+-t-t+~l~ ~
._ 0 ,{~

1\

~ .,

'-" ,-
~0 (.)
.l.J
1-,,,

'"J
~)

"'
)

11 1 t 1i 1 r
.·:.r-. '-- ~ - - '- '--- - '---

tn
~

i fr 1 r r i i

'--1
\;(

~
~

'-.)
q.J
Gt

t-
u.. -
:t:
V)

>--
l.u
':::L

An Enciphering 11odule for Multics page 27

Note also that the author assumed that high-order bits

are transmitted first; the Smith pape r does not specify

this. Thus bits are first loaded into position 0 of the

convolution registers (top half), then po~ition 1, 2 etc. on

to position 0 of the source registers (bottom half) .

Each of the registers shown is connected as a circular

shift-register. In addition, bits can be shifted from the

convolution registers to the source registers and back for

the interchange operation.

A complete enciphering or decir.1ering operation for one

128-bit block consists of sixteen

confusion-interruption-diffusion (CID) cycles, with an

interchange cycle in beb;een each CID cycle for a total of

15 interchange cycles.

At the start of a CID cycle, byte 0 of the key is

copied into the transformation-control register. This

register \vill supply eight bits for controlling the

confusion operation; each bit will correspond with one byte

of the source registers.

A CID cycle consists of eight shifts of the source,

convolution, and transformation-control register (TCR). The

TCR shifts vertically upward; other registers rotate

horizontally, byte n going to byte mod (n- 1, 8).

An individual shift of a CID cycle occurs as follmvs.

Byte 0 is taken from the source reg isters. It flows into

the confusion box along with bit 0 of the TCR. A one-to-one

An Enciphering Mod ule for Multics page 28

transformation is applied to this byte, according to the bit

from t he TCR. The output from t he confusion box is an

eight-bit confused byte. Each bit of the confused byte is

exclusive-ored with some bit of the convolution registers;

note that no two bit positions are in the same byte. Each

of these result bits is exclusive-ored with some bit of the

rightmost byte of the key; this constitutes the interruption

function. The result of this operation is stored in the bit

position of the convolution registers to the right of the

pair of exclusive-or gates. Note that diffusion occurs

before interruption, but this is immaterial since mod 2

addition is commutative. As the result bit is stored in the

convolution registers, the

registers, and TCR undergo a

convolution registers, source

shift. Thus the bit t hat

previously was to the right of the exclusive-or gates in the

convolution registers is not destroyed; it is shifted right,

and the result of diffusion occupies its old position.

These shifts are executed eight times for each CID

cycle. In addition, during each shift t he 16-byte key

registers each rotate right one position with one exception:

during the last s hi ft of each CID cycle the key register is

not rotated during encipher; during decipher the key

registers rotate two positions after the last shift. Thus

seven key shifts occur per CID cycle on encipher and nine

key shifts occur per CID cycle on decipher. This, coupled

witl1 an initial shift of nine positions before processing

An Enciphering Module for Hultics page 29

any blocks, constitutes the only difference between

enciphering and deciphering.

~len eight shifts of one CID cycle are complete, the

source registers will be back to their original position.

The convolution registers are also restored except that each

of its 64 bits has been exclusive-ored with exactly one key

bit exclusive-ored with exactly one source bit. This is

guaranteed by the placing of the gates in a different byte

position for each bit of the confused byte. The key

registers have been rotated ei~ 1er seven times (for

encipher) or nine times (for decipher). The TCR has yielded

all its bits. An interchange cycle now occurs, unless this

is the last CID cycle. · This consists of connecting

positions 0 and 7 of the source registers with positions 7

and 0 of the

shifts now

registers.

convolution

occur. This

registers, respectively~ eiqht

merely S\vaps the contents of the

Now the next CID cycle begins. A ne\v key byte is

fetched into the TCR. On CID cycle 1 this will be byte 7

for encipher and byte 2 for decipher of the original key.

It is important tl1at the key bits be accessed in the

reverse order (between CID cycles) when deciphering as

compared to enciphering, but in the same order within each

CID cycle. This is to ensure reversibility, as explained

earlier. In addition, for cryptographic strength each bit

of the key should be accessed an equal number of times:

An Enciphering !1odule for Multics page 30

eight times for interruption and once for transformation

control of one byte of the source registers . The following

method of accessing key bytes was thus devised . If there is

to be an encipher, the key is initialized by loading it into

the key registers. If a decipher is to be performed, the

key registers are then rotated so that the first CID cycle

will use bytes 9 to 0 rather than 0 to 7. After each CID

cycle there will be no key shifts on encipher , but there

will be two shifts during decipher. This will cause the key

An Enciphering Hodule for Hultics page 31

bytes to be accessed as shown in table 1.

CID cycle

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Table 1: Key Byte Access Schedule

0 1

7 8

14 15

5 6

encipher

2 3 4 5 6 7

9 10 11 12 13 14

0 1 2 3 4 5

7 8 9 10 11 12

12 13 14 15 0 1 2 3

3 4 5 6 7 8 9 10

10 11 12 13 14 15 0 1

1 2 3 4 5 6 7 8

8 9 10 11 12 13 14 15

15 0 1 2 3 4 5 6

6 7 8 9 10 11 12 13

13 14 15 0 1 2 3 4

4 5 6 7 8 9 10 11

11 12 13 14 15 0 1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

2

9

0

decipher

9 10 11 12 13 14 15 0

2 3 4 5 6 7 8 9

11 12 13 14 15 0 1 2

4 5 6 7 8 9 10 11

13 14 15 0 1 2 3 4

6 7 8 9 10 11 12 13

15 0 1 2 3 4 5 6

8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8

10 11 12 13 14 15 0 1

3 4 5 6 7 8 9 10

12 13 14 15 0 l 2 3

5 6 7 8 9 10 11 12

14 15

7 8

0 l

0 1 2 3 4 5

9 10 11 12 13 14

2 3 4 5 6 7

The byte of the key used for transformation control is

in the left-hand column. Note that the decipher schedule is

the same as the encipher schedule read upsidedown, but

within a CID cycle, read horizontally, bytes are accessed in

the same order. Also note that the key registers will be so

positioned after sixteen CID cycles ready for the next

An Enciphering Hodule for Hultics page 32

block: in byte 0 for encipher, byte 9 for decipher.

The exact nature of the confusion operation has not

been explained yet. It is not important parti c ularly \•lhat

it is, as long as it is one-to-one and sufficiently random .

It works as follows. Each byte to be confused (from the

source registers) is split into two four-bit halves. If the

key bit from the TCR for this byte is 1, the two halves are

exchanged; otherwise no operation is performed. Next, each

four-bit half undergoes a one-to-one map ping. The method i n

hard\vare used decoders, encoders, and permuted wires, but

effectively a table look-up was done to associate with each

of the sixteen bit combinations a unique four-bit

replacement. The bm mappings for the t\vO halves are

different; the one for the top half is called SO and the one

for the bottom half is Sl. Finally an 8-bit by te is

generated by permuting

mapping networks. The

the eight wires

result of this

from these two

entire confusion

operation (and the way it is done in the software versions)

is to consider the key bit concatenated with t he source byte

as a nine-bit index into a 512 element table . Each element

is an eight-bit con fused byte. This is explained in

Appendix B, the PL/I implementation.

An Enc ipheri ng Module for Multics p a ge 33

Table 2 : Four-bit Permutations

input so Sl

0000 1100 0111

000 1 1111 0 01 0

0010 0111 1110

0011 1010 10 01

0100 1110 0 011

0101 1101 1011

0110 1011 0000

0111 0000 01 00

1000 0010 110 0

1001 0110 11 01

1010 0011 0 001

1011 0001 1010

1100 1001 0110

1101 0100 1111

1110 0101 1000

1111 100 0 0101

An Enciphering Module for Multics p a ge 34

APPENDIX B - THE PL/I I~WLE~lliNTATION

The PL/I implementation is very similar to t h e h ardware

design. However, instead of rotating data toward the lo\ol

address end of each register, index values into fi xe d array s

are decremented and wrap ped around to the high order end.

Note very carefully that each byte shown i n the hardware

diagram, those bits arrayed vertically, are rows of

two-dimensional arrays. Thus if a conventional PL/ I array

is printed it will appear transposed as compared to t h e map

of the registers. For consi s tency within this document all

arrays will be transposed from the conventional order so

that they appear identical to the hardware b it orderinq s .

Instead of doing 15 interchanges (unlike most o t her

operations, a real movement of data occurs on i n terch a nge)

16 are done. This last interchange is undone b y c opying the

source registers first into the result block followed b y the

convolution registers. This is to avoid checking within t h e

loop for tl1e special case of the last execution. S i milarly

rather tl1an skipping a key-shift cycle on e ncipher and

performing an extra one on decipher each CID c y cle , eight

increments of the key index interruption_row are always

performed. After a CID cycle is complete, a fix up v ariable

either one or minus one is added modulo 16 to

interruption_row; this variable is -1 for encipher and 1 for

decipher.

An Enciphering Module for Multics page 35

The program

half of a

operates as follows. It copies the first

given 128-bit block into the

convolution_registers~ the second half is copied into

source_registers. The interchange_index loop counts the

ern-interchange cycles, sixteen in number. Within that loop

a CID cycle is performed by assigning interruption_row to

ks_row~ interruption_row shows which byte of the key will

next be used for interruption, ks_row shows which byte will

be used for transformation control. This assignment is the

equivalent of copying the next byte of the key into the TCR

at the start of a CID cycle. Now the data row loops eight

times , once for each byte in source_registers. The entire

confusion operation is implemented by a 512 byte table; the

first half for key bit = O, the second half for key bit = 1.

Thus the confused byte is found by indexing this table with

the key bit identified by ks_row and data row concatenated

with the source byte identified by data row. Now

convolution index loops eight times, once for each bit in

the confused byte. Note that this is all done in parallel

in the hardware version and in the assembly language version

described in Appendix c. Each bit of the confused byte must

be exclusive-ored with some bit of the key byte identified

by interruption_row. Just as the key interruption wires

were permuted in the hardware, so key_table tells which bit

of that key byte is supplied for each bit of the confused

byte. This interrupte d bit is now exclusive-ored with some

An Enciphering !1odule for Multics page 36

bit of the convolution registers. The register in \vhich the

bit lies which will be diffused (the one to the right of the

exclusive-or gates) is the one corresponding to the source

register from which the interrupted bit was derived . The

number of this register, the column in the PL/ I sense

(although it is horizontal on ~1e diagrams) is therefore

convolution index. The byte in which this bit lies is given

by a table , convolution_table. These positions r otate right

around the registers, one position for each shift of t h e CID

cycle, once for e ach incrementing of data r ow. Therefore

the correct convolution_table entry for this bit of t he

interrup ted byte must be mod-8 summed \vi t h data row; this

supplies the byte or roH number of the target bit.

After this byte is complete , interruption_ row is

incremented mod 16 to simulate rotating the key reg isters

once to the right. Notv data rmv is incremented to have the

effect of rotating the source, convolution, and

transformation-control registers.

After the eight loop s of data_rm.;, interrup tion_row

must be readjusted to siMulate only seven key shifts on

encipher but nine shifts on decipher. As explained before,

a fi xup variable either one or minus one is mod 16 added to

interruption_row; this fixup variable is set at the entry

points. The two entry points also set the initial

interruption_row, eiti1er 0 for encipher or 9 for deciphero

After sixteen loops of interchange_index, sixteen

An Enciphering !1odule for 11ultics page 37

CID-interchange pairs have been performed. The block is nmv

copied into the result field: the source registers are

copied first to undo the effect of the extra i n terchange

cycle.

, _

fin Fnclpt-erlnp: tlorlule for ~lu ltic: s Dili'P 38

!•••···~···
•
• (' nny r lyl-t (c) 1'17~, l' oss.:~r l-u~etts ln~tlt11tP nf Tect- n t" l npy

anr' f ' nn f'y~•e ll tn<'n r ,.,;ot i nn S ystf'ms , lnr.

•
•
• • ··!

I• Tt-l s r"orlulP l f"n l PMents ti-e Luri"er enrlf'l-er i nP' ;o ll'ori t l-m ;os r'pve lnre" 1-y t r. t•.
lnltl;o ll y corie" hy r. r.orr'nn nene-'lrt ntol2f>l74 .:~t ti-p ro"'nuter Sy~tP~"'~ Pese;orrt- "ivis ! nn of Project t·~r •I

se t _I-.Py:

-'ec: l ilrP
<lec l orf'

procerlure (a_key); !• tl- 1 s entry u!'e" t ~"· tel l I ur i "e r wt-;ot l· p y tl' u se •I

a_key par;o~Ptf'r hit (12 P);
ke y hit (P) r'ir"Pnsinn (0

I* key liSP!" 1-;>S *I
15) !rtern? l stilt!~;

r'n <'iltil l"f'\•1 = 0 tn 1 ';; I• i ter;oto tl-no rnl u,.,ns
rlo-ks rl"w = 0 tn 7; I• i t e r r>tP tl-ru rov'!' o"

enti;
enri;
return;

-;uh s tr (kf'y (t<;~t.:~_rn~l), 1-s_r""' • J, 1)
suhst r (o_k,.y, 16 • ks_rr>v• • t<;~t;o_rr>vJ

nF l-ev •I
l- py •I

I•
+ 1,. 1);

t r ;.nsnose •I

I• neclariltions fo r encipl-e r inr anti rlprfnherinr entries f0llnw • I

<'ecl;.re

-'er l o r "

tlprlilrP
-'f'r l .:~re

<'PC:l?I"P
r'ec:lilre

rlec l orP

(iltitl,.,.
t-oo l ,.
t!l n ,
flxerl,
MOrl,
s t r l n",.
s uhstr) hu ll tin;

(snurre_rr,.: sters, I• ti-p sn11rrP reP'i s t ers (hntt<'"" t-;~1 ") •I
convolution rPI'ister!') I• rnnvnlutl0n rPP'isters (t0n '-I'll") •I

Ai"'ensTnn (0 : 7) hit (~) un;.lil"ner';

tPxt_pnsitinn flxp~ 1-fnr>ry prerl!'lnn (?b, n); I* hits n"
(lnt!'rc:l-ilni'P_inr',.x, I• rnunts lntprrhi'lni'P ryr 1Ps ((1 - 15) •I

inp11t strlrl' orn<"PSsPA sn far •I

rli'ltil_rn~l, I• 1~!-;ot rn1·1 t"f sotorre nr rn.,vnlutlnn re ,..lster nn1·1 "'"""i"" •I
l-s_rn~1, I* wl-r~t rnt" n" 1-ny """'' II!' lnl' "nr trr>ns"nr,.;ot Inn rnntr0i •I
c:onvolutinn_inAex, I• wl-l~h hit n" ronfooso..l hytP (rl11r·ln" nnp ('tn) ("nnvnlvlnl' no•·• •I
convolu t l on_rr>w, I• •~"ir" r nv• n" rnnvnlutlnn reylsters rnntilins X(lr l"iltP (hr~r~•Jil rP
l nterruptirlfl_rn•l, I• rn~• n" l· ry 11se-' ""'r lnterr11nti,...n-AI""" slnn •I
eitl-er_nne_or_,.,fnus_onP) I* -1 Fnr encinher, 1 fnr "erlnl-er •I

Fj xprl rtn;> r y;

";~el-l •I

rnnfuse" hytP hit
temn_re~Tster hit

(R);
(f,h);

I• nutr>ut n" rnnf11sPr (] "ytP) *I
I* usP-' M"rPly "nr st·•<>nnfnp- sourrP ;~n" ronvolut Inn rel'isters •I

c:onvcdutinn tilh l p rll,.,ensln" (0 7) I• wf-l~r l- I t positions to "'Un" 'n rnnvn l utlon reYisters • I

f\n fnrln~PrinP' 1'0.-ILJlP. f0r l ' u ltfrs f'M"P 3'1

.-lpc 1 "rl''
initiill (7, f', ?,], S,

kpy til~lP. .-1 1 ~pnslnn (0 : 7)
- initl;d (2, 5, 4, f1, 3,

0, 3, !1) st?tir- Jnt~;>rri'll "Jxp.-1 f--ini'lry nrP<:Islnn (3);
I• P'iVPS r>Pr"" llt i'tion n" vpy hJts IISP..-1 "or Jntf'rruntlon *I

1, 7, F) lntprrC~1 ~tiltlr "Jxp.-1 hlni'lry prPrislnn (3);

•; irrlll.-!P rnn"uslnr>_ti'l~lp;

Pnrirl->pr:

.-lpcli'lrP

rlpc l i'l rP

..<pc l r>re
rlprlilrP

I• Pnrln~Prln" pntry •I
P.ntry (<J_in, r>_nut, i'l_<:0.-IP);

(i'l_in, I• clf'r>rtf'xt (<:ln~PrtPxt "0r ""'clnhpr) •I
a_nut) rliMPnslon (•) hit (l?R) r>i'lri'~"'PtPr; I• cln~prtPxt (rlPi'lrtext "nr rlpclnf,pr) •/

(il_ln_nvly hi'lSPrl {C~rlrlr (i'l_ir)),

<'nut ov ly haspn (arlrlr (il 01Jt))) f,it (<"'PSSi'l<'P 1Pn<'"tf>) un?JI<'"nerl;
<"'Pis""i l enrth fixe" hlni'lr~ nrPrlslnn (?h); -
il_rorlp 7 J xprl hlni'lrY nrprlsl0n {35); I• stilt ll s r0rlp •I

Plt"er one o r Minus onP = -1; I* ilr"nunt t0 e1 ..<r~ r>"ter il r1n cyc le to
- - - - lntPrrllntlon_rovt, hpcr>IISP. P.nc l r hpr rPSUSf'S lC~ st f-. yte *I

lnt~>rruntion row = 0;
~otn jn in; -

I* "Jrst hytp o" vf>y to usP. ls hyte (1 •I
I* C"~"'<"'nn rnrlP *I

nPclnhf'r: I* rlpcln~Prlr>r>; Pntry -- nntP clnhPrtf'xt Is first ar" •I
entry (il_lr, i'l_nut, ro_rn"el;

f'ithpr_one_nr_Minus_onP = 1; I* s~in" f--yte nf l·ey w~f'n "erl n l->prlrr>; Fnr ei'lch r JD cyc le •I
lntf'rruntlnn_rrw 'l; I* first hyte n<' l·py to usp '''""'" rler.lr~ ~> rlnr>; *I

j n In: I* rrml"'nn Sf'rtinn *I
MPSSnP'P._len l't f> = rli.., (a_lr., 1) • 1?P; I• "'""'""'r """Its lr> ln r>ut •I
i" rlle1 (i'l_OIIt, 1) * 1/P -= """'5S?P'P_1Pr>~'th thf>n rl0; I* '-i'l r" il t thi s *I

i'l_cnrlp = 1;
rP.turf"';

enrl;

I• Mr>ln lonn follows. this rnnslsts o" SPnnrro tPly 11n" in"~>nenrlpntly o rnce ss ln• eilch l?R-hlt
hlnc V. nf l roput text ("'<'Y hp rlPn r - nr clnhPr-tPxtl. PM'" hlocl· Is n rnr Pssen hy

lfi interrh<Jni!P eyr i es lntPrSnPrSf",-1 with IF rrr (rnl""us10r -lr>tprruntl0n -,.1ffc iiS!nn) cycles.
ror MO r P. rlptalls see i<>r• rr>nPrs " "'" <"'Y t"f'sls. *I

,40 tP.Xt_nnslt l on = 0 hy 1/8 whJ Jp (tPXt_nnsltfnr (MPSSi'lP!'_ l PnPth); I* Pi'lCh hloc~ *I

st rinl' (c0nVf'lllt!or_rPPistPrs) = s11hstr (i'l_!,.,_nvly, tPxt_n<"'s 'tl nr + 1, f-4);
str i nr>; (snurrf'_rf"plstPr~) = s 11hstr (<1_ 1,.,_.-.vly, tPxt_n0sitl.-.n + F~, fi4);
..<o lnterrhi'lnP'P._In,.lpx = n hy 1 t r 1~; (* lfi lr>tf'rC~ i'ln~p ryc l P.s •I

ks_ro11 = 1 ntF>rr11nt i nn_r.-.vt;

rl0 rli'l t <J_rnw = (1 tn 7;

I• tr?ns"nr~"'r>tinr> cnntrnl is first hytp n" vP.y
usP.rl cor lrterrunt!f'n in t~is r1n rycle *I

I• ororpss P hytes o~ !nnut Pr>rh rrn cyc l e •I

rni"~' II SPrl hvtP c I* ln()!• 11 n 1r ti'l~lp t0 <'"Pt conf<Jslol" •/
ron71Js inl"_ti'l" IP (~fxp,-1 (s ~<hstr (1- py (l· s_r01't), "r>te~_r0w +], l) II

/In Fncipherlnp; t 1o('lule ~or t'ultlr s r>aP:P 40

enrl;

S0trrr.e_rf'rostPrs (~;~t;~_rnv!), l'l, 0));

~n r.nnv0lutTon_in~Px n t" 7; I* cnnvnlve e;~c~ hft o~ ron~use~ hyte *I

Pnr'· ,

cnnvolutlrn_rf'\'1 = I* for PcH'" r:ycle

cnnvnlutlon rosltl0ns rot<~te nr0un~ r~P"isters *I
r10rf (r:f'nvnlutlon_tnhlp (r.nf"'vnlutlon_ln~Px) + rnta_row, P);

suhstr (r,...nvnlutlf'n_r.,P"istPr s (cnnvrdutlnf"l_rnw), ronvolut!on_lnrex +1, 1)
h00l (stths tr (1-:Py (lntf'rrur>t lnn_rnw),
kPy tr>hlp Cronv0lt ttlnn lnrex) + 1, 1),
hnol (suhstr (cnr"uspr=hyte, convolutlon_Jnrex +1, 1),
Stthstr (ronvolutlon_rf'r.-i sters (convolutfo,.,_rol'!),
cf'\nvr-lutTnn Tn~f'x +1, 1), "n110 11h), "nlJn"h);

lntprruntlon rov• = I* Hr'A 1 ~or nPxt ~ey hyte with ~r<~o;~rnunrf *I
morl (!';tPrruntlon_rovJ + 1, lF);

lnterrurtlon_rovt = I* on enrlnhpr, ,.,., h;orf· 1 hytf', Apr:!nhPr, svln 1 *I
morf (lrtPrrttr>tlnn_row + e't"Pr_nne_or_Mintrs_r>ne, 1f');

I* swnr> source anrl convnlutlnn repl ste r s *I

enrf;

enrl;

st ring (tpr"'r>_rPP"Istpr) = strinp (sr>urre_rPPisters (*));
strinp (sntorrP_r,,.i s ter s (*)) = stri ns>; (convf'lutlnr_rf'l'ister s (*));
string (cnnvn1ut!on_ rPP" 1 s ter s (*)) = str i "P' (teMn_rPpister);

s uh s tr Cn_out_nvly, tf'xt_r>n s ltlnn + 1, r;t,) = st ri n.r.: (sl"'ttrrP_rP~>isters);
s uh s tr Cn_out_nvly, tPxt_pnsit!nn + FS, rt,) = strln.~> (convnlutlnn_rr> P'is ters);

n_r:r>rle = n;
rPturn;

enrl sf't_kPy;

(In ~nclr> ... E'rirp Morlule for t•ultirs r>af'P h1

!• p•rt U"~ r11~ c0n"us!N>_t~ ... 1e.irc1."11
Tt-l s l '"'r> lPMPnts tl>e confusio" onpr~ tlr>n 0f lurl"Pr.
It s ... ou lrl o" l y l>p userl l>y 1url"Pr.n11 •/

rlPrl;~re C"nf u s lor> t ,~hlf' ir>Ttl~1 (
" ll101011 1Til--, "ll011111"h,
"11000011,, II 11(100111 ,
"I'()()]()]()] "k, "J()OJIJI'] ,
"10000001 111'1 "10000101"h
"n11101n1"...: "11111Ull "<
"11100001"1'1, "111001()1"",
"00111'lln"h, "10111110"1'1,
"11'100010"1'1, "1010011()" 1--,
"00010111"1'1, "10011111 11 h,
"1()000011"h, "10000111"",
"n 01 11'111"h, "1011111l"",
"1Cl100011"h "10100111" "
"01'01()100"1< "10011100"<
"1 rr nOOOO"h, 11 10000100"h,
" r1n101 no"", "ll~'ll100"I--,
"11()00000"1--, "11000100 11 h,
" 01 1101CIO"h, "11111 100 11h,
"111CI OOOO "h, "11100100"1,,
"1'1111()111'"1--, "11111110"",
"1111'1'01f'l"h, "11100110"h ,
"(lt'01CI11'l"h, 11 1(1()11110 11 1--,
"11'f'l0nl'111l"", "Jt'()00110"",
"l'f'l1101(l]"h, "1nllJ101 11 h,
"1f11('0001"h, "1(1100101"1--,
" 01"1011'1"1,, "11(111101"",
"11()00001"h, "llOOOln1"",
"f'l111f'l111"", "Jll11J1J"I,,
"111 000 11"k, "11100111"",
"001101f'IO"h, "10111100"h,
"1()100000"h, "10100 .' rO"h,
"(110101 10"f-o, "111'11110"1,,
"11nono1o".,, "11000110"~>,

" !'1011'll 1"f-o, "11011111 11 h,
"11 0000 11"1'1, "11000111 ,
"I'001ninl"h, "1nOJ1101" h,
"10000001"h, "10000101"",
"nJ1101CI1"h, "11111101"h ,
"1111'0001"1>, "1110011'1 ,
" r>n JJ n1Jn " h, "1 0111111'"",
"10100011'"h, "101 00 11 0"h,
" onrJI'IJ11 " h, "1rn11111 "",
"J0000011 11 h, "1 01'0()111"",
"O n11011 1"h, "10111111 11 h,
"101CI0011 11 h, "1010011 1"",
" 0001(' 10n"h, "10011100"1-,,
"1(1000000 11 1>, "10000100"1-,,
"OJ010100 11 f>, "11011J OO "h,
"1lf1 000 00"h, "11000100"h,

"ll(11'1111"h
II 1 J (11) 1 I' 1 1 11 h'

"10001101""'
"10()(11()01"h'
"11101101"<
"11U'1001 ""
"1()1()1110"h;
"1 01"101() "1-,,
"10001111"",
11 1 1'00 1(11] 11 1-,
"1(1101111"<
"1011'101] 11 1-,
"11'1001100"h'
"10il01 000 " h:
"110011 00 11 h,
"11 00 1(1f'(l 11 h
" 11 101100 11 h:
"1111'1 1'f'l0 11

'

"1111'1110"t-.'
"1Jl(l1(11 f'l "l--:
"1nnon 10""
"10001010""'
"J(11(11JI1J"<
"J n1 ~ lilOJ "h,
"J11"11l1101 11h,
"11(101(10] 11 1>,
11 1]]0]]1] 11 h,

"11101011"h,
"JOJ(11J01"1 11 t-.,
11](11()]0()1' 11 h
"11()01110""'
" 1100101""<
11 111101111"",
" 11f'O]r)]J"h,
11]f'l'()1101 11h,
"1 f'OI'J00 1"h
"1 1 11'111"11 "h'
"1] 1() 100] "<
"1(1101110"",
"11'1~"~1011'"h,
"1 ro001111 " h ,
"101'0] 0 JJ 11 h

"10101111"<
"1()11>1()11"h,
11 100011 00"",
"11'0011'1011"",
"111'101)00"",
11]] 1'(\]f'IOO"h,

"1 J ()] 1"111]1 ""
11 ())0()]011 11 ...;

"1f'l(l]()0()1"h,
"0000100]"",
"11J1()0f'l1""
"f'1101()01 11 h:
"J(11Jr011"1"h,
11 001()1010"h,
"1n010011"h,
"nno o1n11"h,
"1C'JJOOJ1"",
"()0]011'11"",
"100]0000"1--,
" 0000101'0 "h,
"ll o1nocrn"",
"0111011100"",
"11110000 111-,,
"ll11 01000"k,
"1111 on 1 n "",
"OJ 101011'' 11 h,
"1(1()] 0 010 11 k,
"Ool1n1010"h,
11](1].1()00] 11 h,
"nnJI'JnOJ"k,
"11()10001"",
"(111'101f101"k,
11 11110()11"",
"OJ10JOJ 1"",
"1(11]01"10() 11 1,

"nn]nJnon " ":
"11010010"",
11 f11001()](' 11 k,
"1JOJOOll"f>,
"1']1"1()10 1 1"k,
"1!'01000J 11h,
"nn no 1001"h,
"lll10(101 11h
11 1' llf1100 1"<
"HIJ 1001IJ" h,
11 01'](11010"h,
"1 n(l]Of\1J"'"·,
"O Of1010 11 "h,
"101 10011
"1'0] 01('111 "<
"1 ()(1]0000 11

",

"OOOOJOOO"l--,
"11 0]0000 11 h,
"f)]('l(l]('I!'O"h,

"JJ(1JI'JJ1"k,
"f11f1111'11 11 h
"10010101 11 h'
11 1"111011 1'01 "<
"J1Jll'1f\1"",
"1"11111001
"1011f1110"h'
"0011101fl 11 h'
11]00]0111 11

...:

"1'0011011 11 k
"10111'111"1>:
"1"10111011 11k,
"10010100 11h
11 00011('00 11<
"111"110100"h,
11 01011 00(l 11 h
"11 1101 r>o"<
11 1'11 ll nOO"h,
"Ill 11"1110"h
" Ol 111010 " ...:
"1001 rn n"",
"r>OI'J101f1 11 h
"11']](1]('11"<
"00111f'I01"~,
"11f'l)f"l)(l1"k,
"nl"11f'01"",
II) 1) J I'] J 1 lit->,
11 0))1J1'111"k,
"10Jlf'l100 11 h,
11 1"10111000 11 h
11 11 I'll "111'""'
"1")1'1]101""":
"11'llf'111"",
"(11011011" ... ,
11 1()()11'101 11 h,
"nr n1 1001"h,
"111 1f'lll"l1"h
"011) 1001 "<
"11'111"111 0" ... ,
"00111010"",
" 1f11'1(1111 " 1>,
"O f1011011 "k
"10110111 "h'
"0 01 11011"<
"1(1010100"" ,
11 01'0110 00 111-.

"Jlf'11'JOO"<
"010111'00"",

"(11f111111""
11 0) ()00111 "<
"nn 011101 ""
"n00001n1"t-'
"1'1111](11 "<
"ni100101 11 h
"fl0111111"1"h'
"00100110"h'
"0 0011 111"h'
"n000 0111 "h'
"f'Ollll 11"<
" 00100 111"k,
"0001110 0 " k,
"noono100"f>,
"01011100" k,
"010n0100"h,
"n1111100"t-,,
"f'1100100"h,
"o1111110"f>,
"01100110"1--,
"00011 1 1(1"1-'
"00000110 11 1>,
11 (10111101 "",
"f'\0100101"",
11 01f'lJJ(l] 11 h,
"01000101"",
"f'l1111111 11 h,
"(1111"10111 " ",
"r>01111f10 11 k,
"nn1nOIOO"h,
"f'1(111110 11h
"f'l1(100110"<
"f'l1011111"",
"()1(100111"",
"n 001 11 0 1 " 1--,
" nn01'0101 " h,
11 0))1Jl0] 11h,
"01100101"h,
" 00 111110"",
"n n11'01 10"h,
" (10011111"h,
"nrn00111"h,
"f'0111111" 1-,,
"00100111"f-o,
"00011100"k,
"rJ0000100" h,
11 010] 1100"",
11 f'l) 0001 OO"h,

"1101 1f'IJJ"k, "0100f'l011"h,
"1'1001 111 "", "nJ n1n01 1 "",
"10011f'l01 "", "f' Of\0000 1 "h,
"00001101" k, "00010001"k,
"ll111f'OJ"h, "1'1101"1001"~,
" 01101 JnJ"h, "n)Jl ()OOJ ">,,
"10111(1JI)"k, "0011'(l010"h,
"00101110"h, "1'011 001 O"h,
"10011 (1)1 , ""0000011"",
"n00 01111 "1--, "00010fl11" ... ,
"1 01111'11 "h, "001 ('0011 ,
" (10101111 "", "00110011"1-,
"1 00 11 r>OO"k, " 00000000 " ",
" 00001100 "", "f10010000"h,
"11 011001'"h, "0100f10r'O"h,
"n1 001100"h, "C'101 0000 " h ,
"11111000"h, "011 00(100 11 h,
"1'1101 10I'"f-, "1'111 0000"k,
"11111f110"h, "n111'1'010 11 h,
"0110111""", " 0111 00 1 O"h,
"I0011fl1fl 11 h, "OOOOf'I010"h,
"1'10001111'1"t-, "n0010f'l1 0"",
"1011100J" h, "001C'f'lflC'1"",
11 f'01011f'l1"k, "OO]JI"IOI"Il" h,
"1101 1f'01"", "f'100nOr>1"",
"(11 0011 ('l)"k, "01(111'1001 " h,
"111111"11" ... , "011001"1ll"'' ,
"n1101111"", "('11JJ0011"",
"1011J 0 0fl"h, "~o1noo nn "",
"rOI01IOO"t-, "no11n,.,on" t-,
"11 0] 1011'1"1-, , "n1000 ()1(1 "h ,
11 01001110"k, "0101(1011'"",
"11011011"h, "0100(IOJ1"k,
"n1001111 11h , "OJOJ001)"t-,,
"10011001 "h, "00(10 ()0(1) " ",
"n0 00 1101 "", " f'OOJ01'101 "" ,
"11111 00 1 11 h, " l' ll OOOOJ " I--,
" (1 Jl 01ln1"h, " 01 11f'O OJ " h,
"1 01 11 0 10"h, "001 00010"h,
"f'0101110"h, "0011 C0 10"11,
"10011011"1>, " 00000 011 " h,
"0000 1111 ">,, "0001f'Ol l"h,
"10111011"k, "001 000 11"h,
"n01 01111"k, "00110011"1--,
"10011non"h, "('10000000"",
" nono11 nO "b, "OOOHoon" h,
"ll Ollf'OO"h, " 0100nOO O"h,
"1"110 01 1nO"h, "OJ OlOQO(I"h,

An Fnr.l pi-er! nr; r·o~ul e f,..r t 1ul t irs n aP"P. 11 2

11
0111 l\100"h, "lJ 1111 OO"h, "111 01100"h, "lJ 11000f1"h, "1111 01 1\0"h, ""ll111 00 11h,

"1110000 0"1-, "11100100"h , "11101000 111-, "01101000 11h, "01111f100"h~ " 01100100"h,
11

1'111 0110"h, "11lllllO"h, 11 1111'1110"h, "1J11nOll'"t-, "11111\llfl"h, " Ol111110 11h,
"111 00011\"h, "11100110"h, "11101010"h, 11 1'1101011\"h, 11 0111 1010"h, "01100110"h,
"0001011 0"h, "10011110"h, "10001110"h, "10010010 11h, 1110010110"h, "00011110 11h,
11

1000001 0 11 h, "100 00110"h, 11 10(l01010"h, "000010 10"h, "n OOlll\10 11h, "OOOOOllO"h,
"00111'101"h, "10111101"h, "1nlO]ln1"h, "10110001 11h, 11 1flll('llf'1 11h, "00111101 11h,
"1010000l"h, 11 10100101"h, 11 1010100J 11h, 11 00101001 11h, "nn1Jin01 11h, "n0100101 11 h,
"01010101"h, "1J011101 11h, "11nOllf'1 11h, "1101 0001 11h, "11n10101"1-, · "01011101 11h,
"11n00001"h, 11 1100010111h, 11 1Jf\01001 11 h, 11 01001001 11 h, "1)]0]1001"h, "01000101 11 h ,
"Ol110111"h, "llllllll" h, 11 11101lll"h, "11110011 11

",
11 1ll101Jl"h, ""lllllll"h,

11 lllf10011 11h, "11100lll"h, "Ill O]n]] " h, "OJ101011 11h, "l'lJllJ ('11l"h, "011 001 11 11h,
11 0f111010 0"h, 11 10111100"h, "10l01100 11h, "101J0000 11h, "10llf'100"h, "OOlllJOO''f--,
"1010(lQ00 11 h, 11 101(l0100"h, 11 10101000 11h, 11 1'lf'lO]OnO"h, "O(l11J000 11 1-, 11 1\0]0n100 11 h ,
11 01010110 11 h, "110Jlll0 11 h, 11]]n011J(1 11 h, "1Jf1100JO"h, " J101f'11n"h, "01011110"h,
"11 00001 O"h, ''11 nnn110"h, "ll nn1 n] n"h, "nJ nn J n1 n"", "nJ OJ 1r 1""", "n1nno 1 J n"h,

) hit (!l) unl'lliP"nerl rii,..,Pnsl0n (n: 511) intern;, ! stl'lt l r;

I* Ptn tt•r !lJ("lF Fl LF r."'r"us 1 "'n_till-lp. 1 nrl.n11 *I

"11111 0 nO" h
"Ol1011"0"h:
"11111 0 1f) 11 h,
""1101110"h,
"10011010"h,
"(l 00011 1 0 11 h,
"10111001"h,
"(l01011 01 11h,
"11011 0n 1"" ,
11 010011 1'1"h,
"11111 011 "h ,
" n1101111"">,
"10111(100"h,
"0010110 0"h,
11 110 11"1""",
"f"10011If'"h,

" 01J nnoon "h
""11JI'l('(ll)"h:
" 1' 11 0('010 " f..,
"01110010"1-,
"fi 00C00 10 11 h,
"000101\JO"h,
"f'01('1fl0 0 1"h,
" 0011 00fl 1"h,
" 0 10C'I\00 1"h,
" (1101 1'lf'l (l1 " h,
" 0 11!' 0f'J 1J" h ,
" n1 11 " "11"h,
""010C'"00"h,
" nn1 100f'f' " h ,
" 01or.rn]n"h,
" f11(1 J"" 10 " h

An Enciphering Module for Hultics page 43

APPENDIX C - THE ASSEHBLY LANGUAGE U1PLEHENTATION

The basic philosophy of the Multics assenbly language

version of Lucifer was to produce a program which could

encipher or decipher at the highest s~eed. This does not

contribute to the readibility of the program; therefore this

explanation is quite detailed. If the reader is unfamiliar

with Multics assembly language, a short introduction is

given ~n Appendix D.

The set_key entry does more than store the key in

internal static. During ciphering the key is used in b1o

places: transformation control and interruption. For

reasons explained later, each purpose requires the key to be

in a different format for optimal operation. To avoid key

manipulation during ciphering, set_key stores the key in two

variables, key and exploded_key.

In exploded_key each bit of the key is given its mvn

nine-bit byte. The high-order bit of each byte contains the

key b it; the low order eight bits are zero. This key is for

transformation control. In the diagram below showing the

storage assignment, the ordered pair in each byte position

gives the byte of the key number and the bit within the

byte. 1\s in the hardware diagrams adjacent bits of a byte

are arrayed vertically, although it is more conventional to

show memory \vords horizontally. Thus each byte of the key

An Enciphering Hodule for Multics paqe 44

requires t\vO words; thirty-two words for 1 2 8 bits.

Figure 5: Exploded Key Bit Assignment

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

120 112 104 96 88 80 72 64 56 48 40 32 24 16 8

121 113 105 97 89 81 73 65 57 49 41 33 25 17 9

122 114 106 98 90 82 74 66 58 50 42 34 26 18 10

123 115 107 99 91 83 75 67 59 51 43 35 27 19 11

124 116 10 8 100 92 84 76 68 60 52 44 36 28 20 12

125 117 109 101 93 85 77 69 61 53 45 37 29 21 13

126 118 110 102 94 86 78 70 62 54 46 38 30 22 1<1

127 119 111 103 95 87 79 71 63 55 47 39 31 23 15

For interruption, the key bits within a key byte are

not accessed in t he same orde r as the confused byte's bits,

0, 1, 2 ••• 7. Rather e1ey are accessed 2, 5, 4, O, 3, 1, 7,

6 as given in key_table of the PL/I program or as s hown by

the wiring of t he h ardware. To avoid t he use of such a

table and lookup time during ciphering, the key bytes are

presorted by set_key. Each 8-bit byte of the key is stored

in the high order part of a !·1u1 tics 9- bi t byte, the

remaining bi t being zero. Thus the storage assignment is as

0 \ ,. (C

v -" ·
0 \'~

1

2

3

4

5

6

7

An Enciphering Module for Hultics page 45

shown in the diagram below.

Figure 6: Key Bit Assignment
~ {

5 4 3 2 1 o ~o K
'(>-\

4 0 12 8 4 0 0

5 1 13 9 5 1 1

6 2 14 10 6 2 2

7 3 15 11 7 3 3

Words 0 and 1 are copied into words 4 and 5. This is

to permit directly addressing eight bytes starting at any

byte between 0 and 15 without progran~ing a complicated

wraparound routine.

The basic idea underlying this program is to process

all 64 bits of the source and convolution registers at once,

each CID cycle. In order to do this, the key bits must be

so arranged that each of its bits lies in the bit position

corresponding to that of the source register bit with \vhich

it will be exclusive-ored during interruption. This

explains the rearranging above.

When the encipher entry is c~lled, it sets

interruption_row (held in index register 2) to zero as in

tile PL/I program. Since an entire CID cycle is done in

parallel, interruption_row will never be incremented along

the horizontal line of the key byte access schedule given

earlier. Instead it will be incremented each CID cycle to

assume the values given in the schedule's left-hand column.

Examining the schedule it can be seen that interruption_rmv

An Enciphering Module for Multics
page 46

should ~~us be incremented by 7 for encipher and -7 for

decipher , modulo 16. Thus each entry a lso sets the variable

either 7 or minus 7 to the appropriate value . This is added

to x2 mod 16 each CID cycle.

After the argument extents are calculated and pointers

to the strings fetch ed (bp -) input string , bb -) output

string), the main loop is entered.

As in the PL/I program, the first 64 bits of each

128-bit block are placed into convolution_registers , the

next 64 into source_registers. As with the key, each 8-bit

byte is placed in the high order eight bits of a Multics

9-bit byte. This unpacking is accomplished by unpack_ loop.

This loop depends on the fact that the assembler \vill assign

source_registers a location after convolution_registers

because it is declared aftenvard. The low order (high

address) bytes are unpacked first.

Once this is comp lete, sixteen CID-interchange pairs

are executed.

First , the convolution registers are prepared for the

diffusion operation. Referring to the hardware diagram, one

can see tl1at each b it of a confused, interrupted byte

(vertically arrayed) corresponds to a different byte but the

same bit (i.e., horizontal register) of the convolution

registers. As seen i n the PL/I program, if a source

register bit has address [i, j] (byte i, bit j) the

convolution register bit corresponding to it is

An Enciphering Module fo r Hultics p age 47

[mod (i +convolution table [j] , 8) , j]

where convolution table i s [7 , 6, 2 , 1 , 5, 0, 3 , 4].

Instead of looping through e ach bit a s t he PL/ I p r ogram

does, the convolution r egisters are r otated so t he bit

positions for diffusions line up, correspondi ng with t h ose

of the source registers.

Since the horizontal r egisters are t he bits to r otate,

t he bits to rotate a re not adjacent . Th us t he bit addresses

within the two-,~ord convolution_registers of each b it before

ro t ation is as follows:

Figure 7: Convol ution Registers

7 6 5 4 3 2 1 0 'c .

'
63 54 45 36 27 1 8 ·9 0

64 55 46 37 2 8 19 10 1 1

65 56 47 38 29 20 11 2 2

66 57 48 39 30 21 12 3 3

67 58 49 40 31 22 13 4 4

68 59 50 41 32 23 14 5 5

69 60 51 42 3 3 24 15 6 6

70 61 52 43 34 25 16 7 7

Notice that bits 8, 17, 26 ••• 71 do not appear assigned

on the matrix. This is due to t he unpack i ng o f e ac h 8- bit

byte to a 9-bit byte. The unassigne d offsets are t hose of

the pad bits. The purpose o f t his r otatio n is to align

all the exclusive-or posi t i ons on the right e dge of t he

matrix. Loo}~ing at the hardwa r e schematic , t he desired

An Enciphering Module for Hultics page 48

position of each bit is as follows:

Figure 8: Postrotation Convolution Registers

7 6 5 4 3 2 1 0 '_-.,
'9 ~

6,0 s,o 4, 0 3,0 4,0 1,0 0,0 7,0 0

5,1 4,1 3,1 2,1 1,1 0,1 7 , 1 6 ,1 1

1,2 0,2 7,2 6,2 5,2 4,2 3 , 2 2 , 2 2

0,3 7,3 6,3 5,3 4,3 3,3 2,3 1 ,3 3

4,4 3,4 2,4 1,4 0,4 7,4 6,4 5,4 4

7,5 6,5 5,5 4,5 3,5 2 , 5 1,5 0,5 5

2,6 1,6 0,6 7 , 6 6,6 5,6 4,6 3 ,6 6

3,7 2,7 1,7 0,7 7,7 6,7 5 , 7 4 ,7 7

This rotation is accomplished as f ollows. Row 0 (bits

0, 9, 18 ••• 63) must be rotated right on t he diag ram (left

in t h e AQ register as it happens) seven posit ion s o r 63

bits. Row 1 (bits 1, 10, 19 •• • 64) mus t be ro t ated 6

positions or 54 bits, etc. An array of ma sks, a n d_masks ,

has been prepared with a 1-bit in each b it position for a

g iven r egister . They are ordered according to the number of

posi tions of rotation needed. Since r egister 5 needs no

rotation (because the exclusive-or gate is already i n b y te

0), the mas k for it occurs first . It consists of f our

zeroes, a one, eight zeroes , a one, eigh t z eroes • •• Thus ,

when convolution_re gisters is loaded into t he AQ r egis t e r

and is ANDed with this mask, only bits 5, 14, 23 ••• 68 wi l l

remain. This register is rotated 0 bits left and then ORed

into a previously zeroed doubleword , named "norma li zed" .

An Enciphering Module for Multics page 49

Next, register 3 must be rotated left one position or nine

bits. Thus the second mask has a one in bit 3 and a one

every nine bits thereafter. After ANDinq the

convolution_registers with this mask only bits 3, 12, 21 •••

66 remain. The AQ is rotated left nine bits, and ORed into

"normalized".

There is a pointer to and_masks called and_masks_ptr.

It is referenced by using the add-delta (AD) type indirect

reference. When an indirect reference is made through this

word, after completion of the specified operation the

contents of the delta field (here 2) will be added to the

address field. Thus the next time the AQ is ANDed the next

doubleword mask will be used. Similarly an AD word controls

the shift count. The first time through the loop the AQ

must be shifted zero bits so the address field of this word

contains zero. After every indirect reference the address

field will be incremented by the delta field, here nine.

Thus the rotate counts will be 0, 9, 18 ••• 63. In addition

this \Wrd is used to control the number of times the loop

will execute. After an add-delta reference is made the

tally field of the word is decremented by one; if it reaches

zero the tally runout indicator is set. This tally field is

set to eight before beginning the loop. Thus the loop will

iterate eight times, due to the transfer-tally-runout-flag

off instruction at the end.

After preparing the convolution registers, the

An Enciphering .Hodule for Multics page 50

confusion operation is performed on t h e s our ce regis ters.

This is done by loading the source registers into the AQ and

shifting right one bit position. Now each 8-bit byte

appears right justified in each Multics 9-bit byte of t he

AQ. Th e AQ is now ORed with some doublet.vord of

exploded_key. Each bit of exploded_key occupies the high

order bit of a 9-bit byte; thus each bit t o be used for

transformation control now resides to t he left of the

corresponding byte of t he source.

The doub leword of exploded_key t o use for

transformation control is equal to t he byt e of the key

addressed by interrup tion_row. This is because each byt e of

the key uses a doub leword of exp l oded_key, and because

interrup tion_row (in x2) always addresses t he f irs t byte of

the key to use for interruption this CID c ycle which i s a l so

the byte to use for transformation control . Si nce even t he

doubleword instructions address i n wor d indexes,

intcrrup tion_row must be doubled. This is done by adding it

in hlice, once i n the e pplb instruction a nd once in the oraq

instruction itself.

The fiQ is stored and translated b y t he mvt instruction.

The con fusion tab le used here is iden tical t o t he one in the

PL/ I program, except tllat each 8-bit result byt e is as usual

left justified \vithin a 9-bit byte.

These confused bytes are now int errupt ed by

exclusive-oring with t h e eight bytes o f the key addre sse d by

An Enciphering Module for Multics page 51

interruption_row. Diffusion is obtained by exclusive-oring

with the pre rotated convolution registers stored in

"normalized".

The interchange operation must, as well as swapping the

source and convolution (now stored in "normalized"),

unrotate the convolution registers to undo the effect of

lining up the exclusive-or gates described above. This is

done via a very similar loop to rotate_loop. A

subtract-delta modifier references through and_masks_ptr.

Since this modifier subtracts delta before indirecting the

masks will be used in the reverse order. The shift counts

needed are shown below; the add-delta ,..,ord for shifting

again supplies loop control.

Table 3: Convolution Register Rotation Counts

Row Previous Rotation Post-Rotation

5 0 72

3 9 63

2 18 54

6 27 45

7 36 36

4 45 27

1 53 18

0 63 9

The register accesses and rotate counts for the prerotating

should be read down; for postrotation the table should be

read up.

An Enciphering Module for Multics page 52

After sixteen CID-interchange p a i r s , one mor e

interchange has been done than desired . This is undone by

swapping the two registers. The bytes are now packed int o

the result field.

Some possibilities still exist f o r speeding up thi s

program. The two loop s controlled by tally wor ds only loop

eight times; they could be exploded i nto eight copies.

Since the address of and masks and the r otate counts would

in each copy be known at compile time no indirect words

would be needed. In addi t ion the loop c ontrol instruction

ttf would be eliminated. Counting ttf a s two memory

accesses and each of the tally references as one, four

memory accesses could b e saved each r o t ation. Since eight

are required in the loop , and there are t wo loops, 64 memor y

accesses would be saved. Eight more would be saved by

eliminating the tally word setup i nstructions at t he

beginning of each loop, f o r a total of 72. Sinc e ther e a r e

sixteen CID cycles a total of 72 times 16 = 1152 memory

cycles might be saved . This may total as much as a

millisecond, thus saving about twenty percent of the cipher

time for a given b l ock . This demonstrates how s ensitive a

program's performance can be to minor changes in coding

style. Other experiments are suggested , such as completely

rewriting the program with all a rrays trans posed (so that

the bits of a byte are not stored sequentially), or

eliminating the padding b it on each byte .

An Enciphering t~odule for llultlcs page 53

II

II Copyri ght (c) 1974 by f1as sac husetts I ns titute of Techno lol'y and
Honey1vell Informa ti o n Systems, Inc .

11
Thi s program is a s peci a l ver s io n of Lucife r de s i gne d t o run very qui c k l y.

11
Few programs could compete wl th thi s for obscurity.

11
Coded l~ay 1, 1974 ' · G. Gordon Ben ed i c t

'' at the Computer Sys tems Res ear c h divi s ion o f Pr ojec t ~AC

entry
equ
equ
equ
equ
equ
equ
temp
tempd
temp

encipher:
push
eax2
eax7
s t x7
tra

dec ipher:
push
eax2
eax7
stx7

jo in;
s tx2
eaxO
1 X 17
cmpx7
tnz
eaxO

eppl>p
ldq
sbq
adq
q l s
StQ
eppbp
ldq
sbq
adq
Qls
cmpq
tnz

set_key,enclpher,dec lphe r
move, 3
a_ in, 2
a_out,4
a_code, G
a_ln_desc, S
a_out_desc,10
text_length,text_positlon,elther_7_or_minus_ 7, s hlft_wo rd
convoluti on,source, confus ed_l>ytes,normallzed
lnitial_value

0
7
elther_7_or_mlnus_7
join-•, i c

i nitial Interrupti on r o~1
go forward 7 bytes In key after each CI D cyc l e

9 I n I t I a I I n t err up t I on row (n I nth byte of key)
-7 start each CJD cyc l e with Interruption row 7
ei ther_7_ or_minus_ 7 more than last f or l ater

lni t l a l_va lue
0
apiO
8,du
2, I c
2

ap l a_ln_desc,O•
bpl2
bpl1
1, d I
7
text_lenv,th
apla_out_de s c, O•
bpl2
bpl1
1, d 1
7
text_lenr.th
no_lengt h_ma t ch- •, i c

ter~lnatlon condition afte r l G CID cycles
assume no display ptr In ar~ li st
get code wh ic h tells us If assumption Is o perative
Is there a display ptr
no
yes, put l ength of this ptr in xO so we 1·1ill s k ip it

get ptr to descriptor
hbound (a_in) •••
- !bound (a_in) •• .
• 1 • dim (a_ln, 1)
* 128 • length In bits of who l e a rray

ge t ptr to descriptor
hbound (a_out) •••
- ll>ound (a_out) •• •
+ 1 • d i m (a_out, 1)
* 128 • length in bits of whole arra y

error, hoth must bt' SiH.Je

.;t
&I)

CL
b.; t
ro b. ~
c ~ IV

tt
4-1

4-1 --'
::; c
C4-1

c. :J - c
c 0

4-)4-i

~ ~

4-14-1
c.c
4-)4-i
Q.l Q.l
~~

Vl
v
4-1 "' "' ..
:J ,4-)
~ c. :J

-o
~ I I
0 rorv ...

c. c.
Q.l roro
.....
-'

"t:
0 -...::..

CLC
t! .J:.J:
c: cc.

c. c.
~ Q.,.Q.l
Q.l

.J:
c.
0
c
~'

c
<:

/ln Fncfpf,erinP. 11orltJle fnr 11ultlrs

11 hegln main loop proces s int>, rf><tr1 ir e<"r~
11 12R-~it ~lock <1nri encrypt S~'P<lr<'ltely,

n<1t>e 55

stz tf>xt_r>ns It Inn ZPrn nrnrP SSf>" sn fi1r
text_ I oop:

lr1q text posit Inn P:Pt <tr1ount r>rnrPsser1 so f <1 r
CI"Pn text- l PnJYt~ SPP 1" ~M'r1le" <1ll In ~tri r p:
tol retu-;:n_mw1-•, ir. I" so, rPtllrn

11 unpack next 121\-hlt f,lnr.k such tf,;.t e<"rh
to 8-hlt hyte or.cupiPs the hft>h o rr1f>r R
to hits of i1 llultlcs 9-hlt hlocv ,
to this mnkes manlpulntlon hy FIS

arlo 15•8,1'11
lnstrurtinns convPniPnt,

gpt nosltlnn of last ~-hit ~yte In this hlork
lrla 15•9,rll JYet o"fsPt to l ast 'l-hlt hfor~ In rP g isters

unp<tck loon:
- csl (p r , o 1) , (n r , a 1) , h nn 1 (Mn v P) , " 11 1 (0)

rlesch
rlescl--

hpJO,R movP <1n R-hft hyte •••
convo lutlon,9 ... tn <1 9-hit ~yte iH'" s tirl· on i1 tootoh

to

sho
sh<1
tpl

8,rll
9,rll
unpack_lnon-• ,lc

gn to nf'Xt lnwer R-hlt hyte
same for te>rgPt
cnntlnuf' until lf' hytes ilrf' un nnckPti,
R In snurcf', ~ In convolution

to now clo 15 lnterc!'>ange anrl 1f> Clf' cycl.,.s.
lntercha nge_loon:

flrl Zf'rn fl" (klurl,.e)
mil ~P zero for nrlng s t<ln

lrln
St<l

O,til
norrn<~ll zf'tl
uo nniOll,rll
st- l ft_wor"

tnlly ~II, lnltl ;, l v<1lue = 0, "Pltil = 'l
/ll'l wor" for sf,ff tlnr. (lnrrPrnents q e<tch t !me)

rot<1te loop:
- lrl<1o convolutlnn p:pt ent!rP cnnvn lutlnn rf'P.S (hits r - 63)

ilnall 1nl <lnrl_m<;~sks_ptr, i1 r1 cle<1r <~ 11 hut Cf' luMns 5, thf'n n, 1, h, 7,
llr sf, J ft_worrl ,<ltl s f,lft "lrst hy n, thPn 'l, then 1P ,.,etc,
orsil no rme> l lzprl put In f irst wor"'s hits
orsq normilllzerl+l now 7n~ worr1
ttf rotiltP l onP-•, Ic rln R times (spP ti!lly)

to nnw hilve In norMe> ll zerl e>-cnr>Y n" r.onvolutlnn
to regi sters with e<~ct'> column sn rnt<tterl
to thRt i1 11 tt->e XOR gates il re ni i JYneA on

enn lh lole xp lorlerl_vPy,x2

snurce

tl'le r l l'ht 1'-ilntl P"<'P, nov1 c- onfu s P s our r.e
when x2 Is "'"""rl tn th i s atlrlr ,
will have arlrlr nf ~ey worrl s
~>;f't sourr-e rf'g

f), 7, 3

lrlClQ
1 r 1
or <to
staq

1 out 0 at l eft P"P:e of ear.~ ~yte lrstearl of ri P.ht

mvt
"esc'l<l
rlesc'l<l
ar~

lhiO, x2
confusetl_hytPS

put ench hit of ks -rnvl h•y In t-f"h o rrlpr '-It nf source '-ytp

(pr),(pr) tr<>nslate vi? ta"le (con&usl on)
confuserl_hytf's,R
confusf'tl_i"-ytf's,8
cnrfusl o n_t<~"l p+3 - • , I ,..

An F~cin~erin~ Mo~ule for ~ultirs na,.e 5R

1 ~ao
mlr
~esc9a
rlesc9a

eril<l

ersa

cord' u se~ '>ytes
(pr, x2), (pr)
1 r> I Y.ey, R
confuse~_hytps,R

confuse~_~ytps

norr"'al l Z!'~

P"Pt rr>~J 0~' vpv u~e~ "or ln terruntlon

lnterruntlon

ers(] normali z e~+!

rll~"11slon

2n~ ~10rrl

"now rlo lntercha n~e cycle .

l~a<l
staQ
fl~

sta<l

l rl<l
s t<~

unrr>tatP lo0n:
- 1-';~o

ilna<l
11 r
or sa
ors<l
tt I'

il~X2
anx2

C1'1PX2
tnz

" rf o11e ~~ tth this
1 ~<1(]

sta<l
lrlil(]
sta<l
l~ao
ste~o

l ~<l

arlo
St(]

oilcY._loor:
1 ,, il

sho
cs 1
~esch

rlPS('h

skil
tnl
tra

s<'urce
convo 1 ut l ""'
0,~1

source

=of!00011001011
st-l ~' t_worrl

nnrl"ill lzl'~

lo l ilnrl f"'ilSks ntr,srl
shl ft_;<'r~,<>;:;
source
sourre .. l
unrotate_l00p-•,tc

onp ~illf o" work
zero out ~ource f~r orfnp- ln

tr>11y "R , rll'lt a = <J, lnltl <~ l val11e = '1

nut h;>cv t ;ll 1 y o~' R

r:Pt ~lfl'usP~ convo lu tlo11 rP•>lster s
an~ out all hut th<~t rol~~n to hp rotate~

shift hy anr>r0rrlr>te ar"'ount
put Into sourre
?n~ ~10r~

e!t"er_7_or_m!nus_7 r:o f0rw<tr~ or kr>d'w<~r~ thru kPy
=o17,rlu morl ln

Initial v;~ luf' h<~rl· to ~'"erP ~IP starte-' thi s hl0rk
!nterc h?n~e_lonn-*, lc

1 2 R- ~ 1 t h 1 ocr . recomnact an-' storP
s0urce
norma l lze~
convo lut!or'l
sourc e
norma li ze~

cnrwo 1 u t 1 on
text roslt!on
17R, -;:i1
text position
q ,>J s:-,q

exchanpe so ••rce <111rl c<'nvol ut ton

r:0 to next 12R-hlt kl<'cv

ln O-hlt hytes to nack

R,rll r:o t0 11ext l ower hyte
(r> r, a 1) , (n r, ol) , h('lo 1 (mrw p) , " r 1 1 (0)
convo lution , !)
hhf0,8

'l,rl l
p;~ck_loon-•,lc
text_ln<'p-*,lr

p,n to nf>xt l o1·•Pr 11-hit hytes

.,., to next l ?R-f-lt klncv

An Fnclnherlng t~orlule for l 'ultlr:s nai'P 'i7

no l enp,th mate~:
- - lrlq

stq
return

n~turn_notl:

stz
rPturn

1, rl 1
an l a_corle,•

i1flla_co"P,*

11 t-0rh, 1 Pn p: ths of In nut a nrl output not sarp
co rlp to r Pturn

11 SPt_kP.y P. ntry , to SP.t tt-p f.cpy ~'or suhspo upnt calls to lurifPr .
set_kP.y:

epphp an12,• t!Pt arlrlr of 12~-hit str lnp: 1·•'-!t-h I s l:ey
" P.xplorle
11 so P.ach

the ~ey anrl transpose It,
hit occupies thP first hit of a q-hlt hytP
eaxO 0 ~'frst hit of key
eax1 0 first hyte of Pxplo"Prl l-py

exp 1 orle_l oop:
cs l
rlesch
rlesch

eaxl
eaxO
cmpxO
tml

(P r, x 0) , (p r, x 1) , '-on 1 (move) , I'J 11 (0)
hpiO,l move one hft o~' kpy •••
lplexplorlerl_key,9 ••• to thP ton hit of a 9-hlt 1-yte

9, xl
16,xll
DR,rlu
exp l orle_l oop-•,lc

next tlmP. usP. next hyte of explorlerl key
te~~e next column entry, 16 '-Its i'Wi1Y
SPP If rlone with t'-l s column
rlonp

II jUSt finisher!
eaxO
C"'PXO
trnl

one co lumn o~' R hft s.
-127,x0

now rio nPxt co lumn, s tartlnsr one h i t i1\•li1Y
put us "i'lclr 127 "Its, of"set 1 "ro,., nrev lous
I" JF, tiP h<1ve s v•!-!r>t thru ;.11 hit s (IF = 1?7

11 notl explorlp eac h
P.axO
eaxl
eax2

p~rmutat l on_loop:

eax3
a rlx3
cs l
rlf's c h
rlesch

eax l
eax2
Cl'lpx2
tml

Ir;,r<u
explo"P_loon-•,lr

R-h lt
0
0
0

per,.,uterl h l ock to " q-hlt row
"irst column of kPy

n,xn c o py r:olu"'n of 1-P.y
ner,utatl on_ t;.hle,x2 I!'P.t spP.r·lflr "It nP,.,hPr
(p r, x 3 l, (n r, x 1) , "of'l C """ ve) , " I 1 1 (n)
hpl0,1
lnlk Py,? """with i'l n hft (only r f'u nt s ;.t pnrl nf l oon)

1, xl p:o to ne xt hit n~' lcpy rP s ul t
1, x2 nP xt r> P.rmut ;.t l <"n_t;. h l e entry
~,rlu rio""' vJ!th thi s loop

11 rllrl one 8-h l t
eax l
eaxO
cmpxO
t ml

ne r mutatlnn lof'n- •, Jr.
hlocl:. skin l ;.st z er (l hit

1,xl
l,xO
lfi, rlu
permu tat l on_lnor- •-l, lr

.,

het!lnnln p:
+ lli - 1? 7)

An fncin~erlng Mo~ule for Multics DnP:e 58

11 ~upl Jcate first 8 rows of kpy at en~ to prevent wr~oarounA orohlems
l~aq lplkey
staq 1plkey+4

11 set up t~e tnitt?l tally wor~ userl for runnlng ~own anrl-mnsks
eaa lolanrl_mnsks
orsa lplan~_m?sks_pt r

st--ort return
oermutat ton_t nhle:

an~

ar~Y

<3rP:
arp;
arP:
arl!
arl!
arr:

ln*2
lF*S
lf1*4
lf'*O
111*3
lF*l
lf*7
1F*6

11 f"lves pPrMutations o~ J.-:py rnlu,ns useA ~or Jnterruotlon

/1 n F n c t ph e ri n P.: Mo (f u 1 e fo r ~~ u 1 t r c s

confusfon_ta..,le:
t nc 1u(f e

use
even
hss
hss

an ri_masks_ptr:
cfec
even

a nri_masks:
vf ci
vfrl
vf rl
vfrl
vfci
vfci
vfrl
vfrl
join
en(f

confu ston_t~h l e

l inka t!'e_sect i on

key,fi
exp lor1Prl_kPy, 32

2 ri e lta of 2
"neerl on e ven worn ..,oun riary

6/1,9/1,9/1,9/1,9/1,q/1,9/1,9/1
4/1,9/1,9/1,9/1,9/1,9/1,9/1,9/1
3/1,9/1,9/1 , 9/1,9/l,q/1,9/1,9/1
7/1,9/l,q/1,9/1,9/1,9/1,9/1,9/1
8/1,9/l,q/1,9/1,9/1,~/1,9/1,9/1

5/1 , 9/1,9/1,9/1,9/1,q/1,9/1,9/1
2/1,9/1,9/1,9/1,9/1,q/1,9/1,9/1
l/1,9/1,9/1,9/1,9/1,q/1,9/1,9/1
/link/ltnkage_sectinn

pa~re 59

An F.ncipherln~ ~orlule for ~ultlcs

11
INC"lUfl E FilE confusion tahle.lnc:l.;drn

II This implements the confusion ooeratiC~n for l.urffpr
11

It shoulrl only he ca llerl from lur l fpr_.alrn

naPe 60

vfrl 9o/25fi,qo/fi7fi,9o/f.3f.,9o/f4f,,9o/fi56,9o/276,9o/66F ,9n/ 206
vfd 9o/60f,9o/616,9o/F2F,9o/226,9o/266,9o/216,9o/23 6,9n/?46
vfrl 9o/051,9o/472,9o/h32,9n/442,9o/452,9o/r7?,9n/4 62,9o/002
vfrl 9o/402,9n/412,9o/42?.,9o/0?2,no/062,9o/01?,9n/032,no/042
vfct 9o/352,9o/772,9o/73?,9n/742,9of752,9o/372,9o/762,nn/302
vfrl 9o/702,9o/712,9o/722,9o/322,9o/362,9o/312,9o/332,9o/342
vfrl 9n/154,qo/574,9o/534,9o/544,9o/~54,nofl74,9o/5 64,qo/10 4
vfrl 9o/504,9o/514,9o/52h,9o/124,9o/ lfi4,9o/114,9n/134,9o/144
vfrl 9o/056,9n/476,9o/43f,9o/446,9n/456,9o/07f,9n/46fi,no;no6
vfrl 9o/406 , 9n/h1F,9o/h2F,9n/026,9o/066,9o/~16,9o/03fi , no/046
vfrl qo/156,9o/~76,9o/~3f,9o/54f,9o/556 , 9o/17f,9o/56F,nn/l06
vfrl 9n/506,9o/516,9o/S2fi,9o/126,9o/Jf,6,9o/11F,9o/136,nn/146
vfrl 9o/050,9o/470,9o/430,9o/440,9n/450,9o/0 70,9n/460,9n/ OOO
vfrl 9n/400,9n/410,9o/420,9o/O?O,no/060,9o/01 0,9n/03n ,no/040
vfrl 9o/250,9o/670,noff30,9o/640,noff,50,9o/ ?70, no/Ff,O,no/200
vfrl 9n/600,9o/610,9n/620,9n/220,9o/2F0,9n/2J0,9o/230,no/?40
vfrl 9o/350,qo/770,9o/730,9o/740,9o/750,9o/370,9n/7F0,9o/300
vfrl 9o/700,9o/710,9n/720,9o/320,9o/36n,9o/31n,no/330,9n/340
vfrl 9o/354,9o/774,9n/734,9n/744,9o/754,9o/374,9o/764,9o/'04
vfrl 9o/704,9o/714,9o/724,9n/324,9o/364,9o/314,9o/334,9o/'44
vfrl 9o/054,9o/474,9n/434,9o/444,9o/h54,9o/074,9o/464,9o/004
vfrl 9o/404,9o/414,9n/424,9o/024,9o/064,9o/014,9o/034,9o/044
vfrl 9o/152,9o/572,9o/532,9n/542,9o/552,9o/172,9n/562,no/102
vfrl 9o/502,9o/51?,9o/522,9o/122,9o/Jf,2,9o/ll?,no/132,9o/14?
vfrl 9o/252,9o/fi7?,9n/632,9o/642,9o/f,5 ? ,9o/27 2,9o/fi62,9o/? 0 2
vfrl 9o/602,9o/612,9o/6?2,9n/ 222,9o/2 6?,9n/2l2,9o/232,9o/242
vfrl 9o/356,9o/776,9o/736, 9o/746, 9o/7 5~,9o/376, 9n/766,9o/306
vfrl 9o/706,9o/71F,9o/72fi,qn/3 26 ,9o/36F , 9o/3 l fi ,9o/336,9o/346
vfrl 9o/150,9o/570,9o/530,9o/540,9o/S50,9o/170,9o/560,9o/100
vfrl 9o/500,9o/510,9o/520,qo/12 0, 9o/l60,9o/l lO ,no/130,9o/l40
vfrl 9n/254,9o/674,9n/634,9o/644,no/F54,9o/274,9o/F64,9o/20h
vfrl 9n/fi04,9o/614,9o/6?4,nn/224,9o/264,9o/214,nn;234,9o/244
vfrl 9n/256,9o/67~,9n/63fi,9n/6hfi,9o/~5fi,9o/27fi,9o/f66,9o/?06
vf~ no/606,Qo/fl6,9n/6?6,9n/2?6,9o/~fir,9o/?lfi,9n/?36,no/?46
vfrl qn/052,9o/47?,9o/43?,9n/442,9o/45?,9o/072,no;4C2,nn/00?
vfrl 9n/40?,qo/41?,9o/4??,9n/022,9o/n6?,9n/01?,9n/03?,notr4?
vfrl 9n/352 , 9o/77? , qn/73?,nn/742,9o/75?,9n/37?,9n/7~?,9n!'07
vfrl 9n/702,9o/717,9o/7??,9n/322,9o!'fi?,9o/312,9n/332,9o/'42
vfrl qo/154,9o/57h,9n/5,h,no/544,9o/S5h,9n/174,9o/564,no/JOh
vfrl 9n/504,9o/514,9o/5?h,9n/124,9o/164,9o/114,9n/l34,9o/14h
vfrl 9n/056,9o/47~,an/4,F,no/hhF,9o/4~F,9o/076,9n/hfifi,9o/"OF
vfrl 9n/406,9o/hlf,9r/4?6,9o/026,9o/06F,9o/OIF,nn/036,9o/n4F
vfrl 9n/156,9o/57fi,9o/53R,Qo/5h~,9n/55~,9n/17~,9n/SF6,an/JO~
vfrl 9n/506,9o/516,9n/ 526,9n/126,9o/16F,9o/1J R,no/13fi,n o/14F
vfrl 9n/050,9o/470,9n/4 30,9n/440 ,9o/450,9nf070,nn/hfi0 ,9n/"00
vfrl 9o/400,9o/410,9o/h?0,9o/O?O,nnf060,9n/Ol O,no;n3n,no/r4n
vfrl 9o/250,9o/~7",9n/fi30,9n/fi40,9o/f,50,9n/2 70, no/FF 0,9o/?OO
vfrl 9n/~00,9o/Fl0,9o/A20,9o/220,9o/? fi0 ,9n/2JO,nn/? 30,9o/? h0
vfrl 9n/350,9o/770,9n/730,9o/740, 9n/ 75n,9o/3 70,9n/7FO,nof'00

An Fncipb~ring Module for ~ultlcs P~P:e f'l

vf~ 9nl700,9ol710,9ol720,9ol3?0,9ol360,qol310,9oi330,C'lol340
v f ri 9 o I 3 5 1, , q n I 7 7 1,, 9 o I 7 3 1,, 9 n I 7 4 1, , q n I 7 5 4, C! o I 3 7 4, 9 o I 7 € 4 , <1 o I 3 o r,
v f rl 9 n I 7 o '' , 9 o I 7 111, 9 o I 7 2 4 , 9 o I 3 ? 4 , C'l n /"3 fi 1, , 0 o I 3 111 , 9 n I 3 3 '' , q o I 3 4 4
v f rl 9 ()I 0 s 4 , 9 0 I L, 7 4 , 9 0 I It 3 II , C) 0 I l,r, ,, , n 0 I ,, 5 ,, , 9 0 I 0 7 II, 9 0 I 4 6 L, , () 0 I n 0 4
vfrl 9ni404,C'lol414,9ol1,24,9ol024,9ol064,"ol014,9ol034,9ol044
vfrl 9ol152,9ol572,9oiS3?,qol5112, 0 ol552,9ol17?,9ol56?,9oll02
vfd 9nl502,9nl512,9ol52?,9ol1?2,9ol1~2,9ol112,9ol132,qoll42
vfrl 9ol25?.,9ol672,9olf3?,9ol~t,2,0nl652,9ol?72,9nl66?.,flol20?

vfd 9nl602,9ol612,9olf'2?,9ol222,9ol?62,9o l 212,9ol232,9ol242
vf rl 9oi35F,9ol776,9ol736,9ol746,9ol7 56,9ol376,9ol766,9ol306
vfrl 9ol706,9ol716,9ol72~,9ol326,9n l 366,9ol316,9ol336,9ol3 1,6
vfrl 9o l 150,9ol570,9ol530,9ol54n,ool 55 0,9ol170,9ol560,9ol100
vfrl 9o l500,9ol 510,9ol52 0,9o l1 20 ,9ol1 60,9olll0,9ol130,9ol1110
vfrl 9ol254,9ol674,9ol~34,9ol644,9oiE54,9ol274,9ol664,9ol204
v f ~ 9ol604,9ol614,9ol624,9ol224,9ol264,9ol214,9ol234,9ol244

11 F.Nf'l INCLUDE FILE confus ion_tahle . lncl.alrn

An Enciphering Module for Multics page 62

APPENDIX D - INTRODUCTION TO MULTICS ASSEMBLER

This section is intended to be a quick introduction to

the Honeywell model 6180 processor for those who are

unfamiliar with its machine language .

The 6180 is a word-addressed machine with a 36-bit

word; it also possesses some very powerful bit string and

character string handling instructions . There are two major

arithmetic registers of 36 bits each, the accumulator (A)

and the quotient (Q) registers. These may be coupled to

form a double length register, the AQ. Instructions ending

in A, Q, or AQ operate on the corresponding registers.

There are in addition eight index registers of eighteen

bits each. Instructions ending in xN where N is an octal

digit operate on these registers. Most index register

instructions take a storage operand in the top half of a

word, except for sxlN (store xN in lower half) and lxlN

(load index N from lower half).

There exist eight pointer registers for generating

segment number - word number pairs. These registers contain

a character offset and a bit offset from the addressed '"ord

for the use of character string and bit string instructions.

- The names of these registers (in numeric address order) are

ap, ab, bp, bb , lp, lb , sp and sb. The ap points to a

procedure's argument list. The lp points to the procedure ' s

linkage section where internal static variables are kept,

An Enciphering Module for Multics page 63

such ~s t h e key. The sp points at the stac k frame, in which

automatic variab l es are kept . Variables declared in a

"temp " or "tempd" pseudoop are placed in the stack frame by

the assembler and are given one or two words each

respective l y . A temp variable may also be given a subscript

in wh ich case it wi ll be assigned that many word s.

Declara tion in a t emp or tempd implies an sp reference. The

other pointe r registers are used for spar e regi s ters; for

example , t he bp point s a t the input string and the b b poi nts

at t he output string .

A sample ins truction would be

l dq l pffoo

This i nstr uction wil l load the Q reg ister with t h e i nternal

static (because of t he lp reference) variab le foo.

a dq 15*8,dl

\'lill a dd 1 20 to t he Q r egister. Th e dl a ddress modifier

causes t he address field to act

pa dded on t he left wi th zer oes.

lik e a me mory op e rand ,

The du modifier pads on the

right with zeroe s.

The fol lmving stran ge-looking mu ltiv10rd instruction s

a r e t h e special c h a r a c te r string and b it s tring

ins t r uctions ; this one perfo r ms b oole a n operations on bit

s trings . He re a s imp le move i s ind i cated .

c s l

de scb

descb

(pr , ql), (pr, al) ,fill (0) ,bool (move)

b p j 0,8

convolut ion,9

An Enciphering Module for Hultics page 64

will move eight bits from the address bpiO+ql to a

field (padding with a zero bit) at convolution

9-bit

(plus

implicit sp reference) + al. The offset modifiers ql and al

refer to the bottom of the Q and A.

mvt (pr) , (pr)

desc9a

desc9a

confused_bytes,8

confused_bytes,8

arg confusion_table+3-*,ic

will translate ~~e eight 9-bit bytes at confused_bytes

(first argument) according to the table at confusion table

(third argument) and deposit the resultant eight 9-bit bytes

in confused_bytes (second argument). The lookup is done by

treating each character as an index into the table.

A list of most of the instructions used in Lucifer and

their meaning follows.

ada, q, xN

ana, q, xN

anaq

arg

cmpa, q, xN

csl

descb

add to A, Q, xN

and to A, Q, xN

and to AQ (t\-10 words)

zero opcode (used for mvt table and

constants)

compare A, Q, xN

combine bit strings Jeft (three

word instruction)

a pseudoop which generates a bit

string descriptor for a csl

An Enciphering Module for Multics page 65

desc9a

eaa , xN

eppN

era , q , aq , xN

ersa, ersq

lda, q, aq

ll r

lls

lrl

l xlN

mlr

mvt

ora, q, aq

orsa, q

qls

sba, q, xN

sta, q, aq

stxN

stz

t mi

tnz

t p l

instruction.

generates a 9-bit character descrip tor

effective address to A (top half), xN

effective pointer to pointer

register N

exclusive or A, Q, AQ, xN

exclusive or A, Q to storage

load A, Q, AQ

long (AQ) left rotate

long (AQ) left shift

long (AQ) right logical shift

load xN from lower half

move character string l eft t o righ~

(three word instruction)

move with translation

(four word instruction)

OR A, Q, AQ

OR A, Q to storage

Q left shift

subtract A, Q, xN

store A, Q, AQ

store x N

store zero

t ransfer on minus

transfer on not zero

trans~er on plus (including zero)

An Enciphering 11odule for Multics page 66

tra

ttf

unconditional t ransfer

transfer tally-runout flag off

Address modifiers appear after a comma in an address

field. For example

ldq bp!O,x2

causes indexing by x2 .

xN

*
*xN or *N

xN* or N*

index by index register N

indirect

indirect then index (i.e., add

index register to address in

indirect word).

index then indirect

As well as xN index modification, t h e following can be

used whenever xN appears above:

au top of A

al bottom of A

qu top of Q

ql bottom of Q

ic instruction counter

du direct to upper

dl direct to lower

An Enciphering r-iodule for Hultics page 67

The indirect and tally modifiers add-delta (AD) and

subtract-delta (SD) take an indirect word. Add-delta

causes, after the instruction is executed on the operand

pointed to by the address field (bits 0 - 17; the operand

lies in the same segment as the AD word), the delta

(rightmost six bits) to be added to the address field. The

tally (bits 18 to 29) is decremented by one. If the tally

reaches zero the tally-runout indicator is set, but no fault

occurs. Subtract-delta, before executing the instruction,

subtracts the delta from the address field and increments

the tally by one.

An Enciphering Module for Multics page 68

BIBLIOGRAPHY

1. Girdansky, M. B. "Cryptology, The Computer, and Data
Privacy," Computers and Automation, April, 1972, pp. 12-19.

2. Smith, J. L., "The Design of Lucifer, a Cryptographic
Device for Data Communications," IBM Research Report RC
3326, April 15, 1971 .

3. Honeywell Information Systems, Inc. Honeywell 645
Processor Manual.

Related material:

4. Smith, J. L., Notz, w. A., and Osseck, P. R., "An
Experimental Application of Cryptography to a Remotely
Accessed Data System," IBM Research Report RC 3508, August
18, 1971. (Also~~ 25th~ Conf., August, 1972, pp.
282-297.)

5. Feistel, H., "Cryptographic Coding for Databank Privacy,"
IBM Research Report RC 2827, March 18, 1970 $

6. Feistel, H., Notz, w. A., and Smith, ,T . L.,
"Cryptographic Techniques for Machine to Machine Data
Communications," IBM Research Report RC 3663, DeceiTlber 27,
1971.

MIT / LCS/ TM-50

AN ENCIPHERING MODULE

FOR

MULTICS

G. Gordon Benedict

July 1974

MASSACHUSET-;-S INSTITUTE OF TECH OLOGY

PROJECT MAC

PUBLICATIONS TR/TM FOfuV.

Title of Thesis or Report:

An Enciphering Module for Multic s

Author(s):

Go Gordon Benedict

No. Assigned:

MAC TM- 50

Technical Report:

Technical Memoranda: v'

If Thesis, type:

S.B. Thesis (June 1974)

Department:

EE Dept. Systems Research - Division II

PUBLICATIONS DISTRIBUTION
PROJECT MAC, ROOM 417A

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
545 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139

253-5894

July 1974

We have recently issued Project MAC Technical Memoradum 50:

An Enciphering Module for Multics

Benedict, G. Gordon (This Technical Memorandum
reproduces a June 1974, M.I.T. Electrical
Engineering Department S.B. Thesis of the same
title)

AD 782-6 58

ABSTRACT

Recently IBM Cor poration has declassified an algorithm

for encryp tion usable for computer-to-computer or computer

to-terminal communications. Their algorithm was implemented

in a hardware device called Lucifer. A sof tware implementation

of Luci fer for Multics is described. A proof of the algorithm's

reversibility for deciphering is provided . A specia l hand- coded

(assembly language) version of Lucifer is described whose goal

is to attain performance as close as . possible to that of the

hardware device. Performance measurements of this program are

given. Questions addressed are: How complex is it to impelment

an algorithm in software designed primarily for digital hard

ware? Can such a program perform well enough for use in the

I/0 system of a large time- sharing system?

