
CAMBRIDGE

MAC TR-117

AN INPUT/OUTPUT ARCHITECTURE FOR VIRTUAL

MEMORY COMPUTER SYSTEMS

David D. Clark

Janttary 1974

This research was supported by the
Advanced Research Projects Agency
of the Department of Defense under
ARPA Order No. 2095 which was moni
tored by ONR Contract No. N00014-70-
A-0362-0006.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

MASSACHUSETTS 02139

AN INPUT/OUTPUT ARCHITECTURE FOR VIRTUAL MEMORY COMPUTER SYSTEMS

BY

David Dana Clark

Submitted to the Department of Electrical Engineering on August 20, 1973
in partial fulfillment of the requirements for the Degree of Doctor of
Philosophy.

ABSTRACT

In many large systems today, input/output is not performed directly
by the user, but is done interpretively by the system for him, which causes
additional overhead and also restricts the user to whatever algorithms the
system has implemented. Many causes contribute to this involvement of the
system in user input/output, including the need to enforce protection
requirements, the inability to provide adequate response to control signals
from devices, and the difficulty of running devices in a virtual environ
ment, especially a virtual memory. The goal of this thesis was the creation
of an input/output system which allows the user the freedom of direct access
to the device, and which allows the user to build input/output control
programs in a simple and understandable manner. This thesis presents a
design for an input/output subsystem architecture which, in the context of
a segmented, paged, time-shared computer system, allows the user direct
access to input/output devices. This thesis proposes a particular archi
tecture, to be used as an example of a class of suitable designs, with the
intention that this example serve as a tool in understanding the large
number of interactions which exist between the various parts of the input/
output system. These interactions make the design of an input/output system
more complex, for they prevent the independent investigation of the various
input/output system parts. Using this specific system, the thesis draws
several conclusions, some of which are 1) that in order to provide .a
coherent and understandable program structure, input/output operations
should be contained in a process dedicated to the task, which uses inter
process communication facilities.to signal to other processes, 2) that to
allow the user to refer to his device in a simple fashion while using the
segment access controls to protect his devices from other users, the input/
output device should be interfaced as a number of memory words, which can
be mapped into the environment of the user as a segment, 3) that the
virtual memory can meet t~e timing needs of the input/output system with
out compromising its own functions by the use·of time limits on the dura
tion of the input/output operations, and 4) that interrupts should not be
part of the user environment, but should be hidden from the programmer, so
that the input/output program he provides is sequential rather than
interrupt driven in structure, a much preferable form.

THESIS SUPERVISOR: Jerome H. Saltzer
TITLE: Associate Professor of Electrical Engineering

2

". ;

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Professor J. H. Saltzer,

and my thesis readers, Professor F. J. Corbato and Professors. Patil, for

their advice and guidance. Their sus&est;~s have been most helpful in

shaping the ideas in this thesis. The conme~t~ of.a~hers who have reviewed

the material are also gratefully acknowledged.

Without the assistance of Muriel Webb~, who typed drafts from

countless pages of my hal'ldwrit;ing, the. thesis. ,might .not have proceeded

at all.

Finally, I would like to thank all thos.e, and 84pecia.lly my wife

Susan, who have given me encouragement and support d~ring this somewhat

protracted undertaking.

This research was supported by the Advanced Research Projects Agency

of the Department of Defense under ARPA Order No. 2095 which was monitored

by ONR Contract No N00014-70-A-0362-0006.

3

TABLE OF CONTENTS

ABSTRAG'I

ACKNOWLEDGEMENTS

LIST OF FIGURES

Chapter

1.

2.

3.

4.

INTRODUCTION

Defects of Cutrent I/O Systems
OVerview of Thesis
Review of Related Work

THE BASIC I/O SYSTEM

Preliminary Simp li fica tiona
The Representation of the Device
Mapping the Device into the Users'·J!:n.vironment
Connection of Device Selector to Device
The I/O Environment -- A Summary
Parallelism in I/O
The Handling of Errors in I/O
Interprocess Signals
Stopping a Process
A Look Behind and Ahead

INTERFACE TO RECORD ORIENTED DEVICES

The Effect of Frozen Pages on the System
The Effect of Frozen Bindings on the User
Other Bindings
Stopping the I/O Process
Other Forms of the Time Bound
Summary

BUFFERED INTERFACES

A Model of I/O Buffering as Several Parallel
Algorithms

Synchronization of Buffer Algorithms
Error Recovery with Buffers
Other Forms of Buffering
An Example of a Multi-level Protocol
Summary

4

2

3

6

8

12
16
20

27

27
29
35
39
41
43
51
56
58
61

65

70
73
76
76
77
79

81

86

89
94

103
105
108

5

Chapter

5.

6.

7.

B.

MULTIPLEXING IN THE I/O SYSTEM

Sharing of the Ports on the Device Selector
A Multiplexed Device Controller
A Multiplexed Communication Line
Multiplexing of External Buffers
Multiplexed Ports Re-examined
Summary

PROCESSORS AS A SCARCE COMMODITY

Dynamic Assignment of I/O Processors
Buffers as a Tool for Processor Scheduling
A Specialized I/O Processor
Program Structure Induced by SPs
A Channel-Processor Programming Scheme
Impact of Process Suspension on Multiplexing
Summary

MEMORY AS A SCARCE COMMODITY

Memory Costs Associated with I/O
Cost Reduction through Memory Management
Fair Share Resource Distribution
Compatibility with Other System Functions
Summary

CONCLUSION

Future Research

APPENDIX A: Details of Buffer Algorithms

APPENDIX B: Review of Interface Between Device and
Device Selector

Comparison with Other I/0 Interfaces

BIBLIOGRAPHY

BIOGRAPHICAL NOTE

110

111
112
115
118
122
123

125

126
132
136
141
143
146
148

150

152
153
157
159
163

165

171

176

182

185

188

191

LIST OF FIGURES

Figure

1-1: Possible modularization of I/O system.

2-1: Module interconnections with devices represented as
memory.

Page

11

32

2-2: Module interconnections in system with specialized 32
I/O processor.

2-3: Typical memory implementation, showing relation between 33
addresses and physical modules.

2-4: Program in PL/I to read data from a tape. 37

2-5: Interface between device and device selector. 42

2-6: Sequential form of flow chart for I/0 control program. 47

2-7: Interrupt-driven form of flow chart for I/O control 48
program.

2-8: Redrawing of Figure 2-7 to resemble Figure 2-6. 50

2-9: Module interconnection with buffers added. 63

4-1: Buffer inserted between device and device selector. 85

4-2: The two stages of data flow in a buffered device. 85

4-3: Several buffer stages and associated data flow 87
algorithms between device and selector.

4-4: Device interface of Figure 2-5 with ~ operation 97
required and buffer error recovery lines added.

5-l: Device interface of Figure 4-4 with reverse write 117
ready line added.

5-2: A scheme for multiplexing buffers. 121

6-1: Device interface of Figure 5-l with~ processor 129
line added.

6-2: I/0 system augmented by addition of specialized 137
processor.

6

7

'l(f

,i '· •t _., n !g"l i t·hm for buffer.

i 1 ·. i .>u'r i 1. hm fo1· hu ffer <vi thou t wor line.

·:n

l {I

J,"

I_,,,.

I " i , I

I:·

Chapter 1

Introduction

The last few years have seen a great advance in the sophistication

of computer operating systems, particularly with the interface between

the user and the computing resource, as certain features of the com

puter, not optimally structured as far as the user is concerned, are

modified by software or hardware to provide a better interface. Examples

of these modifications include time-sharing, which adjusts a computer to

the speed and response needs of users, and virtual memories, which re

move the limitations imposed by the size of the primary memory of the

computer.

In contrast to other computer subsystems, the user input/output sub

system has undergone relatively little evolution. Thus, even in a fairly

sophisticated operating system, the user wishing to do his own I/O can

still discover an awkward and restrictive I/O interface. This state of

affairs holds because the insights that form the basis of an orderly

system implementation do not exist for I/0. I/O subsystem implementa

tions are still complex and ~ h££, with resulting disadvantages. The

purpose of the thesis is to identify the problems which a're central to

the complexity of I/O subsystem design, and to develop the understanding

which will allow orderly solutions to these problems.

In this thesis the term I/O will be used to mean I/0 performed at

the request of the user, rather than I/O performed by the system to sup

port system functions. For example, input or output to the disk to sup-

8

9

port paging will not be considered. Another way of describing the I/O

to be studied here is that it is I/O to devices which are controlled by

the system only to the extent of granting or denying permission to use

them. From the system point of view, the device is just a source or

sink of data.

The I/0 subsystem will be considered in the context of a large

multi-processing time-sharing system. The system will provide multiple

virtual memories, each consisting of a paged segmented address space,

with protection mechanisms provided to control access separately to each

segment in the virtual memory. Each user is provided with one or more

processes, each characterized by a current value of an instruction

counter and an associated virtual memory. In other words, every process

has its own address space. The supervisor will be distributed; that is,

the programs which constitute the operating system are implemented as

segments containing code which execute in the process of the user on

whose behalf they are run. The system code exists in all address spaces,

rather than being isolated in an address space of its own.

This particular kind of computer operating system was chosen as

being far enough advanced to make this research interesting but well

enough developed to provide faith that the implications and interac.tions

of the various features are indeed understood. One implemented system

with these features is the Multics system (8,9,31). This system will

be used from time to time through the thesis as an example; it has been

chosen as an example because of the author's familiarity with it, and

because its generality tends to subsume most other systems. It is very

10

important to have an example such as this, for, in the field of operating

system design, the knowledge is lacking which allows the analytical de

monstration of the effectiveness of given techniques. Lacking such ana

lytical tools, it is necessary to turn ~o existence proofs, in the form

of implemented systems, to show that some proposal is indeeed practical.

It is important to stress, however, that prior knowledge of the Multics

system is not required in order to understand this thesis. The observa

tions which the thesis will make about I/O are not restricted to MUltics

by any means, but are believed to be rather more general.

In an attempt to identify the particular aspects of I/O which will

be considered in this thesis, a possible modularization of an I/O sub

system is presented in Figure 1-1. The thesis will concern itself with

two modules in the figure: device dependent functions and hardware in

terface ~ control, because most complications seem to be centered here,

~nd because proper design of these modules is crucially related te the

proper functioning of the operating system as a whole. Little will be

said about the design of the I/O device itself, the bottom module in the

diagram. Other than assuming that devices come in a wide range of trans

far rates and data path widths with various timing constraints, device

details will be ignored. The reader may think in terms of disks, tapes,

printers, typewriters, etc.

The upper modules in the diagram will be excluded because design of

these functions seems much better understood, and because these functions

seem less central to the basic supervisor operation. A device-indepen

dent interface at a fairly abstract level has been achieved or discussed

module

user
program

language
support

device
independent
functions·

device
dependent
functions

------- -------

hardware
interface

and
control

device

11

software --fiardware __ _

funCtion

initiate read or write call

formatting

mapping I/O onto proper device,
support of standard interface

generation of device instruc
tions, buffering, interrupt .
handl.tng

multiplexirtg, external buffering

Figure 1-1: Possible modularization of I/O system.

12

in several forms. Multics, for example, has provided a general interface,

in the form of a number of subroutine calls, which allow equivalent opera

tions on different devices to be expressed in the same way. One routine

reads, another writes, and so on. To specify which device is to perform

the operation, a symbolic name is supplied on each call. Since the re

lation between name and actual device may be modified dynamically by

other calls, the particular device invoked by a given call at this inter

face may be changed without altering the program making the call. For a

more detailed description of this interface, see the paper by Feiertag

and Organick (18).

An alternate form of device-independent interface is to model de

vices as separate processes, and to send information being read or writ

ten messages through the interprocess communication mechanisms of the

system. This is a slightly more restrictive interface, for only those

aspects of the device which are mirrored in the interprocess communica

tion mechanism can be affected at the interface.

Defects of Current I/O Systems

In order to understand what this thesis hopes to achieve, it is first

necessary to understand what is wrong with I/O systems as they exist

now. Examination of current systems reveals that the various superfi

cial defects observable are caused by five general problems which beset

the I/O subsystem. These five problems are as follows:

First, I/O subsystem designers have had a hard time matching the

resources actually consumed by an I/O task to the resources required.

I/O devices usually operate at a much slower speed than the speed of the

--------~------~--------~------------------------·---

13

computer to which they are attached. It was thus realized very early

that if the processor were used directly to perform I/0, it would be

very inefficiently utilized. A variety of techniques have been intro

duced to attempt to reduce the resources needed for I/0. The problem

is that these techniques have, in the process of achieving their goal,

introduced other restrictions and inconveniences. For example, to re

duce processor costs associated with I/~ channels (special purpose pro

cessors) were devised to stand in place of processors. But this intro

duced a channel programming language, and the complexities of program

structure which result from adding a second processing element to the

computation, Another technique developed to reduce processor costs was

scheduling of the processor using interru~. But this development intro

duced the awkward program structure which interrupts can cause.

To reduce memory costs associated with I/O, special buffering

schemes were devised, But buffering can cause two problems. First, the

user may be required to perform his I/0 indirectly through the module

managing the special buffer, rather than directly from his own program.

Second, any use of buffers introduces the c6mplexity we will call data

pipelining. Data pipelining describes any situation in which items do

not move directly between device and memory, but rather inhabit inter

mediate storage on the way, such as memory buffers, hardware buffers,

queues in multiplexors, etc, The result of data pipelinlng is that the

instantaneous description of items transferred is very complicated, so

that it is often awkward to determine just how far an I/O operation pro

ceeded, for example if it stopped on an error. This pipeline of data

must also be flushed on occasion, say if data for a stopped device is

-------- ----- - ----- ---------

14

clogging some multiplexed facilty.

To reduce the cost of peripheral components associated with I/0,

the components are shared, or multiplexed, among several devices. But

this destroys the uniform appearance of the I/O system (various devices

are multiplexed in different ways), and may eliminate the possibility of

hardware control of access to devices. Clearly, the resources required

for I/O should be minimized, but equally clearly, these various draw

backs should be avoided.

Second, I/O.designers have had a hard time matchiRg timing con-.

straints of I/O devices to the timing characteristics of a virtual en

vironment. If a user is given direct access to his device, he will ex

pect it to operate' in the environment he sees. But if the user's en

vironment includes a virtual memory, then the real time restrictions of

the device must be reconciled with the unpredictable delay which such

things as page exceptions cause in a virtual memory reference. The solu

tion to this problem often has again been buffers, with the associated

problems discussed above.

Third, I/0 designers have had a hard time integrating the asyn~

chronous nature of I/O into the process structure. It is appropriate to

view I/O as. going on in parallel with, or independent from, the rest

of the user's computation~ The user's computation will proceed faster

as a result and system throughput will increase. The desired paral

lelism can, however, be produced in a variety of ways, some less desir

able than others. The use of the interrupt to simulate parallelism is

an obvious idea, but it produces a structure with various undesirable

characteristics, as will be discussed in the next chapter.

15

Fourth, I/O designers have had a hard tUne developing mech~nisms

which apply to a large class of devices. This is a slightly different

sort of problem than the three before. It is perhaps more of a design

criterion which has so far been violated. A good example of this prob

lem is buffering, mention~d above as a solution to several problems. If

designers could identify the sUnilarities between several devices, and

build one buffer manager whi.ch served all, they would derive various

benefits. Obviously, one benefit would be that there was only·one mana

ger to code, install, ·and maintain. Perhaps more ·importantly, one buf

fering strategy could be integrated into the system itself as part of the

virtual memory manager, whereas it is much more difficult to justify in

cluding a coll~ction of specialized strategies, which will rather exist

more like accessories fastened to the outside of the system. The bene- ·

fits of having the I/O buffer scheme fully integrated into the virtual

memory should outweigh any loss of local efficiency which follows 'from

exploiting the sUnilarities rather than the differences between devices.

Fifth and last, the I/O designers have had a hard time devising an

I/O architecture which is clean, simple, and elegant. The result of this

is that I/0 programs are difficult to write, the correct functioning of

mechanisms is difficult to prove, and the mechanisms th~selves are dif

ficult to understand. This problem, like the previous one, is in the

nature qf a design criterion. Clearly, this thesis cannot afford to re

strict itself to issues of functionality; it must consider issues of ele

gance and cleanliness as well, for it is crucial that·the architecture

presented in this thesis be easy to understand as well as functionally

correct.

16

Overview of Thesis
~------ -- .

These preceding five observations allow a general statement of the

goal of this thesis, which is to shOl\1 that by -making the proper assump-

tions and the proper design decisions, it is possible to build a system

which is compatible with a virtual memory machinE! of the kind discussed

here, and which at the same ttme succeeds in correcting the five de-

fects discuss~d above. This is a rather general statement of the thesis

goal. lt can be stat.ed more.specifically as follows: the failure of

I/O system designers to cope with the five given defects has two ob-

vious consequences, which this the~is .intends to eliminate. The first

consequence ia that lolhile it is .. always desirab.le to have as lit.tle of

the system as possible within the privileged supervisor, in order to

foster flexibility and to reduce the bulk of, the code on whose correct-

ness the system depends, the cod.e. implementing the va~rious I/O functions

often require supervisot: privileges and protection, for such purposes as

control of. mult.iplexed modules, shared buffers., or the channels them-

selves. This in turn implies that the. user. cannot repla.ce these I/O

programs, but must be content with what the system provides. Second,

programs implementing tbese functions are difficult to write, error-

prone, and· very CQ[!lplicated in structure. One classic cause of this

complexity is the interrupt, which can cause· a very awkward program

structure. Other. causes mentioned above were special channel languages

and improperly implemented parallelism.

The goal of the· thesis can now be stated, in terms of these con-

sequences, as attempting to. build a system which,. first, gives the user

direct access to his I/O device, rather than requiring him to use inter•

17

posed system code, and second, provides an environment in which building

an I/O module is not so exceptionally difficult as it now seems to be,

In order to achieve this goal, the thesis must proceed in stages;

there is no one insight which will sweep a~y all difficulties at once.

Rather, there are several design decisions .which .must be made, and,

perhaps more difficult, which must be integrated with each other. One

of the problems of I/O is that the various issues of I/O design influence

each other to a high degree, so that the implementor can easily become

lost in a maze of interacting solutions.

The technique this thesis will use to launch an orderly attack on

the problem is to make several simplifring assumptions, the effect of

which will be to ignore certain of the defec.ts listed above. In p&J::ti-
. ·,

cular, a system will first be presumed in which I/O may ponsume any

amount of resource needed, and in which there are no real timing con.,.

straints anywhere in the I/O system. Elimination of these two problems

will allow initial concentration on the more fundamental issue of what

appearance the I/O system shall have in the virtua,l .environment of the

user. How shall the parallelism implied by I/O be represented? Per-

haps more basically, what shall the representation of the I/0 device

itself be in the user's environment? The thesis will propose a parti-

cular solution to this subset of the problems, and willthen demonstrate

the validity of this solution by removing the yarious simplifying assump-

tions one by one, and evolving a solution which succeeds in coping with

the defects thus revealed. As these assumptions a.re reconsidered, the

thesis will proceed from a fairly idealized I/O s~bsystem to one which

might be practical by today's standards.

18

The thesis will be organized as follows. In the next chapter, the

first version of the I/O system will be presented. It will depend on

several simplifying assumptions, as mentioned above. The most distinc-

tive and important feature of this simple I/O system is that the I/O de-

vice is represented in the environment of the user as some number of

words in his virtual address space. This particular device interface

has several important-advantages: it allows the user to reference his

device without using special I/O instructions, it allows the device to

be protected from access using those tools which protect segments in
. '

the virtual memory, and it causes a great simplification in the role and

architecture of channels; The chapter will then disc'uss how to implement

the parallelism appropriate for i/o, and the correct program structure

to deal with errors and with signals from the device. It will do so by

assuming the existance of several processes, one or more for the main

computation of the user, a separate I/O process, and additional pro

cesses which wait for. errors to 'occur. The result of this process struc-

ture is that no device ever "interrupts" a process asynchronously.

Chapters 3 and 4 deal with the problem of reconciling the timing

characteristics of the device and of the virtual memory. Chapter 3

discusses a modification to the virtual memory, in which the I/O process

is ailoWed to fix necessary pages in memory during I/O operations. The

chapter shows that imposing an enforced time limit of negotiable dura-

tion on this fixing of pages is a sufficient constraint to make the tech-

nique acceptable to both I/O process and virtual memory. In this chapter

the use of the time limit will restrict the technique to record-oriented

devices, but in Chapter 7 the restriction will be relaxed, so that an

19

interface between I/O and the virtual_memory ~s provtded which is appli-

cable to a very wide variety of devices. Cbapte~ 4 discusses an alter-

native to this technique, in which ,the virtual lUIDOry is not modified,

but rather buffers ar13 .inserted betw~n. the· deyice and the rest of the

system. The chapter discusses the problems of buffers, or .more g.ener-.

ally the problems of data pipelinJng, which must be resolved before buf-

fers can be utilized. It concludes that while buffers can, under cer-

tain circumstanc13a, cause sever!ill complications, they ca,n, if properly

designed, prove very helpful .. ·The buffer design which Chapter 4 de-

velops can be used. for .sever•l purJ>O&es other than relieving timing con-

flicts with the virtual memory. In particular, bl.lff.ers are helpful in . .

the multiplexing of resources, especially procea&,ot'&.

Chapter 5 will introd\lCe var:l,ous sorts of multiplexing into the

I/O system. It will co.nclude tbat while .PlOSt kinds of multiplexing are

quite appropriate, there are certain sorU, the multiplexing of I/O ports

and the multiplexing of certain kinds of buffers,. whieh· are capable of

causing trouble. The.c~apter will identify. these,and ~how ~hat problem

they have.

Chapter 6 considers how to reduce the cost of processors use4 to

perform I/O. It discusses the techniques mentioned above: cb4nnels and

scheduling by interrupts. For channels, it shows that representing a de-

vice as a sequence of memory words allows a great simplification in chan-

nel structure. For schedulins by interrupt, it shows that a structure

can be imposed on interrupts which avo.ids the bad. effects interrupts so

often cause. The chapter also shows that buffers •• developed in Chap-

ter 4 can be used as tools to reduce processor costa.

20

Chapter 7 conslders reducing memory costs. It reconsiders Chapter

3, in which a modification was performed on the virtual memory manager

to interface it successfully to I/0, and it extends the class of devices

to which the modification can be applied, while reducing cost at the

same time. The resulting technique is applicable to essentially all the

devices which the thesis will have considered.

Chapter 8 will conclude the thesis by reviewing the total system

which results from the combination of these various techniques. By this

point in the thesis, many specific issues will have been discussed, in

cluding buffering and data pipelining, I/O language semantics and syntax,

the I/O device interface, parallelism, multiplexing, and asynchronous

virtual memory interaction. Clearly, an integral part of this thesis

must be to show the proper role for issues such as these within the I/O

system. Equally clearly, these specific issues are only part of the

thesis. More important is the combining of all of these issues in such

a way that a system results which conforms to the broad goals stated

above. Hopefully, ont:! result of the thesis will be to give insight into

the relation between the specific issues and the general goals. This is

the understanding which is really needed and currently lacking in I/O

system design.

Review of Related Work

Research on I/O systems can be divided into two classes: those

papers which consider some small portion of the I/O system, and those

papers which try to integrate several issues to come up with a coherent

overview of the I/O system as a whole. Papers in the former category

21

are far more common.

Buffering, for example, has been the subject of a great many papers.

One of the most common topics is determination of the proper size of a

buffer, given a particular buffer strategy, a question which this thesis

will largely neglect. It would be hopeless to try to reference all of

the queueing theory papers which might bear on this topic. Papers speci-

fically related to computer I/0 buffering have been written by Chang (3),

Chu (4,5,6,7), Delgalvis (13,14), Dor (16), Gaver (20), and.Wolman (40).

Some of these papers might be applicable in a practical ~plementation

of this I/O system, but we shall not be concerned with this sort of re-

sult in this thesis.

Considerable concern has been given to schedulina of the processor

so as to give proper response to 1/0 tasks. Queueing .theory.has been

employed to attack this problem. Muntz and Coffman (30) attempt to find

the min~um execution t~e of a collection of interrelated tasks given

the execution t~e of the individual tasks. Held and Karp (24) attempt

to find the opt~um scheduling order given s~ilar conditions. Man-

chester (27) finds conditions such that starting and finishing time l~its

are met. These papers are not directly applicable to this thesis, be-

cause of the various assumptions which they make about the tasks. In

particular, they are more ·concerned with scheduling a number of inter-
. . .

related tasks, rather than independent tasks. But they are interesting

because of the knowledge which they require of each task. In Ch~pter 3

of this thesis, tasks will be characterized by a maximum running time.

These papers, in general, require two other parameters, the max~um

time before which the task must be completed, and the min~um time be-

22

tween successive requests to run the task. Papers by Fiala (19) and

Strollo, Tomlinson, and Fiala (38), have shown that if all real-time

tasks are described by these three parameters, it is possible to devise

a scheme which will integrate scheduling of these tasks into a time

sharing system of the sort envisioned here. These papers describe an

analytical technique to discover whether a given collection of tasks can

be run within the constraints of the parameters, and also describe

various scheduling rules. The thesis will not discuss guaranteed res

ponse time scheduling. It will be assumed that if, in order to make

some device work properly, such scheduling is required, then the tech

niques described in these last two papers could be integrated into the

I/O system of this thesis. The thesis will lay sufficient groundwork

that such an integration should not .be ciifficult.

One difficulty with I/0 is that in order to refer to the device it

self it is often necessary to use some specialized language. Several

attempts have been made to provide a device representation which could

be made part of a high-level language. Gertler (21) describes an addi

tion to Algol which allows an I/O device to be manipulated as a variable.

Boulton (2) describes a similar modification to PL/I. The ~ Trans

actions on Industrial Electronics~ Control Instrumentation, Volume

IECI- 15, 2, December, 19 68, contains papers on a variety of schemes

which allow device control programs to be written in Fortran. This

thesis will achieve a similar goal of representing the device in a high

level language, but it will do so in a form somewhat different from that

above, in that our high-level language representation will directly mir

ror the hardware.representation of the device, which was not a goal in

23

the_above papers.

The next chapter wUl dev•lop a ratM;J": idealtzed I/O system, Which

will gain i;s considerable .si.mpliciliy by ianoring two objectives, the

controlling of resource ~sage.,nd l;h,e aeettna of·.the•cleviee time·con·

straints. The reader .,.y ff!el tha~- the sbapUcity so, achieved ·ts ·dece~

tive,. in the set?-se t~t _ther~ •re _probatbly other ;&SSUIIlptions Jllllde which·

would render even this systeaa compl,lca~ed.. in practice. As an indicatiOn·

of the sitllPlicity which can in practi~e rf!e'ult, ·:the paper by Hatch (23)' :

is interesting. .It clescribee an tu.plemeated.'S,Stem' wb:Lch clisp&ses' of ·

tijese .two objectives, first by the use of c:haeeJ.a,l and aec~ntd by ·lteEWp(rtg

all of the user's storage in core at all times. As may ~· 'f.tll&gined, tlt!•a·

imposes some other liulite OQ. .the uler, but· .the 110 .s,etau which results .. . ' .

is rather _simp~e and. t:.l.ean~ ·Ivan wi.th .Uaiibd :hardllas'e support, the

user may write.: and .execute. his own channel p~rosrawudth mint.al system·

intervention •

. One paper. which directly consi.S..~• the' f.ntearatiort of I/O into a

paged, segmente~, virt..-1 ...-.zy. syst• ·is. the· theMe by Smith .(37).

This thel!!is, howev~r~ .deals with Oflly two. tc:»pics tn particular. One

topic is the struct1,1re which ltbe- I/0 .. eon~rol.pi'Cfiraa thoulcl have, given

that the device i,s controlled by a chanQel t:albel'. thall the p.rocessor.

itself. The thes~s cOQcludes .that thfi IIO cctl)trol proaram ia-best struc·

tured as a si,ngle sequential process whieh •ves 1t84lf ,explicitly from

processor to channel and back as necessary. This is a resul-t wi.th which

we agree in,principle• it will be di.a.cu.eaed 1n Cba;pt.er 6. Tire other·

topic conside.red by Smith is the archf.te.cture of· the auociative memory

which woul~ be used in th~ conve.J::sion of vi~tual to real a4dressa•.

24

This thesis will not consider in detail the utilization of such an asso

ciative memory. One point·, however, is that Smith fails to consider

the need to clear the associative memory, which cause's problems because

it places a large transient load on the address conversion machinery.

It is not as obvious as Smith·would suggest that all channels should

take advantage of an associative memory. The most important problem

with Smith's thesis is that he fails to integrate into his scheme the

important issues of memory management and asynchronous virtual memory

interaction. He presumes that any page which will be needed is already

in primary memory, without discussing how it got there or the cost of

keeping it there.

Wir:th (41). attempts to deal with the issue of parallelism in I/0.

The important conclusion he reaches is that while parallelism is an

appropriate tool in doing I/O, there are· good· and bad ways· of producing

this parallelism. The technique WLrth uses, which is similar in struc

ture to that of this thesis, U to make the I/O prbgram part of a diS

tinct proceSS, which COIIIBUnicates with the main computation of the user

by means of the normal system interprocess communication tools. However,

the particula.r technique Wtrth uses to structure the '1/0 process does

not give the user full direct access to the device, and restricts the

techniques available for error recovery. Also, Wirth does not consider

I/O in a virtual memory context, and thus does not consider issues of

memory management.

As the above suggests, any orderly I/0 system implies some inter

process communication tools. Two well known sets of tools have been

developed: Baltzer ·(35) describes the primitive~ and wakeup.·

---- ----- -----,---- -~c~' ,~~-

25

Dijkstra (15) describes the primitive .£ and y. Either can be made to

work. The book by Organick (31) describes the Way Multics implements

interprocess communication using block and wakeup.

The single feature which mast shapes the I/O system of this thesis

is that the device is represented in the virtual environment of the user

as a sequence of memory words. This is not the normal interface for a

device; but there are two computers which have implemented such an inter

face in some fashion. One is the PDP.;ll, manufactured by the Digital

Equipment Corporation (ll; 12). The interface to each device in this

machine is as a number of memory words, representing data, state, and

control information in a fashion similar to this thesis. In other res

pects the two systems are rather different. The PDP-11, to the extent

it has a virtual memory, has not exploited it to control devices. Nor

does the PDP-11 use buffers or channels in the novel way which is allowed

by interfacing devices as memory words.

A system which more closely resembles the one developed in this

thesis is the Plessey 250 system, a large multiprocessor, virtual memory

time-sharing system described in several papers (10,17,22,33). The

Plessey system is similar to the system of this thesis in that the re

presentation of the device in the virtual address space is as a segment,

protected by the system access control mechanisms, and in that buffers

are used to eliminate channels, with the processor itself doing the I/O.

The most important difference between this system and the Plessey system

is that the Plessey system does not have as a goal direct user access

to the device. The papers available do not give great information on

this point, but the system implements a possibly restrictive scheduling

/

26

strategy, and uses multiplexed buffers in a way which surely prohibits

direct access to the devices using that. buffer. No information is

available discussing Plessey's solutions to the pip~li~ing and synchro

nization problems raised. by buffers, or discussing their views of process

structure, error recovery, and rel~ted topics. But it is a very important

system, because it is the closest system,existing to ~he one being pro-.

posed here, and demonstrates the practicality of certain ideas in this .

. thesis, in particular the representation of the device as a segment,

and the use of buffers as a processor scheduling tool.

----- ----------,,---·----~

Chapter 2

The Basic I/O System

The purpose of this chapter is to propose a preliminary version of

the I/O system, which the rest of the thesis will then develop. This first

system will be rather idealized, fof as the first chapter explained, two

problems will be ignored in its design: the problem that I/0 must not con

sume excessive resources, and the problem that the real timing constraints

of devices must be reconciled with the variable timing of the virtual

memory. While the system will be in this fashion rather idealized, it will

meet the goals of direct user access to the device and elimination of cer

tain ca~es which make I/0 code difficult to write, understand, and debu~.

The system will also attempt to comply wit~ the desian goals of simplicity

and generality. The later chapters will show that the achievement. of tht;se

goals is not compromised when the problems here ignored are taken into

account.

Preliminary Simplifications

The first topic of the chapter will be to show in what fashion the

thesis will exploit the decision to ignore temporarily the two problems

mentioned above. Let us begin by considering a basic characteristic of the

I/O subsystem. Computer system modules can be divided into active and

passive modules: active such as processors, passive such as memory. I/O·

contains both aspects: the passive part is the stored data, on tape or

disk or in the programmer's head, the active part executes the accessing

algorithm to move this data in and out of the passive I/O storage. The

characteristic which distinguishes I/O storage from other memory is that

27

28

this accessing algorithm, the active part of I/O, can only be of certain

forms. I/O storage is not random access; it cannot be addressed to an

arbitrary item, but only to a group of items, often called a record, and

generally a sequence of items must be transferred starting at a record
' . . .

boundary, so that the accessing algorithm is a sequence of data transfers.

The active aspect of I/0, which implements the accessing algorithm,

was implemented in early computers and in simple computers today by the

central processor itself. In the more complex systems of today, however,

the accessing algorithm is often implemented by a specialized piece of hard-

ware called a channel, or I/0 controller, taking advanta~e of the restricted

nature of the accessing algorithm.
. . .

Channels contribute to the efficient use of the central processor, but

confuse the prograuming, for invariably the restrictions of the channel pre-
. '

vent the entire accessing algorithm from running on it, so that for parts

of the algorithm the programmer must move to the central processor, perhaps

by means of interrupts and interrupt handlers. Ideally the programmer

should not have to cope with this switching from processor to processor;

such switching is an implementation feature due to issues of economy •
..

Here, clearly, is a chance to take advantage of the fact that within

this chapter we are not concerned with issues of efficiency. In order to

~ke the construction of the accessing algorithm as simple as possible, it

will be assumed that processors are inexpensive enough that one can be

allocated full time to any process doing I/O, and that all I/O will be done

by this processor, rather than by some specialized I/O controller. By
.,

assuming that the processor is cheap enough to be dedicated to a process

29 .

doing I/O, all questions of scheduling prdceasors during I/O are avoided.

The p.rocessor will just wait for any pendiq l./0 operations to complete.

Just as specialized I/0 controllers are often employed to make more

eff;i.cient use .of processors, .buffers ·are· often used to achieve more

efficient u.se of memory. Again thb chapter will ignore resource consump

tion and presume that memory is cheap enough that any page needed for the

user's I/O may be kept in memory without special restrictions. Iri addition,

since in this chapter the timing constraints of devices are to be ignored,

the chapter need postulate no special· mechanism: t'o bring pages for I/O into

memory. If duri.ng I/O processing a page exception occurs because some page

is missing, tile I/0 device is assumed to be· able to pause while tne page is

fetch4d into memory by the uonual means.

The result of ignorina reaour~e consumption and tDning constraints,

then, is a.system in which ·the accessing algorithm runs directly on the

main processor, &nd in which the algorithm, for all its storage needs, uses

the normal memory provided in the user envirort111.ent;

..!!!! Representation .2! the Device

The previous sect.ioa has outlined some of the features this I/O system

will have; this section will deal with pethaps·· 'the single' most ·important

characteristic of the I/O system: the representation of the device it.self

in the environment of the user .. That i's, given that the active aspect of

I/O is represented by the central processor itself, how shall the· interface

to the passive part be constructed? ·There must exist same port· on the

proceuor to which devtcesareattached. We must consider what the nature

of this port shall be, and -what instructions shall·be provided to reference·

30

it. Current c,omputers which execute the accessing algorithm directly

usually hlive some specialized port to an. 1/0· bus of- sotne sort, with special

instructions to reference it, qut in this thesis an alternative will be

chosen in which the processor's memory interface is used for I/O devices as

well as memory, so that to read or write on an I/0 deviee, the program

issues a memory fetch or memory store instl'Uction to • particular address,

which the hardware associates with the device rather than a memory word.
' '

Such a devic.e interface has been \!Beef.. in two computers, the PDP-11 and the·

Plessey 250,, which are discussed in Chap·ter 1.

The advantages of this interface a.re several. First, no modifications · ·

are required to the central processor. No special port is needed, nor'

special instructions, so that the programmer_ean useany memory fetch or

store instruction to reference I/0. ,,This ability means no new language

need be. learned. Also, .as will \:»e demon1trated:; the mechaniams which

manage and .. c;ontrol the segmet\ted virtual D~&mory can. be used quite naturally··

to regulate access to I/O devices.

To see how this interface might work, consider the usual method for

interconnecting processors and memories in a JDt.llti•proceasor system.

Nor:mally the m~;ry will be implemented as, afteral memory boxes, each hold

ing a fixed number of memory words, with ea,ch .proeeaaor connected to all' of

the memory boxes. The processor contains a mechanism which, on each memory

reference, takes t~e memory address and directs the reference to the memo-ry

box which contains this address,

Given this a;rchitecture, it is easy to specify that'-cer·tain of the

addresses .be associated with an I./0 device rather than with words of memory,

One coqldjust replace a memory .box with a device,. suitably interfaced, but

----------- -----,----------- ---~----------

31

this would associate with the device all of the large number of addresses

normally implemented in one memory box. Better is to provide a module, to

be called the device selector, which takes.the place of one memory box, and

which divides up the addresses associated with the replaced·m~ry box

among a number of devices which are connected to ·the ~evice selector.

The physical arrangement of modules which results from· this scheme is

depicted in Fisure 2-1. In place of one of the memory boxes is a. device

selector, with the devices in the system connected to it. For purpo$e8 of

comparison, Figure 2-2 depicts the architecture of a more traditional system,

which uses a~ I/O controller, or specialized I/O processor, to execute the

accessing algorithm. The principle difference is that traditionally the

devices are connected tq the I/0 controqer itself. Thus:J in cont;:rast to

the traditional case, the architecture of this thesis separates the active

part of the I/0 system, represented by the processor, from the passive part

of the I/O system, embodied in the device selector. One obvious advantage

of this separation 18 that the total system is more reliable, since any

processor, rather than just one in particular, can control any device.

Thus the failure of one processor doesnot disable devices. Other advan-
- < .,. -'. - • •• ,. '

tages of the separation will be discussed la·ter bi the thesis.

Figure 2-3 depicts the relation between the physicaldevices and the
~· ~..,. . .

address range. The memory has been implemented as a series of memory boxes,

each of which contains 2k words of memory. · In·order to implement device

attachment, one of the memory boxes has be.en replaced by a device selector,

which in turn takes the 2k addresses assigned to it and subdivided these

into blocks of length n, which it associates with individual devices.

32

Processor Processor

Memory box Memory box

. .

Device
selector

Devices

Figure 2-1: MOdule interconnections with devices represented
as memory.

Processor Processor

Memory Memory

I/O
controller
(specialized
processor)

Figure 2-2: Module interconnections in system with specialized
I/O processor.

0

2k

_,.

Memory
.box
k

(2 _words)

Memory
box
k (2 words)

Memory
box
k (2 words)

Device
Selector

Memory
box
k (2. words)

Real
memory
addresses

33

3*2k

.....

+n

+2n

+3n

+4n

+5n

Device
1

Device
2

Device
3

.Range of
·addresses
associated
with one
device

Figure 2-3: Typical memory implementation, showing relation between
addresses and physical modules.

34

The interface as described allows the program to read and write data

to the device by repeated reference to a particular~ry address. This

is not a sufficient interface to allow full control o.f the device, however,

for control information as well as data must_be pa~~ed to and from the de

vice. For this reason not one but several addresses -will be associated

with each device. (See Figure 2-3.) These additional addresses will be used

as follows.

One of the additional addresses will be used to allow the program to

read and write the state ~ of the device. The state word of the device

contains information about the current condition of the device. It will re

flect the setting of hardware BWitches on the device, and the occurrences of

errors. By loading it the programmer can alter the state of the device.

For example, in a device connected to a modem, the state wo~d will contain

bits related to the state of the Jnodem, so that by leading the state word,

the modem can be made to hang up, or wait for a call, or answer, and so on.

The details of the state word will be ignored in this. thesis, but it is

assumed that any necessary modification to the state of a device can be

achieved by setting bits in its state word.

One aspect of device control is important enough to warrant a special

address. This is the record number. The record number is, for devices

with records, the number of the current record'being accessed. Assigning

a value to the address causes the device to position itself at the begin

ning of the specified record. (This implies that assigning to the record

number the value which it contains may cause an action; to wit, backing up

to the start of the current record.)

35

It is claimed that the interface now described, with the three aspects

of the device: data, state word, and record address, is sufficient to

allow general control of the device at the detailed level.

Mapping the Device~ !h! User's Envir~nt

The last section described a way of representing devices in the real

address space of the computer. The user, however, does not see real but

rather virtual addresses. This section discuases how and to what advantage

the device may be mapped into the virtual address space of the user.

The virtual memory is assumed to be segmented, with'the user potentially

having a very large number of segments. A virtual address is composed of

two parts, a segment number and an offset within the segment. Conversion

of virtual addresses to real .addresses is performed using a segment

descriptor table associated with each addres.s space. The table is indexed

by segment number and gives, for each segment, the real starting address

and the length of the segment. (If segment• are tmpl~nted by paging, the

real starting address will be that of a page descriptor table in which the

real starting address is found, but this detail is irrelevant here.) To the

real starting address is added the offset part of the virtual address to

find the desired word in real memory.

Examination will reveal that there are certain similarities between

devices and segments. Since segments are the basic tool of organization,

with .each segment expected to hold one· informational entity, such. as a

single program, it follows that protection controls are applied on a per

segment basis. Similarly, access to the I/O system should be granted or

36

denied on a per-device basis. Also, both devices and segments are manipu

lated by the user: named, obtained, di.scarded., etc.

In view of these similarities, devices ·as well as segments will be

identified by segment numbers in the user's virtual memory address space:

the segment descriptor table entry eorrespanding. to a device will be con

structed in such a way that references to that·"segment" will be directed

to the real addresses associated with that device; For example, with

reference to Figure 2-3, if device 3 were to be added-to the address space

of a user as segment number d, then the dth entry in tthe user's segment

descriptor table would be filled in with a real starting address of

3 x 2k + 2n and a length of n. The "'arious offsets iri segment d would then

map into the various aspects of the device: data, 'state word and retard

number.

The result of mapping devices into the user's environment in this way

is that the user has access only to those device$ which are mapped into his

address space. Being able to restrict the user in this way is crucial to

the goal of allowing the user direct acces8 ·to his devices.

A very important advantage of representing the device to the user as

a segment is that he can refer to his device in any programming language

which lets him refer to a segment. In other words, he can write his i/O

control program using an appropriately structured high-level language.

Figure 2-4 is an example of an I/O control program written in PL/1, which,

first, shows the possibility of ·referencing the device ·from a high-level .

language and which, second, depicts the sequence of actions a user would

go through to use a device in the context of this interface.

37

tape_read:procedure(reel_naMe,where_to_rearl,nuM_recs);

I* This is a program in Ptl1 to r~ad a tape. The tape iAenti
fied by the name "reel name" will be read Into the array
11\'lhere_to_readu, with lfnum_recs" recortis being re't~rl. For t"-l"'
simple example we will assume that no errors will occur. *I

declare reel_naMe char(•), I* name o-f tape *I
\:he re_to_rcad (*), I* arrAy tnto ,.,t-- i ch to rPa"' * /
nur.~_recs fixed; I* hm·: Many rccorrls t ,.,. r f'o"' *I

declare tap·e_ arlrlr pointer; I* de'-' ice r:1er10ry aArlress *I I

dec 1 are 1 tape_drive I* structure of i I o cevicr> * I I

based (tape_adr'r),
2 data aligned, I* offsct o-f data i n A ,•

··C'" t CC */
2 record allgned, I* of~ set of rE>corA aArlri"'SS *I

' 2 state aligned; I* offset o4= state in-Fo */

declare rec_size fixed initial (256); I* some num~er "4= t·:orAs
oer recorA *I

declare C ~ecno,wordno) fixed;

declare gct_tape external entry(char(*)) r~turns (pointer);
I* This routine \·lfll verify the user's access to the tape,
have it mounted, and a ssoc fate the segmcn t \th i ch represents
the device in mer.ory t:Jth the structure "tape_drTve". *I

tape_addr = get_tape(rccl_namc); I* get a drive *I
tape_drive.record = 1; I* position tape at start *I

do recno = 1 to num_recs;
do \'tordno = 1 to rec_s f ze;

\·lhere_to_read ((recno-1)* rec_s t :!e+worr'no) = · tape_rlr t ve. rlata;
end;

end;

I* No explicit assignMent to tape_r!'rivtt.recorc fs necessary in
the loop because it is assumed that th~ tape arlvances to the
next record automatically. *I

return;
end tape_read;

Figure 2-4: Program in PL/I to read data from a tape.

38

The first action of the user .must be .. to tt.ve the device made access-

able to him. For this purpose he must call 011 the supervi~or:.r which will

create a segment in his ad.dre.-s space correapcmclina to the device. In this

example the supervisor call is represented by the fUnction get_tape. The

PL/I language con.ta;l.ns no clear construct by. which the prograumer may

associate a name in the program (e.g., the structure tape_drive) with some

object in the environment of the program (e.g., the segment representing the

device). In this sense PL/I is deficient in its ability to refer to its

environment; and thus to take ~vantqe directly of fJ- segmented address
I

space. In this example, the association is made using the variable

"tape_addr", which "get_ tape" sets.

Once the se~nt is accessible to the PL/l prggram:.r the user can

reference his device directly .•. ·The user must first p.osition the tape drive

to the first r~cord, by aasignmep,t to 11 tape...;.drive.record". In a pract~al
-

case he might also have to set the device in the proper state by assignment

to "tape_drive.state" •. .1\fter thue preliminaries,, the user reads it~s

from the tape into the array ''where_to_read" by r..-ated reference to

"tape_drive.data". In general, the user could read, -write, and reposition

the device as necessary. Eventually, after the user is finished with the

device he should c•ll the ~ystem and r•linquiah it.

Hopefully, this example will convince.~h~'reader.that, ignorin~ for·

now the issues of resource consumption, timing considerations and errors,

the system as so far constructed allows the user to construct I/O programs

in a simple and orderly fashion •

.. --------~----- .~~---~· .---------~-----

39

Connection 2£ Device Selector £2 Devices

The device selector has the responsibility of connecting devices to

the system and allowing those devices to be referenced as if they were

memory words. The purposeof thia·section is to.shmt that the representa-

tion of the device as memory doea not require that the interface between

the device and the device selector be very different from interfaces used

for devices on systems today. A particular interface will be proposed,

which will be used in subsequent chapters.

In an earlier section, three aspects of a device were identified, in

particular data, state word, and record number. Normally, at the device

'
int•rface tbtse three aspects are not represented by three different infor-

mation pathways, but rather all are tranSmitted over one path,· with addi

tional control lines used to indicate whether the value being transmitted

is data, state, or addreas. The interface described here will take this

approach.

Since it was assumed that the processor will wait for the device, if

the device iS slow, and that the device will wait for the processor, if the

processor takes a page fault, the interface must be totally asynchronous.

To move information across an asynchronous interface, a technique will be

used which involves two signalling lines, the ready line and the acknowledge

line. Whenever device or device selector has information to transmit to the -
other, it will place this information on the appropriate lines, and then

signal across the interface on a ready line, which i~dicates t~ the receiver

of the information that the information is available. The sender·then waits

until the receiver signals back over the acknowledge line, indicating that

~--·---------- -------------------------

40

the information has been received. Using this protocol, either side may

force the other to wait as necessary.*

From these various observations, a picture of the device interface

evolves, as follows. There will be one set of data lines for the parallel

transfer of a word of data, state word, or address. Since information can

flow in either direction over these lines, two sets of ready-acknowledge

lines will be provided, one each way. There will be a set of command lines,

used to distinguish data, state word, and address, and to indicate the

direction of data flow. These command lines carry information from device

selector to device, and have their own set of. ready-acknowledge lines.. A

cODBDand over the command lines will be issued by the device selector to t:he

device as part of e•ch tr.usfer, indicating what informa~ion is to flow,

The device selector will use two pieces of information in generating the

command: first, the_ particular address which was referenced, and second,

whether the memory reference w•s a read or a write request.

For example, to read the next item from a device, the user will issue

an instruction which reads from memory, with an addreas containing the seg-

ment number of the device and· the offset value for data. The address con-

version logic will transform this address to a real one, which will be sent

to the device selector. The device selectoJ:, not_ing the. particular address

and that the instruction is attempting t,o read; will make l.lP a command to

read data, and, placing it on the command lines for the selected device,

signal over the ready line associated with the coumand lines; then wait for

* The receiver could dispense with the re•dx 1!2! and presume that the
information was available whenever it detected a signal on the informa
tion line. If there are several information lines -in parallel, however,
differences in timing on the lines may cause this technique of detecting
information to be error-prone. Thus the use of a single ready l£a! to
announce that the information lines have stabilized and may be read.

c

41

the device to pick up the command and signal back over the appropriate

acknowledge line. After this, since the command was to read, the next step

is up to the device, which must place the word to be read on the data lines,

and then signal over the appropriate ready line. The device selector will

pick up the word, hand it on to the central processor and signal back com

pletion to the device over the associated ackncn;l:edge line. Thus a command

is issued to the device for every data transfer. Writing data would be

similar to reading, except that the selector rather than the device would

initiate the data transfer.

A representation of this interface is picture4 in Figure 2-5, which

identifies each line, and shows for each the direction of signal flow. As

the diagram suggests, the interface will be aug~nted later in the thesis

with four more lines. The complete interface is reviewed in Appendix R,

which also compared the interface with several others in use today.

~ I/O Environment - ! Summary

The system so far developed gi~es the user direct access to each of

his devices, while preventing him access to any other device. Since a de

vice is represented as a segment, it can be easily manipulated, using

memory fetch-store instructions of the machine, in any high-level language

which allows access to segments. Since the user has direct access to the

state word of the device, he has very general control over the device, so

the user is not restricted in the algorithms he constructs to control his

device. The only time he need call on the system supervisor as part of

doing I/O is to have the device assigned to him and mapped into his address

space in the first place. Thus the system does indeed give the user direct

access to his device.

--~-------------------------------

device
selector

42

conaand ready

- couaand acknowledge·

cOIIIDand

- read ready

read acknowledge

W'rite ready

- write acknowledge

-data

·' .

device

Figure 2-5: Interface between device and device. selector.

43

Parallelism in I/O

One of the three problems introduced in the first chapter was to take

proper advantage of parallelism in I/0. The purpose of this section is to

determine where parallelism is and is not appropriate in an I/O system

design. If the reader will refer to the PL/I example of Figure 2-4, he

will note that within that program there is no parallelism of any sort.

Quite the reverse, it is completely sequential. This reflects the fact

that a single device is sequential in nature, and can do but one thing at a

time. Thus, given the assumption that I/O is performed by the main processor,

there is no use for parallelism in the construction of a control program for

a particular device.

There is, however, some use f.or parallelism in I/0. If the user can

perform his I/O in parallel with other parts of his computation, his total

computation will complete sooner, so the system will be more responsive.

The system as well as the user will benefit, for having several tasks in

parallel means that the system has several rather than one task to schedule.

The system, by choosing among these, can better keep all of its resources

busy from moment to 'DlOIIlent. Further, as the next sections will show, the

user can impose an orderly and coherent structure on his I/O task by viewing

it as running in parallel with his other computations. Thus, the proper

role of parallelism is not in the control of a particular device, but in

relating the operation of one device to the other tasks of the user.

How is this parallelism to be produced? There are basically two

techniques. One, a fairly common one, is the use of interrupts to multi

plex a process between two tasks. The I/O system of this thesis, as so far

developed, has no interrupts, so this technique is not relevant. It is

44

important, however, that this technique be understood, for the thesis will

argue that it is an undesirable technique because it confounds the goals

of ease of programming and simplicity of structure in the I/O system.

Indeed, this thesis will argue even more strongly that the user should

never see an interrupt in the traditional sense, but rather that in all

cases a signal coming from a device should be intercepted by the system and

mapped into some specific mechanism which represents the intent of the

signal.

In order to justify this assertion about interrupts, it is necessary

to have an example of a system which does use interrupts. For this purpose

an alternative architecture will be quickly developed. Imagine a system

in which channels exist. For the purpose of this discussion, a channel is

just a processor which is specialized to perform certain parts of the I/O

accessing algorithm. For example, it might perform the actual transfer of

the data represented in Figure 2-4 by the nested do-loops. When the chan

nel has finished its task, it sends an interrupt to the main processor, to

indicate that it is done.

In this alternative architecture, interrupts can be used to produce

parallelism in the following fashion. Presume that the user has one process,

that is, one environment. The effect of the interrupt will be to divert

this process from its usual task to a section of code, the interrupt hand

ler, whose function is to determine the cause of the interrupt, and take

the necessary steps to get the channel started on its next task. The con

trol will then be restored to the main computation at the point of the

interruption. Put another way, the effect of the interrupt is to produce

parallelism by multiplexing the user's process between two control points.

45

The drawback to this view is that since fragments of code from the

interrupt handler are executed at arbitrary points during the execution of

the other contrql point, it becomes very difficult to analyze, predict, or

reproduce the act~al computation performed by the process. The computation

is certainly not represented by the user's programs as written. Further,

since the two control points are part of the same environment, the degree

of interaction is unrestricted. Thus the individual programmer is respon

sible for designing the means to regulate the interaction. Great skill is

needed to device error-free algorithms to synchronize parallelism in this

case.

A much better structure, from the programmer's point of view, would be

to consider the main process of the user to execute only the main computa

tion, and to run in parallel with a separate process running the I/O con

trol program, to be called the I/O process. There are three advantages of

this structure, the first of which is that co-ordination between main pro

cess and I/O process can be tmplemented in terms of whatever interprocess

communication mechanisms the operating system supports. This reduces the

difficulty of building properly co-ordinated parallelism, since several

interprocess communication mechanisms have been developed which allow a

logical analysis of parallel structure. Two such schemes are semaphores

with the operation~ andy, described by Dijkstra (15), and the primitives

block and wakeup described by Saltzer (35).

The second advantage of this two process structure is that the main

process is not being multiplexed, so the algorithm the main process exe

cutes does correspond to the programs as written rather than having the

46

programs interspersed at random points with transfers to I/O code having

unconstrained effect. This makes the algorithm of the main process easier

to debug.

The third advantage of separate processes has to do with the structure

of the I/O task itself. The algorithm of Figure 2-4 displays, in its

written form, the sequential nature of its algorithm. Consider, in contrast,

the form which the written program would have if it had been coded as an

interrupt handler.

The best way to introduce this "interrupt-handler" structure is by an

example of an algorithm to read from a disk a series of records. For each

record the algorithm must first seek to the correct address and then read

the record. It will repeat this sequence until there are no more records

to be read. If channels and interrupts do not exist, this algorithm has

the very simple flow chart of Figure 2-6, which would also model the

algo.rithm of Figure 2-4 except for the addition of the ~ action.

If· the I/O system were implemented using channels, it would be

natural for the channels to impletaent the boxes labeled "seek" and "read".

Given that the channel is equipped with an interrupt line over which to

signal completion of the current task, some portion of the algorithm must

have the responsibility for receiving the interrupt and determining its

cause. Including this new portion of the algorithm produces the flow chart

of Figure 2-7.

A description of this program structure would be that at each inter

rupt the control returns to the head of the program, so that what is con

ceptually a sequential set of operations appears to be alternative paths

through the program. The disadvantages of this structure are apparent.

47

no
done

yes

seek

read

Figure 2-6: Sequential form of flow chart for I/O control program.

prepare
seek

wait for
interrupt

no

done

48

prepare
read

wait for
interrupt

Figure 2-7: Interrupt-driven form of flow chart for I/O control
program.

49

It is no longer obvious from the form of the flow chart that the program

contains a loop, nor is it obvious that seeks and reads always come in

pairs. The "start" and "done" points occur at an unobvious point in the

middle of the program. In a more complex program the results can be

chaotic.

The flow chart of Figure 2-7 could be drawn so that it would mimic as

much as possible the form of Figure 2-6. Such a flow chart has been pic

tured in Figure 2-8. While a program with the form of Figure 2-8 would

have many of the desirable characteristics clatmed for Figure 2-7, it is

not obvious that a prograuaer working with interrupts would create a pro

gram with the structure of Figure 2-8 unless the system assisted hUn, per

haps by providing that portion of the algorithm which received and sorted

out the interrupt. Chapter 6 contains a description of how the system

might provide this function.

These three advantages of the two process scheme, that the main pro

cess is not arbitrarily interrupted, that the sequential nature of the I/O

task is not obscured by the interrupt handler structure, and that the inter

action between the two tasks can be achieved using formalized interprocess

communication tools, are the basis for the decision to use the two-process

architecture for the remainder of the thesis. Clearly, the advantage of

the two process scheme is not an increase in capability. Quite the oppo

site, the necessity of working within the framework of processes and inter

process communications might teem rather restrictive to one accustomed to

interrupt handlers. But this restriction is in fact what is desired. The

justification for the imposition of this separate process structure on the

start

yes

prepare
seek

prepare
read

-- ... ,

----,

' I
I
I
I

,,
\

' I
I

50

done

wait for
interrupt

wait for
interrupt

yes

receive
interrupt

no

Figure 2-8: Redrawing of Figure 2-7 to resemble Figure 2-6.

51

I/O task is that the goals of simplicity of design and ease of coding and

analysis are thereby fostered, and this is a major goal of the thesis.

While the multiple proce.ss architecture nicely complements the I/O

device interface developed in the first part of this chapter, it is, in a

sense, orthogonal to it. It is not necessary, in order to view the I/0

task as a separate process, that the I/O device be modelled as memory

words, or that the accessing algorithm run on the processor itself.

The Handling .2! Errors ,!!! I/0

One of the aspects of I/0 which cannot be ignored is that I/O is prone

to errors. The data storage and data. transmission media outside the central

processor are constructed using technology wh;l.ch allow occasional transient

errors, causing data to be lost or altered. The I/O system must provide a

reasonable response to this sort of error, as well as to the obvious pro

gramming errors such as the use of an invalid record number.

This section will show that in order to deal properly with errors, it

is appropriate to separate them into two categories: those which are trig

gered by some particular action on the part of the I/O control program, to

be called synchronous errors, and those which.occur randomly, to be called

asynchronous errors. Examples of the former would include a parity error,

or an attempt to reference a non-existant record; examples of the latter

would be a power failure on a peripheral device or the unexpected discon

nection of a communication line. The difficulty with asynchronous errors

is that in order for the I/O process to deal with them as they occur, it is

necessary to respond at unpredictable times, and this sort of interruption

is, as the previous section argued, undesirable.

52

In order to avoid diverting the I/O process when asynchronous errors

occur, a strategy will be employed in which an additional process is used,

whose function is to wait for such errors. This additional process can, on

detecting an error, perform whatever actions are necessary. The scheme thus

avoids the necessity of interrupting the I/O process to deal with asynchron-

ous errors.

The sUnple case of synchronous errors will be considered first. To

begin, how can an I/O process detect that an error has occurred in a device?

A mechanism does already exist which can be used for this purpose. A bit in

the state word of the device ean be associated with each error, and the de

vice can set this bit if the error occurs. The program can then test the

state word whenev,r it wisbee to know if an error has occurred. Thus, in

order to detect errors during a transfer of data such a teat would have to

be done after each read or write of the device.

There are certain disadvantages to following each reference to a de

vice with a test for errors and a conditional execution of an error recovery

procedure. The insertion of this material into the I/O control program

makes it more bulky, and clutters up the written form of the program, making

it harder to comprehend its structure. In addition, the explicit and re

peated test for errors is expensive. The occurrence of an error is supposed

to be the exception rather than the rule, so the ideal mechanism for error

detection would involve no coat except when an error occurred.

One solution is to handle error detection the same way that the system

handles other errors related to memory references. Examples of this sort

of error, which is often called a fault, would be the user attempting to

reference a non-existent address, or an address to which he has no access.

53

Traditionally, what happens if a fault occurs is that an error signal is

returned to the processor. The programmer, in order to take advantage of

this signal, provides in advance a section of code to be called in case of

an error. When the signal arrives, the system will cause this code to be

executed. In order to use this technique for dealing with I/O errors, it

is only necessary for the device to generate this error signal whenever a

synchronous error occurs, i.e., whenever certain bits in the state word are

signalled.

This scheme for error detection and recovery is operationally equiva

lent to the explicit test described above. In the one case, the programmer

makes an eXplicit test at each point an error could occur, and on detection

of an error transfers to error recovery code. Using the error signal, he

does not make the test, but nonetheless, if an error occurs a transfer will

be executed to the error recovery code, and this transfer can occur only at

the places in his program where otherwise he would have had to insert an

explicit test.

The language PL/I attempts to integrate this technique of error recov

ery into the syntax of the language by means of the condition mechanism,

which the interested reader should study.

The mechanism so far described deals with errors in the restricted

case that they are synchronous. The other class of errors, asynchronous,

will now be considered. Included with asynchronous errors will be certain

randomly occurring events which are not errors, but which must be processed

in the same fashion. Examples would be the user pressing the attention key

on his terminal or an operator signalling that a tape has been mounted and

is ready. Since these signals must be handled much as randomly occurr.ing

54

errors are, they will be grouped with these errors, and will be called,

collectively, asynchronous events.

The error signal mechanism was so far designed as an exact equivalent

to the explicit test after each reference. If we attempt to use the error

signal to handle the case of the asynchronous event, this equivalence no

longer exists. Whereas in the previous case, the signal (and the resulting

subroutine call) can occur only at certain explicit points in the program,

the asynchronous event could cause the subroutine to be called at any

arbitrary point in the program.

This arbitrary interruption is undesirable first, because of the

effect it has on the process structure (discussed in the previous sections),

and second because the system must provide a fairly complicated piece of

software to implement the diverting of the process from its current task to

the error subroutine. To avoid these difficulties, a scheme will be pro

posed which will preserve an orderly structure for the I/O process, and

will replace the above mentioned piece of system software with two simple

interprocess signals, start process and stop process.

The scheme to be used is the creation of an event process associated

with the I/O task. The sole purpose of this Pt:ocess·i.s'to detect andre

spond to asynchronous events. The event process could, quite simply, de

tect events by looping on a repeated examination of the state word of the

device; more efficiently, the device could generate an event signal, dis

tinct from the error signal, which could cause the event process to come

into execution. In either case, since the event process puts itself in a

known state, looping or waiting for the event signal, it is true here, as

it was of the synchronous error, that signals ftom the device do not arrive

55

at arbitrary points but at specific locations in the computation~ thus

arbitrary interruptions due to device signals are eliminated.

The thesis has argued in considerable length the evils of interrupting

a process at an arbitrary point in order to execute some other piece of

code. Perhaps a specific example will demonstrate the advantages of the

separate event process.

As a result of an asynchronous event~ it is often desirable to modify

the I/O process~ perhaps to discontinue the task the process is currently

doing and start something else.

To understand the relative complexity of such a modification with and

without the event process, consider the dynamic. allocation of storage to

procedures running in the I/O process. Normally, there will be a stack of

activation records, containing the dynamic storage (automatic variables,

return information~ etc.) for each procedure with a call currently out

standing. If the event handler is a subroutine in the I/O process, when

it is called its activation record must be placed on top of the stack.

This makes more difficult the task of the handler, for if the handler wants~

for example, to abandon the current computation and start a different one

as a result of the event~ the handler must remove and add activation re

cords to the stack~ all the while keeping its own record intact. This

means removing and adding items to the middle of a stack~ which is compli

cated. In contrast, if the event handler subroutine is running in a sepa

rate event process, it can modify the I/O process without affecting its own

execution. To use an old expression, the use of the event process allows

the handler to avoid the risk of cutting off the branch it sits on.

56

Interprocess Signals

The fact that signals from devices do not cause process interruptions

does not mean that there is no need for asynchronous signals directed to a

process. It just means that these signals do not come from I/0 devices,

but from other processes. To see the need for such signals, consider the

previous example, in which the subroutine responding to the event, running

in the event process, wanted to modify the I/O process. Clearly, the I/O

process must be stopped before it can be modified. Thus there is the need

for an interprocess signal, to be called stop-process, which the event pro

cess can send the I/O process before modifying it. Similarly, there must

be a start-process signal, for use after the modification.

Is it necessary to have a signal as powerful as stop-process, which

actually forces the receiving process to stop? Might the same effect be

produced with a passive rather than an active mechanism, a flag which one

process would set, and the other would test periodically, stopping if the

flag were set? To see the need for an active signalJ remember that one

event which may occur is the user pressing the attention key on his

terminal. The usual meaning of this e'\Tent is to stop the user's computa

tion, and to place it in a known state. One function of this event is to

halt a process which is operating in error. Since there is no guarantee

that a process operating erroneously will ever· look at a flag, it is

necessary that there by a way to force the process to stop. Thus a signal

with the power of stop-process is required.

The complexity of the stop-process signal is, however; much less than

the signal which is needed if the event process is not present, in which

case the signal (which would come directly from the device) must trigger

57

the following actions by the system. First, it must stop the process.

Then it must identify the subroutine which is to be executed in that pro

cess. Then it must modify the environment of the process (hopefully in a

reversible fashion) so that the subroutine can execute successfully, then

it must cause the subroutine to be started. Comparison of these steps with

the simple effect of the stop-process signal shows the great simplification

in the mechanism the system must provide if the event process scheme is used

to avoid asynchronous diversions.

The simplicity of the stop-process signal means less complexity to the

system, but it also means more flexibility to the user, because he is then

free to use whatever mechaniam seems most appropriate for each event. In

certain cases a passive device such as a flag may be quite sufficient. Or

in certain cases the event process may be able to handle the event without

involving the I/O process at all. The flexibility of allowing the user to

choose the tools best suited to the task is denied if the event process is

not used, for in that case the effect is always the same: the I/O process

is diverted to a specified subroutine.

The distinction then, between error recovery with and without the

event process is the following. In both cases the I/O process may receive

a signal at a random time, but if the event process is used, the signal

will come from that process, rather than directly from the device. The

advantages of having the signal come from the event process are first, that

the signal is much simpler in nature, just stopping the process rather than

diverting it, and second that the user has some control over when and if

the signal is sent, for the event process executes a program which is pro

vided by the user, so that it can be tailored to the particular needs of the

58

given event. This ability of the user to control the exact effect of an

asynchronous signal is the real advantage of the event process scheme.

Stopping ~ Process

It was implied in the previous section, that the user, in creating the

program to run in the event process, might wish to exercise some control

over the time at which that program signalled .the I/O process, or any other

process, to stop. This control is needed because, while it is very easy to

stop a process dead in its .tracks using the ~-process signal, it can be

very difficult, under certain circumstances, to stop a process in an orderly

way such that it can be restarted, and such that other processes, including

the event process itself, are not disabled by. the original stoppage. This

section will explain in some detail the. problema of stopping a process in

an orderly fashion. In subsequent chapters specific techniques will be

introduced by which the I/O process can be stopped.

There are two reasons why it is important to understand this difficulty

in bringing a process to an orderly halt. The first is to gain insight

into the problems of interprocess co-ordination, and to identify certain

other mechanisms which the system. must provide to foster this co-ordination.

The second reason is to develop the understanding necessary to assure that

the I/0 process in particular can be stopped in an orderly fashion. That

is, the topic of this thesis is the I/0 subsystem.. It is beyond the scope

of the thesis to provide a strategy for stopping any process in the general

case, but it is important, as part of the thesis, to solve the specific

case of stopping the I/0 process in an orderly fashion.

~-----------


~~~. --------

59 

A process which has been stopped dead in its tracks may represent a 

problem because it may have resources, (devices, data bases, etc.), claimed 

to itself. If a process holding a resource is to be stopped dead, some 

other process must find all such committed resources and free them. The 

first problem is to find them. Unless the system has a uniform mechanism 

for registering resources, the.re may Qe no way to do so. Next, the re

source may have been in an inconsistent state at the time of the event, in 

which case it must be put in a proper condition agollin. If it is not, some 

other process, including the event process itself, may attempt to use this 

resource and discover that it cannot do so. For ~le, at the point of 

stoppage the process might be rethreading a linked list.. If the event 

process attempted to use the list, incOl'ls~atency threaded poitJ.ters might 

cause the process to loop or to be unable tc;> find some desired object in 

the list. 

In general, the event process will not.know bow to remove these incon

sistencies, for the other process might have been usit)g any arbitrary re

source, and the event process ca1;1not know how to r.~sto:r;~ ~v~r~ ,resource 

in the system. It must therefore utilize some propedure associated with 

the particular resource, which knows how to put ~hat resource in a consis

tent state. This recovery procedure could.be run in the event process, or 

it could be caused to be run by the other process. In either case there 

are significant design problems, for example, to certify the reliability of 

the recovery program. Can the event process trust it? What if it refuses 

to return? Does the event process give up and leave the resource in an in

consistent state? If so, can it usefully tell anyone? And so on. 



60 

Further, there is no reason to think that all resources can be made 

consistent in the middle ·of an arbftrarily interrupted modification. In 

this case the other procesa cannot be stopped instantly; but must be allowed 

to run until it has the resource in a consistent a·tate. This privilege of 

running to a· consistent state is, for example, usually allowed system pro

grams called by the user. In this case, since the other process cannot be 

stopped dead, some mechanism must exist to detect when consistency of all 

resources exists, and cauae the process to stop at that point. This means, 

in general, that any procedure which requests the right to run to a consis

tent state must agree·to atop. But what if the procedure doesn't stop? 

For how long should it be allowed to run? What procedures should be allowed 

to claim the right to run to "a consistent ·state? 

Because these questions relate to general issues of resource control 

and interprocess communication, this thesis cannot propose a solution. It 

is an important part of"thU t:hesis, however, that it be possible to stop 

the I/0 process in particular~ In order that the I/O process be stoppable, 

it is necessary .to illpose various restrict'ions on it, the most' imPOrtant of 

which is that at all relevant times all resources in use can be identified, 

and can be reclaimed in a consistent statEr: 

Until this point in the thesis, no reStrictions have been imposed on 

the I/O process. While theprilDary role of the I/O process is to run the 

I/O control program, there is nothing which would prevent the user from 

causing it to run any othe:t task he wished. In order that the thesis be 

able to discuss stopping the I/O process, it will be assut'lled that the I/O 

process is restricted to the I/O control function, sci that no other unre

lated resources need be of concern. 



61 

Various other restrictions on the I/O process will be identified 

throughout the thesis, as goals of tUning, and efficiency are factored into 

the system. The general effect of these various restrictions will be to 

make the I/0 process somewhat simplified, contpared to the normal process on 

the system. A by-product of this stmplification will be that the I/O pro

cess is easier to stop. This will be discussed at several points in the 

thesis. 

~ Look Behind and Ahead 

To review what has been done in this chapter, an I/O architecture has 

been constructed which gives the user direct access to his ~evice, which 

gives him a multiple process structure to organize his I/O task, and which 

gives him a un.iform and cohereat technique for error recovery. The Unpor

tant features of this system are: 

The user refers to his device as if it were a segment in his virtual 

memory. 

The I/0 task is implemented in a special process; the I£0 process, 

which is synchronized with the rest of his tasks using same known 

interprocess communication techniques. 

An event process is provided to detect asynchronous errors, so that 

no process is ever interrupted by a device at a random point. 

The chapter, in addition to describing these features in detail, has 

discussed the interface which would result between the device and the device 

selector, and presented an ex~ple of a simple I/O control program which 

might be used in this system. 



62 

The chapter has dealt~ to a large extent~ with issues of processes 

and interprocess communication. This is because I/O is tied in a very 

strong way to ideas of synchronization and parallelism. In particular~ the 

idea of an asynchronous error or event, which is very basic to I/O, must be 

handled in an orderly fashion if the resulting system is in turn to have an 

orderly structure. The event process is the tool provided to deal with 

these events~ and its generality is felt to be sufficient that the issue of 

errors and error recovery will be largely ignored in later chapters. 

The defect of the I/O system, as developed in this chapter, is that 

it fails to cope with two problems: first, that devices have real timing 

constraints, and second, that processors and memory must be used in a some

what economical fashion. The rest of the thesis will concern itself with 

factoring these two issues back into the system; without in the process 

destroying the desirable features which the system now has. 

To give the reader a preview of the rest of the thesis, the following 

is a brief list of the features to be added to the I/O system. There will 

be one modification to the configuration of the systetr modules as now 

described: buffers will in certain cases be inserted between the device 

and the device selector. The result is pictured in Figure 2-9, which should 

be compared with Figure 2-1. The buffering will be used to cope with both 

problems mentioned above, timing and efficiency. In addition, there will 

be three modifications to the operating system to allow it to interface to 

the I/O subsystem. The first is a specialized contiguous storage memory 

allocation scheme, which will work in conjunction with paging to allow 

memory to be used efficiently. The second modification, to be used in con

junction with the first, is an interface to the virtual memory manager 



63 

Processor Processor 

Memory box Memory box 

buffers 

Device 
selector 

devices 

Figure 2-9: Module interconnection with buffers added. 



64 

which allows the I/O control program to fix needed parts of virtual mem

ory into real memory in a controlled fashion. The third modification is 

an interface to the process scheduler which allows a signal from a device 

to cause a process to be run. The justification and explanation of these 

features is the subject of the rest of the thesis. 



Chapter 3 

Interface to Record Oriented ~evices 

One of the assumptions which was central to the I/O architecture 

developed in the last chapter was that there were no timing constraints 

imposed by the devices themselves. In this and the next chapter, this 

assumption will be removed, and a system will be developed which can 

deal with devices having real timing constraints. 

There are various sorts of timing characteristics which a device 

might have. Perhaps the most severe, or difficult to interface with, 

would be a device which generated values at arbitrary times, and which 

never stopped. The system proposed in this thesis will not interfac.e to 

devices with arbitrary tLming characteristics such as this; rather, an 

interface will be specified for certain classes of timing characteristics. 

In particular, it will be necessary to know either the maximum number of 

items which the device will transfer before stopping, or the maximum rate 

at which it will transfer them. If indeed the device does not stop, then 

this thesis will impose an upper limit on the rate of transfer of the 

device. 

In this chapter the class of devices to be considered is that which 

is often called "record-oriented" devices. A record is just a collection 

or sequence of a known number of data items which is treated as an en

tity by the device. By this is meant that once the device has started 

to transfer the items in a record, it cannot be stopped or excessively 

delayed without causing an error until all of the record has been trans

ferred. Normally, the items in a record will be transferred at a fixed 

65 



---t.' 

66 

and regular or usynchronous" rate, and this rate cannot be modified or 

delayed without loss of data. the allowable delay :I.J usually specified 

in terms of the rate. For example, the transfer of each item might have 
''1,,. ' 

.to be completed before the next is initiated or the item from the first 

transfer will be lost. Devices with these general charac,teristics will 
. . ' 

be called "record-oriented". It will be shown that such devices are rela:-

tively easy to insert into the I/O system of the last chapter, so this 

class will be investigated first. 

The purpose of this chapter is to devise a scheme which will avoid 

the disruptive effect of delays to the I/O process. There are two gene7 
' .. 

ral solutions possible. The first, to be called the external solution, 

is to insert some adapter between the de~ice and. the port on the device 

selector so that delays in the I/O processing can be tolerated. The 
-. 

other approach, to be called the internal solution, is. t~ modify the sys-
1,\. 

tem so that no unacceptable delays can occur. There is a third solution, 

which is to start the data transfer o~er from th~ ))e,sinning of the re-
- ·-." oc: 

cord if it is disrupted by a delay. If there is some assurance that the 
. ; .. •· 

same delay will not reoccur on each attempt to transfer the record, this 

solution may work, but it is not general, for it only works for certain 
't· . . - ." ' 

devices. This solution is discussed more ful.ly in the next c~pter_s. 

The most obvious form that the external ·sol~tion could take would 

be a buffer, to hold the items which need to be t~ansferred while the 

system pauses for any reason. At first glance, the external buffer might 

seem the simpler of the two solutiona, for in the internal app~oach one 
• f ' • • • • . • ·~ 

must show that !!! causes of delay have been found a~d eliminated. Clo

ser inspection, however, will reveal that buffers h4ve certain diaad-



67 

vantages, the two most important of which are that some facility is re

G(Uired to synchronize the inflow and outflow from the ends of the buffer, 

and that some facility is required to recover the data which may be left 

in the buffer after an error has halted I/0. 

The advantage of the internal approach is· that it yields a much 

simpler structure; the buffers and their associated problems do not exist. 

For this reason the internal approach will be pursued first. In the next 

chapter the external approach will be explored, and these problems with 

buffers will be analyzed in greater detail. 

In this I/0 system, the most obvious delay which might disrupt 

the transfer of a record would be caused by the virtual memory manager 

pausing to fetch a page involved in the I/O operation. That is, the I/O 

control program could cause a page fault, or page exception. If the time 

to fetch a page is greater than the maximum allowable delay of the device, 

then data will be lost. This problem did not exist in the earlier sys

tem, in which devices had no tf.ming restrictions. Essentially, this 

chapter will present a solution to the page exception problem. There 

are, however, other possible delays, and all must be dealt with.· 

As a beginning to the elUnination of all interruptions and delays 

which an I/O procedure might encounter, let us construct a list of various 

sorts of delays which are observable in systems today. Delays to the 

I/O control program might be sorted into four classes. 

1) Processor multiplexing (tUne-sharing, multiprogramming) 

2) Interrupt handling (I/0, time, etc.) 

3) Error handling and recovery 

4) Virtual environment modification (dynamic changes) 



68 

The first three of these are easy to eliminate. By the assumption that 

a processor can be dedic.ated to a process doing I/O, the first case no 

longer exists. Similarly, t~e second case can be eliminated. In this. 

system no I/O interrupts exist. The other interrups, such as an inter

rupt from a timer, can be dealt with in the same fashion as I/O device 

signals were, by directing them to a process which is waitingfor them. 

This disposes of the second category. As for the third category, it is 

obvious that the progress of an I/O program may be delayed or disrupted. 

if the user program contains an error, but such delays are not a defect. 

of this scheme; user errors can be. expected to disrupt th~ user 1 s com

putation. The only responsibility that the I/O system must take is to 

assure that the results of a delay due to an error do not obscure the 

nature of the error itself. This leaves the fourth category: dynamic 

modification of the virtual environment. 

What is meant by a dynamic modification is any modification to the 

environment made "on the fly", at the point in time at whic.h that modi-· 

fication is needed in order. for the user's program t;o continue. An 

example would be a page exception, in which the, page is fetched into real 

memory at the moment the user needs it. qlearly, sipce dynamic modifi

cations are made "on the fly", the user's process will experience some 

delay while they are performed; it is thiS delay which m!,lst be ~liminated. 

(In specific cases, where the delay occu.rs at a known point and takes a 

known time, the user could allow for it, but in general delays do not 

occur in this predictable fashion.) 

The sort of delays which can result from changes to the virtual en

vironment depends, o~ course, on exactly which aspects of the environ-



69 

ment can change dynamically. The various changes can be divided, how

ever, into two categories, The first category is the change in the 

binding, or relationship, between two virtual namespaces, For example, 

in the MUltics system, the first time ·a procedure references a segment 

by name, a binding is created between the segment . .!!!!!!! (one virtual memory) 

and a segment number (another virtual nalllespace). This binding is called 

linking in most systems; in Multics it is done dynamically. The other 

category of dynamic changes are those which bind a virtual to a real 

name. The most obvious example, of course, is the association of a vir

tual address with a real memory address, which is the· result of a page 

exception, 

The I/O system can easily eliminate delays of the first sort, for 

the cost of making such bindings·tn advance is not the tying up of real 

resources, but just the eXpense of identifying and making all the bindinga. 

In the case of dynamic linking, for example, it is quite reasonable to 

provide a static linker, and require the user to ·employ it on his I/O 

program, 

The·difficulty comes with bindings of the second kind. When a 

binding from a virtual name to a real resource is created, it itnplies 

that the real resource so bound is committed f~r the duration of the 

binding. This committment is costly, so that such bindings are only 

made and kept for as short a time as possible. A page of a segment, for 

example, is brought into memory (bound to real addresses) only as needed. 

This implies that if no pauses are allowed during I/O, so that these 

bindings must be made in advance, a real c:ost will be incurred for the 

real resources. The purpose· of this chapter is to underaltand how to con-



70 

trol these costs. 

For convenience, let us call a binding which has been completed 

and which will be maintained in that state a frozen binding, and an en

vironment with all appropriate bindings frozen, so that it might support 

I/0, a frozen environment. There are two questions to be considered con

cerning the freezing of a binding, or the freezing of a page in parti:cu

lar: what is the Unpact on the system, ~nd what is the impact on the 

user? The next sections will consider these poin,t:s. 

1h! Effect of Frozen Pages .2!! ~ Systew 

From the system's point of view, what restrictions must be placed 

on the user's ability to ask that various of his pages be frozen in 

memory. As this section will show, th~re are three criteria which the 

system must guarantee in order to assure successful'operation. They are 

as follows. 

First, the real cost, as paid by the user, of fixing a page in 

memory must not be so high that he cannot afford to do I/0. This parti

cular issue will for the present be ignored, because questions of cost 

and efficiency have been postponed to a later cbAlpter. In particular, 

Chapter 7 will reconsider the material in this cbaper, and will augment 

the scheme to be described here in such a way that ·the cost is made ac

ceptable! For this chapter, it will be sufficient to assume that the 

user does pay whatever real costs are associated with his frozen environ

ment. 

Second, an issue distinct from, but related to the first, the user 

must not be allowed, by means of freezing paaes in memory, to claim more 



71 

than his share of the machine. It is clear that· a user could, by free

zing large numbers of his pages in memory in an uncontrolled fashion, use 

up so much memory that other users of the system had insufficient memory 

left to run well. The user must not be allowed to optimize his computa

tion at the expense of overall system performance, even if he is willing 

to pay for the resources he freezes in doing so. Thus the issue of fair 

share is distinct from the issue of cost. 

Third, the freezing of pages into memory must not interfere with the 

ability of the virtual memory manager to perform other necessary tasks. 

From time to time, the system needs to undo virtual-real bindings. For 

example, if it is desired to reconfigure the system by removing a memory 

box while the system is running, then any pages bound to memory in that 

box must be unbound and moved. Unless one assumes that reconfiguration 

is so fast that the delay it cause is negligible, which is not a realis

tic assumption, then the frozen binding is .an effective obstacle to tasks 

such as reconfiguration. 

Both of these latter problems can be solved by imposing the fol

lowing simple constraint on the freezing of pages: each request for fro

zen pa.ges must be accompanied by a specified maximum time which the 

freeze must continue in effect. The user making the request will deter

mine the appropriate time, and the system will hold the user to this 

limit. In order to understand the implications of this time limit, ob

serve how it solves the reconfiguration problem. If the system can guar

antee that a fro~ten binding will come unfrozen before some particular 

time, and the delay until that time is short en~ugh, then the process 

which is performing the reconfiguration can, on discovering that it can-



72 

not move a page because the page is frozen, request that it be notified 

when the page becomes free, and then suspend its execution, knowing that 

by virtue of the time bound the system can guarantee that the page will 

actually be freed. (In order that the reconfiguration process be able 

to tolerate the delay, the time limit on frozen bindings must be fairly 

short, perhaps a few seconds at most.) Thus reconfiguration can succeed 

even with frozen pages. 

The time limit on requests similarly provides a means to solve the 

fair-share problem. In order to see why the time limit is important, 

note that the share of memory represented by two requests, one for a large 

number of pages for a short time, and one for a small number of pages for 

a long time, is in some fashion equivalent. That is, resource consump-· 

tion is a space-time product. This being so, and given that the time 

limit on frozen environments means that both the t~e and the space com

mittment represented by a given request. can be determined at the time 

the request is made, the time limit allows the memory ma.nager to restrict 

each user to his fair share of the system-resources by taking each re

quest for a frozen environment and not granting it until sufficient time 

has passed so that in granting the request the user gets no more than 

his. fair share. The user with a large request would thus discover that 

his request was granted only after a long delay. 

The time bound is very important in making this scheme work. The 

resource scheduler would not be able to assess the resource consumption 

represented by a request if that request was not associated with a maxi

mum time. Without the time limit, a resource once frozen might never be 

released. Thus the time limit is crucial in regulating the resources 

-------------------



73 

consumed by I/O. 

It has thus been shown that the system can function properly, even 

allowing for frozen pages, if a time l~it is imposed on the duration of 

the freeze. We must now turn from the system to the user, and consider 

what effect this frozen environment scheme! -with ·ttme limit has on the 

user's ability to perform I/0. 

~ Effect of Frozen Bindings ~!h.! U&er 

There are two questions about the effect o-f the frozen environment 

scheme o-n the user. First, does the reqtrlreaaent: that the user predict 

in advance the maxilii\D time that his t/0 task wil'l take restrict him in 

such a way that be is prevented f>rom elbing •useful- worlt? The answer is 

that the time li.B'lit is completely compatibl~ ri1:h; certain kinds or de

vices, tn particular record-oriented devtces, because such devices trans

fer a known number of items at a known rate:, so that the transfer re

quires a predictable tiuae. For other kinds Of devices, such as type

writers, which, at least in input mode, are essentially unpredictable, 

the time limit scheme -is not appttceable. Itt Chapter 7, the scheme will 

be modified to work for tyJ?~n·tters and· other sueh devices as well. 

The second qtielltion concerning the user atad the frozen environment 

is what modification in the strueture of the I{O· system ""developed in the 

last chapter iS implied by the use of the frCn:en environment? Whenever 

a user is about to perform I/O, he must now precede. the I/0 with a re

quest to freeze his environment, and follow it with a request to un

freeze. What complication will this represent to the user? The addition 

of two subroutine calla to the I/O e()ntrol prog!'.'am is not a major com-



74 

plication. The real complexity is determining which parts of the en

vironment need to be frozen, and describing these parts to the system. 

In general, .the following sorts. of areas will be needed: 

the procedures doing 1/0 

storage for variables of .the procedure 

storage for I/0 data being transmitted 

What aids can be constructed to help the user identify the parts of his 

environment to be frozen? If the procedures are written in some high

level language, the user will not know which areas of memory contain the 

portions of his program which are to be executed during the freeze .. ·It 

would be possible, however, to devise a procedure which would trace the 

user's program and generate a list of those areas which must be frozen. 

All the procedure need do is start a.t the call requesting the. freeze and 

follow each branch until it finds a request to unfreeze. This procedure 

can also generate a list of those_ variables whose storage must be avail

able. The principal difficulty comes with the storage for the I/O data 

itself, for only a certain part of this storage·need be frozen on any 

particular transaction. The storage might, for ex.ample, be represented 

as an array, a certain area of which will be referenced, The array may 

be very large, which would make it unacceptable to fr:eeze the whole array 

in memory. It would be very difficult for some run-.time procedure.¥o

vided by the system to deduce from the programand the current value of 

variables just what portions of the array will be r~ferenced. For areas 

such as this whose boundaries change with each instance of the freeze, 

it is probably necessary (and desirable, from the viewpoint of efficiency) 

for the user to con~truct explicit expressions describing the particular 



75 

areas of the variable storage which should be frozen on each I/O trans

action. 

In sunma.ry, then, the I/0 system of Chapter 2 is'modified as fol

lows. Before starting an I/0 transacUon, the I'/0 program must call the 

memory manager, presentins it a list of those resources which must be 

frozen for the transaction. Inside this call the I/O process will pause 

until the manager decides to honor the request and freezes the resources. 

When the resources have all been frozen, the manager will set a timer 

with the limit which was supplied as part of the request, and return to 

the user. When the user has finished the I/O, it mu•t call another entry 

in the manager, which will free all the frozen resources. Should the 

timer run out before this call has been made, the manager will assume that 

the user program is in error, and will stop the I/O process, free the re

sources, and notify the process overseeing the computation. 

The most obvious limitation implied for the user by these controls 

is that he must agree in advance of each transaction to a maximum time 

limit. This means that (until Chapter 7) only certain kinds of devices 

are connectable to the sy~tetn. There are certain other drawbacks. For 

example, since all the areas to be'referenced by an I/O transaction must 

be specified before that transaction begins, any data which contains the 

address into which the rest is to be read cannot be read in one trans

action (except into some intermediate area). 

Other Bindings 

The freezing of pages into memory has been stressed here because 

these bindings are expensive to create and maintain, but the other 



76 

bindings must not be.forgotten. One must elQlmine a particular system to 

find all the relevant bindings, but some general sorts of things to be 

expected can be listed. 

All segments to be used must; be made part of the virtual 

address space. 

All symbolic references must be linked to the correct segment. 

A.ny process to be signalled muse: ))e identified. 

In fact, since the process cannot add segments to its address space, 

or reference new portions of known segments, its rest.rictions resemble 

those felt by programmers before the invention of dynamic creation of 

bindings, when they were forced to define in advance the requirements of 

their ~amputation. But of course this is exactly what is to be expected. 

of a frozen environment. 

Stopping !h! I/O Process 

In the second chapter it was stated that the .various restrictions 

which would be placed on the I/O process would allow us to state how 

another process (e.g., the event process) could stop the :I/0 process in 

an orderly fashion. In what ways have the controls of this chapter 

taken us toward that goal? First, note. that a running process is in one 

of two states, frozen or unfrozen, and unless it is frozen it cannot be 

performing I/0. If it is not performing I/O, there is no reason why it 

cannot be stopped instantly. If, at the time it is to be stopped it is 
~ 

doing I/O, then all the physical resources which it is holding are named 

in a list, the list describing the frozen environment, which is known to 

the system as well as tQ the I/O proceS$. Thus if the I/O process is to 



77 

be stopped instantly, it is only neceJsary to stop the· I/O process it

_self, make sure the device i,s stopped, and then-tell the system to free 

the listed resources. 

Alternatively, if apPropriate, the I/0 process can be allowed to 

run until the I/O is cCXQ.pl.eted. There are essentially two problems with 

allowing the I/O process to continue in this fashion: how to tell when 

the I/O is completed, so that the I/O process can be stopped, and how to 

determine that. the I/O process is operating .in error and is not ever going 

to stop. The frozen environment scheme wlth time·limit provides the abi

lity to solve both .these probleas. Fir:st, when· the ·I/O process finishes 

the I/O it must call the system to unfreeze i.t'S resources. At this point 

the system can, if appropriate, stop . the I/O process· and notify the event 

process. In this fashion the event process can get control of the I/O 

process at the exact point the I/O is completed. Second, the event pro

cess should conclude that the I/0 process is behaving in error just when 

it overruns its time lim.tt. In fact, the obvious way for the system to 

deal in general with the fa,ilure of the I/O process t·o unfreeze Hs en

vironment within the. time limit is to ,stop the I/O ·process and notify 

the event process. 

Other Forms .£!. lli I!!!!! pound 

It should be clear that if the system is to keep any control over 

resource usage, there.must be SOlie sort of time limit on the freezing of 

resources. It may not be obvioijS that the r•ther aiaple·form of the 

bound used here is the mo•t appropriate. This sect: ion will explore some 

of the aternatives. 



78 

We might first inquire if instead of an absolute time limit, some 

more flexible bound could be used. The bound could be in the form of a 

probability distributio~ of the time which will be used. This thesis has 

not used such an idea because the advantages, especially to a record

oriented device, are nil, and the complexity of the scheme is signifi

cant. The only way in which the system can set a timer using a bound 

in the form of a distribution is to asstme that the I/O process wi 11 use 

the maximtm time the distribution will allow. The system can only use 

the distribution as a scheduling tool in. es-timating resource usage if it 

has confirmed that the I/0 process is indeed confotming to the distri

bution it supplied. The measurements necessary to confirm this would be 

costly. Finally, for a record-oriented device, where known record length' 

implies fixed time bound, there is no obvious reason why a distribution 

is an appropriate description of the time the I/O processwill use. So 

this thesis will consider only fixed time bounds. 

There is another variation on this scheme, however, which seems 

more useful. This is to change the interpretation of the time bound, 

so that it describes the maximum time within which the process will un-

freeze, not counting from the time the freeze goes into effect, but rather 

from the time when the resource manager asks the I/O process to unfreeze 

its resources. This technique is especially appropriate if the fair

share problem is not importantJ so that the only need for the time limit 

is to allow for reconfiguration and other rare occurrences, in which 

case it would be more efficient to let the I/O run until a particlila:r 

need to unfreeze actually arose, rather than mak~ the I/O repeatedly 

stop to unfreeze and then refreeze its environment. 

--------~~~~~~~---~--



79 

The disadvantage of this variation is that the signal from the re-

source manager wi 11 reach the I/O process at an unp.redictable time, which 

is undesirable. To avoid the necessity of this signal, which is essen-

tially an asynchronous interrupt, while still_ providing a means by which 

the I/O process can run until such thne as the resource manager wants it 

to stop, a new entry point to the resource manager can be provided which 

the I/O process may call to extend its time limit whenever the current 

time allotment is about to run out. The resource manager can then stop 

the I/O as necessary by refusing to extend the bound. This approach does 

imply the extra cost of these calls, but it avoids the design of the com-

munication path from the resource manager to_the I/O process. This thesis 

will presume this new entry point if such a _variation is appropriate. 

Sumnary 
• 

This chapter has proposed that in order to interface to a particular 

class of timing dependent devices, namely rE!cord-oriented devices, a modi-

fication to the virtual memory manager b,e made so t_hat pages of the user 1 s 

virtual memory can be fixed, or frozen, into rea~ memory during I/O. In 

order to regulate this fixing of pages into memory in a manner suitable 

for both system and user, the chapter restricts the freezing of pages by 

requiring that the user specify, as part of each request to freeze pages, 

the maximum duration of the freeze. This restriction, although very 

simple, is powerful enough to solve two problems associated with frozen 

pages: assuring that the user can get no more than his fair share of 

the machine, and assuring that the system can move frozen pages as needed. 

The time limit has the additional benefit that it constrains the I/O pro-



80 

cess in such a way that it iS possible for the event·process·to stop 

the I/O process in an orderly fashion if necessary. 

The freezing of pages is actually a particular eXample of the need 

to eliminate all delays which can occur while d·oing I/O. The chapter·· 

discusses the various sorts of delays, but concentrates on paging, the 

most difficult delay with which to· cope. 

In fact there were three controls placed on the user's ability to 

freeze pages in memory. Not only must the user· supply a time limit, but 

he must pay for Teal resources so comi-tted, and he iS ·scheduled only so 

often as gives him no more than his fair share of the machine. Of these 

three controls, however, the time limit is the most important, for with-' 

out it the -other controls would not functlon properly. 

One of the goals of the thesis was to seek solutions which were uni

versal in scope, that is, to find solutions which applied to a wide. 

variety of devices, rather than to one particular device. While the 

freezing of pages cannot be called a universal solution, for it applies 

only to record ... oriented deviees, it clearly applies to a significant 

class of devices, and in Chapter 7 it ·wnl be extended to include a wide 

variety of devtaes. The frozen environment is thus an example of this 

desirable sort of solution.· 



Chapter 4 

Buffered Interfaces 

In an attempt to interface devices with timing constraints, two 

classes of mechanisms, internal and external, were proposed. The last 

chapter discussed the internal approach; this chapter will discuss the 

external approach. The internal approach attempted to interface devices 

with timing constraints by systematically eliminating all possible causes 

which could delay the I/O control program during those periods when the 

device is operating. In contrast, the external approach interposes a 

buffer between the device and the port on the device selctor, which al

lows the device to tolerate any delays of the I/O control program by pro

viding storage for the items which must flow during the delay. 

Buffering in connection with I/O is far from a novel idea. The in

tent of this chapter is not to present new ideas about buffering, but to 

demonstate the real cost and complexity of using buffers as part of this 

or any other I/O scheme. In brief, the chapter will show that buffers 

aan be used in the context of this I/0 architecture and that the I/0 de

vice can still be represented as a number of memory words but will also 

show that the I/O control program must take explicit account of the buf

fer, especially in error recovery, and that the complexity added to the 

I/O control program by use of buffers may, depending on the particular 

device connected, be considerable. 

In order to show the issues involved in buffering, this chapter will 

develop a particular buffering scheme, the role of which is to serve as 

an existence proof that such a buffer can actually be build. The scheme 

81 



82 

is by no means unique, or even best, and the chapter will point out al

ternatives which might be appropriate. 

Buffers are needed to deal with devices which are not record

oriented, but which have other sorts of timing characteristics. In order 

to motivate this material, these other characteristics must be introduced 

and understood. Thus this chapter will begin with a discussion of various 

kinds of devices. 

Most devices which are connected to computer systems are record

oriented, including disks, drums, card readers, and card punches. De

vices such as printers and tapes have variable record sizes, but the maxi

mum size is always known before the device is started. The largest class 

of devices which are not organized around records are often called com

munication devices; these include communication lines to distant devices 

or machines, and devices such as terminals and other devices for human 

interaction (graphic displays, light pens, input tablets, etc.). Since 

an interactive terminal is a very common device, crucial to time-sharing 

systems of today, and since the timing characteristics of such terminals 

are fairly typical of these sorts of devices, interactive terminals will 

be considered in more detail. On input the terminal generates an item 

whenever the typist presses a key. It is considered bad human engineering 

to prevent the user from typing as he wants to, so terminals are nor

mally prepared to accept a character at any time. Thus, in contrast to 

a record-oriented device, which delivers a known number of items at a 

fixed rate, a terminal delivers as many items as the user chooses to 

type at whatever rate the user chooses to type them. If the user were 

entering a large quantity of text into the system, the terminal might 

--- ----------- -----



83 

continue accepting input characters uninterrupted for hours. On output, 

the device does not demand items at any fixed rate, so it could be used 

as a record-oriented device by delivering output in blocks of fixed size; 

however, output which comes in bursts like this is apt to prove almost 

as annoying to the user as having his keyboard locked when he wishes to 

type. Another observation about terminals and similar devices is that 

the transmission rates are (at least for input) usually much lower than 

those of the typical record-oriented device, so that the resources needed 

to run them at full capacity are not as great. Issues of resource con

sumption are being postponed until a later chapter, but, looking ahead, 

one of the requirements of any scheme for operating these sorts of de

vices must be that the scheme not require excessive resources. 

It is not true, strictly, that devices such as terminals do not 

stop. It is aLmost always true, except in systems dedicated to the I/O 

task and specially designed, that the system allocates resources to the 

device using probabilistic rules that attempt to serve the device suc

cessfully "almost" all of the time. But it is generally accepted that 

occasionally the system can and will fail to provide resources when the 

device needs them. In this case the device will be forced to stop (for 

example the keyboard will be locked). Thus while it is considered bad 

design to lock the user's keyboard continually, rare interruptions are 

acceptable. This tolerance of occasional interruptions can be exploited 

in the system design. 

How might a device such as a terminal be connected to the system? 

The frozen environment, with its lbnit on the length of the transaction, 

is an inappropriate interface for a device with unpredictable timing 



84 

characteristics. The interface could be used under one condition: if 

the system did not use the time bound as a scheduling tool, but only to 

allow recon~iguration and similar tasks. Since these tasks are rather 

rare, it might be reasonable to accept the paases for them as the occa

sional tolerable disruptions. For the purpose of this thesis, such an 

assumption is not very general, so another solution will be sought. 

The solution to be discussed.in this chapter is, as was mentioned 

above, the insertion of a buffer between the device and the system, as 

illustrated in Figure 4-1. The buffer used in this fashion provides an 

area in which data in transit can 'pile up' to cope with delays induced 

by page exceptions or other causes. 

This buffer could appear in various forms. It could, as pictured, 

be a separate module which is physically inserted in the line between de

vice and device selector. Alternatively, the buffer could be included 

within the device. For example, many interactive terminals being de

signed today include a mini-computer. Such a computer could be pro

grammed to use its memory as a buffer. In this chapter the buffer will 

be viewed as a physically separate module, because this reveals most 

clearly the issues involved with buffering. 

The buffer scheme to be proposed in this chapter must be evaluated 

in the light of two considerations. First, Chapter 2 described a specific 

device interface, with command and data lines controlled by sets of ready 

and acknowledge lines. To what extent can a buffer scheme be proposed 

which can work with this interface as described? This chapter will show 

that certain new lines are required. Second, to what extent must the 

user change the way he views his device if that device is connected by 



85 

to buffer 
memory ~ ~ selector device 
and se lee tor t----1 

processor Hllllllll±ll~---[?] 

Figure 4-1: Buffer inserted between device and device selector. 

to 

::F~~or -i.:~!~~r t -I buffer I~~ 
processor - . ~ " ~----------------------------~- -, ~ 

selector-buffer buffer-device 

Figure 4-2: The two stages of data flow in a buffered device. 



86 

means of a buffer? For example, what changes must be made to the program 

of Figure 2-4 if the device is buffered? The chapter will show that the 

representation of the device as a portion of the address space is still 

an appropriate and viable interface, but that the I/O control program 

must take explicit acc6unt of the existence of buffers. 

A Model of I/O Buffering !! Several Parallel Algorithms 

The introduction of the buffer has broken the flow of data into two 

stages, between selector and buffer and between buffer and device, as 

pictured in Figure 4-2. At each of these stages, the flow of data is 

under control of a particular algorithm, to be called the data flow al

gorithm. The selector-buffer data flow algorithm is the I/O control pro

gram running on the processor; the buffer-device data flow algorithm is 

provided by the internal structure of the buffer. These two algorithms 

must work in parallel to move the data the whole distance between the 

selector and the device. 

The picture could be extended as in Figure 4-3 so that there were 

several buffers with associated data flow algorithms. In this general 

case, all the algorithms A1 through An+l must be coordinated to produce 

correct effects. This sequence of data flow algorithms A
1 

through An+l 

could be compared with a bucket brigade in that the successful operation 

of the overall system depends on the co-operation and co-ordination of 

the sequence of semi-autonomous operations. 

Why would a sequence of buffers as in Figure 4-3 be a preferable 

model compared to the single buffer of Figure 4-2? Imagine for a moment 

that we have successfully inserted a single buffer between device and 



device 
selector 

buffer buffer buffer buffer buffer 
element element element element element device 

~ 1 ...... 2 ........ 3 -++ 4 .......... n ~ 

7 } ~ 1 ~ 7 
Al A2 A3 A4 A An+l n 

Figure 4-3: Several buffer stages and associated data flow algorithms between 
device and selector. 

Q) ..., 



88 

selector. If the device continues to operate properly, then it must be 

true that the buffer behaves exactly like a device as far as the pro

cessor can tell, and behaves exactly like the processor as far as the 

device can tell. This in turn means that if one of the connections to 

the buffer was severed, say the one between the buffer and the device, 

and a second buffer inserted there, neither buffer could tell that the 

other buffer existed, because each would, to the other, be indistinguish

able from the device or selector which the buffer replaced. Thus, one 

need only design a simple buffer element which can hold just one item, 

for by combining these elements one can create a buffer of any size 

needed. This approach is obviously much simpler than designing the whole 

buffer as a unit. Thus, this thesis will consider the buffer to be of 

the form pictured in Figure 4-3. 

It is usually impractical, as well as undesirable, to have the user 

provide all of the data flow algorithms. Normally devices and buffers 

are simple devices, which are not programmable. They come from the fac

tory with the algorithm 'built-in'. The subject of this chapter is thus 

what should these built-in algorithms be, and what co-ordination between 

them is necessary, so that the system works properly. In particular, 

the data flow algorithms must be structured such that they solve two 

specific problems. First, the inflow and outflow of items from the se

quence of buffers must be co-ordinated in such a way that the buffer is, 

as appropriate, kept full or empty. Second, if because of an error the 

data flow is halted with items in the buffer, the various algorithms 

must co-operate to empty the buffer and put it in a known state. This 

chapter will propose a buffer algorithm which solves these two problems. 



89 

Synchronization ~ Buffer Algorithms 

In synchronization the inflow and outflow from the buffer, the fol-

lowing considerations must be taken into account. When I/O starts, the 

buffer will normally be empty. Similarly, when I/O comes to a halt the 

buffer will normally be empty. The empty state is normal for reading 

from a device, so that room exists for holding values which the device 

generates. In writing the buffer should normally be full, so that values 

are available for the device if the process stops. This means that when 

writing, the I/O programs, as part of starting up, must fill the buffer, 

and then attempt to maintain it in that state. 

The following is a specific buffer algorithm which will satisfy 

these constraints. It is based on the particular interface between the 

device and the selector discussed in Chapter 2, which consisted of com-

mand lines running from selector to device, and data lines which could 

carry data in either direction. Each I/O operation was composed of two 

parts: first, the command, going from selector to device, and second, 

the data itself, going in either direction as specified by the command. 

Consider reading data from device to processor. In this mode the 

buffer should be empty, to provide space to hold items generated by the 

device while the processor pauses. The processor will commence the read 

operation by issuing a read instruction, which will cause the selector 

to send a read command to the first buffer. Obviously the buffer must 

transfer the command to the next buffer, so that it may eventually reach 

the device. Thus part of the buffer's data flow algorithm must be: 

When empty buffer receives read data command from selector, 
acknowledge it, and pass it on to the device. 

---------~- ~~-~--



90 

The next step will be the data being read, which will flow back from the 

device to the processor. Thus the other half of the algorithm is: 

After handling the read command, wait for device to _send 
data back. When data arrives, acknowledge it, and pass 
it on to the selector. 

The next step is to make the buffer work properly in the case that 

the processor lags behind. In such a case, the device must be able to 

force an item into the buffer, even if the read data command has not been 
...__,_~ 

issued by the selector. 

The technique to be used is to add one line l:'hich runs from device 

to buffer, to be called the 'read operation required' (ror) line. If 

at the time the device needs to transfer another item, it has not re-

ceived a ~ data command, it will signal over the~ line to the buf

fer. The buffer's response will be to create and s_end to the d-evice a 

read ~ command, so that the device can then transfer its data item. 

The buffer, which must get rid of this item in.ordeJ:" to accept another, 

will force the item into the next buffer by using its ror line. Thus -
the item will be shifted eventually to the buffer adjacent to the device 

selector; when this buffer signals over its ror line, the processor will 
' . ...-- ' ' . 

not respond, so the data item will sit until the processor is ready and 

sends a read data command. ------
In order to implement this, the buffer algorithm must be augmented 

as follows: 

When empty buffer receives ror signal from device, fabricate 
a read data command and sendit to device. Send ror to selec
tor:--~ data arrives from device and read data~ommand ar-. ..--......- __,__ 
rives from selector, pass data to selector. 

For those who are interested in the details of this algorithm, it is 

~----------~ ------~-------- ------------~---



91 

presented in Appendix A as a finite state machine. The algorithm is not 

simple; to allow for the various possible sequences of events, nine 

states are needed. 

There is another solution, appealing except for a fatal flaw, which 

does away with the necessity of the££! line by having the buffer, once 

the sequence of reads has started, always generate a read ~ command 

as soon as the previous read is complete. Why does this not work? Be

cause the buffer does not know when to stop. The sequence of reads should 

come to a halt when the device reaches a logical stopping point, which 

might be a record boundary or the end of a message. If the buffer were 

to generate a~~ command after this stopping point is reached, 

the device will continue on to the next record, which should not happen 

until the processor requests it. Thus the device, which can identify the 

logical stopping points, must have control over the flow of read data 

commands, which in this scheme is done by means of the ror line. 

This is half of the algorithm. What about writing? Writing re

quires that the buffer be kept full, so that items will exist for the 

device if the processor pauses; thus the algorithm here will differ from 

the read algorithm in that it will try to give the processor a head start 

over the device in order to fill the buffer up. One strategy which would 

do this is as follows: when the processor writes an item into the first 

buffer, that buffer does not immediately transfer the item to the next 

buffer as in reading, but rather holds it until another item is pre

sented to it. The next item forces the first into the next buffer, and 

so on, until the sequence of buffers is full, at which point the next item 

will force the first item out of the buffer and to the device. Once the 



92 

device is started, some mechanism is then required to allow it to pull 

additional values out of t.he buffer, even if the buffer is not being 

kept full from the other end. The mechanism required would be a 'write 

operation required' (wor) line, similar in Mture to the .!.2.!: line, run

ning from device to buffer. When the device signals over the!£! line, 

the buffer will transfer the next item, or raise its !2! line to fetch 

the next item down. In this way the device, once started, can empty 

the buffer. 

There is one difficulty with this strategy for writing. If the 

length of the message is shorter than the number of buffer elements, the 

message will never get written, because the algorithm relies on filling 

up the buffer in order to start the device. One form of solution to 

this problem would be to have the processor start the device explicitly, 

but this is undesirable because it would change the model which the pro

cessor had of the device. Even with buffers, the processor has been able 

to reference the device using a sequence of memory references. It would 

be a shame now to add the necessity of additional commands. Another al

gorithm will avoid this problem. pesign the buffer so that it always 

passes an item along immediately. This will mean that the device starts 

as soon as the processor does, so the buffer does not assist in keeping 

itself full. The buffer can be filled without this assistance if the 

processor can write items faster than the device can accept them, and 

each I/O transaction starts with a long enough uninterrupted sequence to 

fill the buffer. Since the necessary length of such a sequence can be 

figured, the frozen environment techniques of the last chapter can be 

used to guarantee such a sequence. The statement of this latter al-

--------------------------~--------------------------------~ - ·----



93 

gorithm is rather simple: 

Whenever the buffer contains a data item from the selector, 
send a write data C0111D8nd to the device, and on acknowledge
ment, send daea-to the device. When a write data command 
arrives from the selector, acknowledge it. Wait until buf
fer is empty. Then wait for data from selector. Pick up 
data and acknowledge it. 

The algorithm involving the ~ line is somewhat more complicated, al-

though the general scheme is clear enough. The interested reader is 

again referred to Appendix A, where both write algorithms are displayed 

in detail. It will be assumed for the rest of this thesis that the sim-

pler scheme ~ using the ~ line is preferred. 

This completes the specification of an algorithm sufficient to co-

ordinate the various buffers under normal operation. The resultant al-

gorithm is more than a little complex. The resultant algorithm is also 

by no means unique. There are changes which could be made. MOreover, 

this particular buffer structure, a sequence of identical buffer elements, 

is not the only useful structure. The buffer could be a small computer 

or a single piece of LSI, which implemented the algorithm as a program, 

or it could be built as an integral part of the device. 

One other issue related to synchronization has to do with reading 

and writing the state word of the device. The issue is the following. 

When the processor reads or writes the state work, is the action sup-

posed to occur immediately, or should it be delayed in the buffer? This 

problem is most severe when writing, because the processor can, by vir-

tue of the full buffer, get ahead of the device. In this case if the 

writing of a state word had immediate effect, the writing of the items 

currently in the buffer might be severly affected. On the other hand, 

------------ ----~---------------------------- ----------



94 

if the effect is delayed until the buffer is cleared, then it would be 

impossible ever to stop the device immediately, which is a bad result. 

Thus it becomes necessary to distinguish the cases of immediate effect 

and buffered delayed effect, and this distinction means that the I/0 pro

cess cannot completely ignore the existence of buffers. One solution 

to this problem is that if the state word should not be modified until 

the buffer is empty, then the process should wait until it can deter

mine that the buffer is empty and the device stopped before proceeding. 

The process thus must be able to detect this condition by reading the 

state word. 

With these various observations we will conclude our discussion of 

synchronization of buffers and pass to the other structural question 

raised earlier, the recovery from errors. 

Error Recovery ~ Buffers 

The other problem with buffers was that buffers complicate the re

covery from errors and abnormal halts, for an abnormal halt may leave 

data in the buffer which must be dealt with, This situation is confused 

by the several different cases whkh can occur. Because of an error the 

device may stop, or the processor may stop, or for same reason another 

process may want to halt the I/O in the middle of the transaction. A 

good example of this latter case would be the event process when it res

ponds to the user's attention key. The task of this process would be 

to stop the current computation, including any I/O in progress. In 

order to simplify this discussion, we will first consider this last 

case, and see in what fashion another process could stop an I/O trans-



95 

action involving a buffer. 

The most simple technique for stopping the I/O is to halt both the 

device and the processor and just discard anything in the buffer. This 

technique has been used because of its great simplicity, but in a pro

perly designed system such loss of data should be avoided when possible. 

In response to the signal from the attention key the current computation 

is certainly to be stopped, but it is very desirable that this stop not 

be a destruction but a suspension of the process, so that the computation 

might be restartable. The ability to suspend, modify, and restart a com

putation is present in the Multics system, and has proven very useful. 

If data is lost by stopping the process, the process may not be restart

able. Thus, a goal is that stopping the I/O process not cause loss of 

data if possible. 

Given this goal, can the simple strategy of discarding the buffer 

contents ever be used? It can, under one condition: that the sender 

and receiver of data can agree on some previous point in the I/O trans

action, some ~-point at which to begin again. Such a check-point 

often exists. For example, if the device connected through the buffer 

were record-oriented, the transfer could be restarted at the beginning 

of the current record. This usually works for disks and tapes, is awk

ward for card equipment, and unacceptable for printers, because the same 

material would be printed twice. For a printer, however, it might be 

acceptable to start over at the previous page boundary, or at the begin

ning of the file. Whatever the boundary, this strategy is facilitated 

if the I/O program always allows the buffer to empty before moving from 

one record to the next. As long as this rule is obeyed, there is never 



96 

any question of the record in which the error occurred. Otherwise, it 

may be necessary to back up further than the current record. 

How could the I/O control program discard the contents of an array 

of buffer elements? An obvious and effective mechanism is to set aside 

several bits in the state word which are to have meaning to the buffer 

rather than the device. These bits might be more properly made a sepa

rate state word, an interface state word, rather than a part of the de

vice state. These bits would be mapped into the additional lines which 

are present at the buffer interface. The example so far is !£! (and per

haps~), which runs from buffer to processor. In order to implement 

this buffer discard function, another line is needed, running from pro

cessor to buffer. Setting this line would cause the buffer to reset it

self and then pass the signal on. Thus another line is added to the de

vice interface for buffer error recovery. Figure 4-4 shows the device 

interface with the various lines which have been added in this chapter. 

If no check-point can be found, then in some fashion it will be 

necessary to restart from the point of stopping. One obvious way to 

stop the I/O so that it can be restarted from the point of stopping is 

to halt the transmitter of the data but let the receiver continue to run 

until it has emptied the buffer. This is a variation of the pattern 

which would occur during normal termination o.f an I/O operation. 

Under what circumstances is this solution unacceptable? It may be 

that the receiver is what really needs to be stopped. For example, if 

the current computation is printing large quantities of output on the 

user's terminal, and the user decides that he does not want this output 

and presses the attention key to stop it, he does not want his terminal 



device 
selector 

97 

command ready .... 

- command acknowledge 

command .... 

- read ready 

read acknowledge .... 

write ready .... 

-write acknowledge 

- data .... 

- error and event signals 

- read operation required 

buffer error recovery .... 

device 

Figure 4-4: Device interface of Figure 2-5 with read operation 
required and buffer error recovery lines added. 

------------- ~~----~---~~ 



98 

to continue while a potentially large buffer is emptied. He wants it 

to stop when he presses the button. Allowing it to continue causes 

frustration, but is also bad interface engineering because the terminal 

is the only link between the user and the: -computer. If the computer 

fails to respond to the attention key immediately, the user has no way of 

confirming that the attention signal was noticed. 
,, . . ~ 

It is normally not necessary to stop th~_process as quickly as the 

device, so if the process rather than the device is the receiver, this 

technique may work well. In terms of the imp~ementation, the only dif-

ficulty is that the I/O control program must determine whether there are 

additional items in the btiffer:, in order to knoW whether .to issue another 

read. If the .!:2!:. line can be tested as a bit of the state work, however, 

the presence of a signal there indicates exactly that another item re-

mains. Thus there is no problem. 

Another reason why the technique of letting the receiver continue 

to run will fail is that the cause of the stoppage may be the receiver 

itself, which has halted when it discovered an error. If the error was 

a bad data item, for example, the item must be replaced with a good one 

before the receiver can be restarted. Thus the receiver cannot be used 

to empty the buffer. 

The next possible technique for stopping. is that the transmitter 

should take care of the data in the buffer. One sUnple implementation 

of this would stop the receiver instantaneously, and then have the trans-

mitter remove the data from the buffer and hold it, s.o that when the. 

operation is restarted, the data is avai-lable for retransmission. Often, 

it is not necessary to extract items themselves for the buffer; all that 



99 

is needed is a count of how many are there. This is true if a copy of 

the transmitted items has been saved. F'H example, if the processor is 

transmittins to a device, the procenor normally keeps a list of the 

items to be transmitted in aemory, and·.moves a pt>inter down the list as 

a copy of each item is sent. In such a case all that is needed ts a 

count of the number of items in the buffer, in order to back up the poin

ter. In contrast, a typewriter is an exaaple of a device which has no 

copy, and would have to extract the items themaelves from the buffer. 

In thiS case, the obvious question is what would the typewriter do with 

the items so extracted? In order to get a genei~al answer to this quesl!ion, 

consider another ·poestbl• t'ecbnt.que of deaHng wtth t:he data in the buf

fer. 

Perhaps the moat s·t1itple t·hing t'o do with data is' to leave it in the 

buffer. If in fact the I/O iS just tleiDg' Suspended and will be re

started, why can't the items jus·t remain in the buffer during the sus

pension? !t turns out that .this doe-s not always w<1rk very well, as the 

exampl:e Of the user's tet'llinal will show. The usual reason to. interrupt 

a computation is to modify it. Such a modt.fication· is often produced 

by the user at his terminal. Thus after the interr-uption .of the process 

the next use of the terminal is uot when the process is restarted b~t 

during the interruption itself. If data is ieft ·in buffers in antici• 

pation of restarting, it will be· in the way of any communication during 

the interruption. 

What this example shows is that the terminal is particular, and 

many devices in general, are not dedicated to one t•sk but are shared 

among the various tasks of the user. Whenever a devl-ce (or buffer or 



100 

. .. . . 
l"; 

process) is shared, any interruption of one task must be structured in 

such a way that another ta•k caa use that device. Thus going back to 

the earlier solution in which: the typ.ewritex- extracted the contents of 

the buffer and, retraasmi.tted it when restearced, we, see that this scheme 

is unacceptable because 15he abaJ"ing of .. the device means ·that· the data 

so held will be in the way of other uaage. The devd.ce could process 

data in this way only if it were ver:y aophistioated, perhaps a small pro-

cessor, so that it could implement and, interface to the user a local bu£-

fer management strategy. 

The structure of most syste~P is .such that the processor is.much 

better equipped than the. device to cop• ¥ith·Alat4 returned in this .fashion. 

Since a copy of the data usually exists, the state of the 1/0 operation 

can be represented by an indelf; .iato the..·liat ;· in order to ·multipleX the 

device it is only neceasa·r¥ to store this index. 

In terms -of the hardware ,£mpleme,ntation ·it is more difficult for 

the processor to remove the data in this .case (writing) than it was in 

the other (reading) cas.e, because the buffer is carrying the data away, 

not toward, the processor. If th:e .proaessor is to remove the dataJ which 

given the limitation of the interface can only be done by read operations, 

then i.t will be necessary to reverse the direction of the data· flow in 

the buffer so that a read Qperation will have the desired effect. Bs-

sentially what is needed is another buffer error recovery signal running 

from processor to device through the buffers, which, when set by the 

processor, causes the buffer to be forced into a state where the data can 

be reached. 

If.what is needed is the count of the items in the buffer, rather 



,_ . ., 

101 

than the items themselves, there is another possible implementation. De-

fine a new aspect to the device, in addition to data, state word and 

record number, which is the number of items in the buffer. This requires 

that there be some module which is connected to both ends of the buffer, 

so that it can count items both as they enter and as they leave. Such a 

module is not consistent with the model of the buffers as a sequence of 

separate elements, but could easily be superimposed on that structure. 

If the buffer were implemented as one single unit, this function could 

easily be added. 

In summary, four solutions have been proposed in order to deal with 

data left in a buffer by an interruption. 1) Back up to a check-point, 

if such exists, 2) Let the receiver of the data continue running to 

empty the,data, if the receiver can run. 3) Have the transmitter get 

back the data or a count of it, if the receiver has some place to put it. 

4) Leave the data in the buffer; this was rejected if the buffer was 

shared. 

Which of the above four solqtions is appropria.te in a particular 

case is influenced by the very importan-t consideration that in communi-

cation between computer and a huiJ¥ln, the hU11JS:n and the computer have very 

different characteristics. In tq~ previous example, the strategy of 

backing up to a check-point failed in the particular cases of communica-

tion between a computer and human: printer output, typewriter input and 

output. This is because the human reader is concerned with the printed 

form of the material he uses, and printed matter cannot be backed up. 

Similarly, the strategy of having the receiver recover items from the buf-

fer and resend them later failed in the case of typewriter input, because 



102 

the typewriter was shared among various tasks. Actually, the user rather 

than the typewriter might be thought of as the proper agent to hold the 

items, but pushing characters back to the typist is, because of his con

cern with the printed form, not always possible. 

The implementation of this buffering strategy has been presented 

in considerable detail, including state diagrams in Appendix A. The 

reasons for this detai 1 are first, the des·ire to show that the characteri

zation of the I/O interface as a number of memory words continued to be 

viable in the case of buffers. That is, it was necessary to show that 

using only read and write instructions, the processor can perform all of 

the functions which buffers imply. A proof by example seems ·the most 

simple approach. 

Second, this implementation provides an example of the b-uffer model 

presented at the start of the chapter, in which each buffer element is 

executing an algorithm in parallel with the others. Since the buffer 

algorithms are usually (as in this case) rather simple and are fixed 

when the buffer is manufactured, the success of a buffer implementation 

lies in devising a buffer algorithm such that the correct overall beha

vior can be produced by reprogramming only the one algorithm executed by 

the processor. The algorithms presented here do not solve !.!.! I/O in

terface problems; they are particularly slanted toward devices such as 

typewriters, but subject to this restriction they deal with a variety 

of circumstances including abnormal halts. Thus they serve as an example 

of the sort of algorithms which will be required. 

Again, it is important to stress that the thesis does not claim 

that this implementation of buffering is the only appropriate one. Buf-

----------



103 

fers could be a freestanding computer, or part of the device, as well as 

an array of elements. The important thing is the extent to which modi

fication of the interface is required by the buffer. The insertion of 

the buffer caused several small changes to the normal operation of I/0. 

Short messages written using the .!£! strategy will need special start 

conu:nands, and synchronization of state modification must be done expli

citly. For error recovery, explicit attention to the buffer was required. 

In every case, however, the modifications did not preclude the use of the 

device interfaced as a number of memory words, That is the most impor

tant result of this example. 

Other Forms ~ Buffering 

If one looks at the sorts of buffers in use today, one can find 

structures significantly different from the buffer proposed here. An 

obvious question is how other sorts of buffers fit into this scheme. In 

order to discover the answer to this question, consider a different kind 

of buffer, similarly composed of a sequence of buffer elements, in which 

each buffer element does not transmit an item on its receipt, but holds 

items until it accumulates a certain number (a block) and then transmits 

this block to the next buffer as a unit. Clearly a buffer of this sort 

will have a different interface for inter-buffer transfer than it will 

for connection to device ot processor. An example of this sort of struc

ture is a 11store and forward" message switching network. 

One observation about such a network is that the buffers may be able 

to recover from certain errors without intervention of the processor. 

If the buffer keeps a copy of each block which it sends, and holds it 



104 

until the block is successfully received by the next element, then on 

failure of the transmission the block can be resent. This is actually 

an application of error recovery by backing up to a check-point, applied 

at the buffer to buffer level, rather than at the proeessor-device level. 

This observation is actually the first answer to the question posed 

above concerning fitting other sorts of buffers into the I/O scheme. In 

any I/O transaction, the operation can be viewed as going on at several 

levels simultaneously. The processor is trying .to move items to a de

vice, while a buffer is trying to move blocks to another buffer. The 

material developed in this chapter in terms of a one level transaction 

can and must be applied at every such level. 

The strategy used to perform the operation at one particular level 

is often called a protocol. Thus in this case there is a processor

device protocol, a buffer-buffer protocol, and of course on the same 

level as the buffer-buffer protocol there are the processor~buffer and 

buffer-device protocols. Using this vocabulary, the buffering scheme 

developed earlier in this chapter attempted to make the processor-

device protocol and the buffer-buffer protocol identical, so that the 

device could ignore the existence of buffers. This goal was achieved 

imperfectly. In a more complicated structure such as block transmission 

buffers, it is necessary to admit that there are at least two distinct 

levels of protocol. The general observations made so far about buffering 

will apply !£ ~ ~ of protocol in operation. For example, at any 

level at which error recovery can occur, the recovery procedure will fol

low one of the four techniques .outlined in this chapter. Further, each 

level of protocol must be prepared to cope with errors which occur in 



105 

lower level protocols. 

In the block-transfer strategy, error recovery at the buffer-

buffer level was by backing up to a check-point. On the processor

device level, error recovery might be completely different. The techni

que of having the transmitter extract the data from the buffer might be 

appropriate, for example. At the processor-device level, the implementa

tion details for these techniques might be quite different. For example~ 

rather than the transmitter "turning the buffer around", the receiver 

might take the items out of the buffer and then resend them to the ori

ginal transmitter. Another alternative would be to use the check-point 

technique by grouping the items into messages, ~ch of which had a name, 

so that a check-point could be the beginning of the message. If it 

were necessary to retransmit from the point of interruption·, that point 

could be described by the receiver to the transmitter in terms of off

set within a message. From this example will come the other answer to 

our questions about fitting other sorts of buffers into our scheme: the 

same general technique will hold but the details of implementation will 

be quite different. 

An Examele ~ ~ Multi-Level Protocol 

A good example of an I/O system which involves several levels of 

protocol is the ARPA communication network, a store-and-forward message 

switching facility (34) currently connecting over 40 computers, or hosts. 

The network which links these hosts is composed of interconnected Inter

face Message Processors, or IMPs, which could be described in terms of 

this thesis as block transfer buffer elements. There are several levels 

.. ---·----.,--------~---------------~-~-----



106 

·, 

of protocol in the network. At the lowest level there are the adjacent 

IMP-IMP protocol and the HOST-IMP protocol, which govern the transfer 
' ,,, 

between adjacent modules. Above this there is the sender to receiver 

IMP-IMP protocol, between the IMPs which represent the ultimate source 

and destination of a message; above this there is the HOST-HOST protocol; 

and above the HOST-HOST protoco'l are special-purpose protocols for such 

things as transfer of files and allowing a user at one host to log into 

another host (the TELNBT protocol). Details on these protocols are pro-

vided in several publications (1,28,29,'39). · 

The adjacent IMP-IMP protocol is designed to allow for error de-

tec·tion and· recovery. An IMP sends a block of data, called a packet, to 

its neighbor, and then waits for acknowledgement. The receiving IMP 

will send this acknowledgement back if the packet is received correctly. 

If on the other hand the packed is mal-formed, or if the check-sum main

tained by the hardware indicates a lost bit, the receiver will do nothing. 

The sending IMP, on failing to receive an acknowledgement, will resend 

the packet, and will continue aotrfg so Until an' acknowledgement comes 

back. This protocol, of course, is an example of error recovery by 

backing up to a check-point, the beginning of the packet. This protocol 

has no control lines such as ready-acknOwledge which regulate the arrival· 

of packets at an IMP. One IMP may s~nd-another a packet at any time with-
. ' ' ' 

out prior negotiation. If the receiving IMP is unprepared to accept the 

packet, it throws the packet away. The sending IMP will, of course, re-

send the packet when no acknowledgement returns. 

The HOST-IMP protocol is very different from the adjacent IMP-IMP 

protocol. It has no mechanism such as check-sum for detecting errors in 



',,_,. 

107 

the data transmission. Furthermore, bits are transferred across the in

t:erface one at a time rather than irt packets, each transfer controlled 

by two signals somewhat resembling ready and acknowled.ge signals, except 

that the receiver rather than the sender of the bit must send the first 

signal. 

No lines exist across this interface over which to report errors or 

request retransmission. . Errors must be reported by sending an error 

message across the interface as if it were data. Such messages may ori

ginate in the local IMP, or they may come from a distant IMP as a result 

of the sender to receiver IMP-IMP protocol, if the message has been lost 

somewhere in the network. In this protocol as well, error recovery is 

by backing up to a check-point, in this case the beginning of the mess

age, which is larger than a packet. 

The sender to receiver IMP-IMP protoct>l and the HOST-HOST·protocol 

deal with synchronizing inflow and outflaw·from the net, but the goal 

here is not cushioning delays but rather flaw control: insuring that 

items do not come into the network faster than they are-going out. In 

particular, input from one host must not disable other hosts' activities. 

To achieve this control, both thes-e protocols require 'that before sending 

any messages. the sender must obtain from the receiver· permission 'to send 

a particular number of bits, and may not send more than this ntiDI.ber. 

In the case of an error, the sender to receiver IMP-IMP protocol 

contains a mechanism to cause the retransmission of a message. The HOST

HOST protocol, however, deals imperfectly with the need to remove infor- · 

mation which is left in the system as a result of an error. In particu

lar, the HOST-HOST protocol contains the concept of an event signal, the 



108 

meaning of which is to halt the process doing I/0, but the protocol fails 

to deal with data in transit when the signal is sent. The TELNET pro

tocol, built on top of the HOST-HOST protocol, deals with such data by 

discarding it, a solution rejected by this thesis. 

Thus the network control program in a host must deal with three 

levels of protocol. First, it must deal at the hardware level with the 

handshake-procedure necessary ,to transfer each bit to the adjacent IMP. 

Second, it must deal with the HOST-IMP messages, which do such things as 

report errors. Third, it must deal with the HOST-HOST messages which 

are concerned with multiplexing and flow control. 

Summary 

The insertion of buffers into the data path between device and de

vice selector generates two problems, synchronization and error recovery. 

The intent of this chapter was to show that these problems could be solved 

in the context of the I/O interface which represents the device as a num

ber of memory words. This has been shown by example, but in the process 

certain modifications were required of the interface between device and 

selector, and of the I/O control program. 

The interface was modified by the addition of several new lines, 

the E£E line and two lines for error recovery, the line which discards 

the buffer contents and the line which turns the buffer around. The re

vised interface is. pictured in Figure 4-4. These lines do not change 

the basic nature of the device interface, howev~r, but are rather addi

tions to it. 

The I/O control program must be modified so that it has explicit 



109 

knowledge of the buffer's existence. For example, the program must know 

how to recover from an abnormal halt which leaves items in the buffer. 

In general, it may be true, depending on the c~plexity of the buffer 

scheme, that the I/O program must be prepared to deal with two distinct 

levels of interface protocol, one level for the device and the other for 

the adjacent buffer. In this case the observations made in this chapter 

apply to every Level of protocol. 

The·_ buffer scheme described here is an alternative to the frozen 

environment scheme of the last chapter, and was intended to handle de-

vices which could not us~ the frozen environment. This buffer scheme is 

also capable of.handling the :record-oriented devices of the last chapter. 

The frozen environment scheme is .felt to be the preferable of the two 

where it is appli~able, however, for the complexity added to the control 

program b' the frozen environment scheme, the addition of the system 

calls, is less than the c6mplexity of • error recovery and sychronization 

added by buffers. Thus the frozen environment will be used when possible. 

Chapt~:r 7 will propose a modification to the frozen envi:ronmen~ 

scheme which will ~ork with devices such as interactive terminals. Thus 

it might seem that buffers are of no use at _all. In fact, buffers have a 

use perhaps more important than the one discussed in this chapter. Buf

fers were designed to allow devices to tolerate delays caused to the I/O 

control program~ When the question of efficient use of processors is con

sidered, a new delay will appear, the delay of processor scheduling. The 

buffer, of course, can deal with this delay as well as the delay caused 

by page exceptions. Thus the buffer scheme will appear in a later chapter. 



Chapter 5 

Multiplexing in the I/0 System 

Up to this point in the thesis, the assumption has been that there 

was no sharing among users of such things as I/O device controllers, 

communication lines, external buffers and other parts of the I/0 

machinery. In real I/O systems, these elements are often shared, or 

multiplexed. The purpose of this chapter is to introduce such multi

plexing into this I/O system. 

The term multiplexing will be taken to mean a sharing of some 

facility in such a fashion that the user could believe that the 

facility were exclusively his. In other words, this chapter will not 

consider arrangements for sharing which several users· might work out, 

or which one user might work out for several of his tasks, although 

these arrangements are certainly practical and useful, but will rather 

consider schemes for sharing which the system may impose on the user. 

Such a scheme must not require the cooperation of the user, nor should 

it require the user to modify his programs to cope with it. 

There are a variety of techniques lumped under the name of multi

plexing. A good example of device controller multiplexing is the use 

of one set of control hardware to run several tape drives or disk 

spindles. An example of communication~ multiplexing is the use of 

one cable to connect to the computer several typewriters at a remote 

location. Buffer multiplexing would reduce the cost of the buffering 

proposed in the previous chapter. Each of these kinds of multiplexing 

will be discussed in the chapter. 

110 



111 
Multiplexing will be seen to cause a great deal of disruption to 

the orderly nature of an I/0 system. Why include multiplexing at all? 

The reason is that great economies can be realized by sharing; multi-

plexing is currently necessary to achieve acceptable, costs for I/0. 

This chapter, then, is an attempt to bring this I/O system closer to 

reality by adding multiplexing. 

This chapter does not contain major new results. Rather, it is 

an attempt to evaluate various known multiplexing.schemes in the context 

of this system. The evaluation will ~how that this system is compatable 

with various sorts of multiplexing, thus supporting the claim that this 

system is indeed an appropriate one; it: wi 11 a 1s o 8 how·; hopefully, 

what aspects of, multipl,exing are the most disruptive to an orderly 

I/0 system. 

Sharing £!.!.!!!:. Ports _2!!, ~ Device Selector 

The device selector was assumed to provide for each device a 

separate and distinct connection point, or port,·and to map this port 

into a distinct set of memory addresses. Since it is by mapping 

portions of memoJ;y into the user's virtual address sp.ace.that access 

to devices is granted or _qenied, .it is crucial that each device be 

represented by a distinct portion of memory.. If instead several devices 

were to share the same port, and thus the same portion of memory, it 

would not be possible to grant or deny access to these devices individ-

' 
ually, which would mean that for protection reasons the user could not 

be given direct access to one of these devices, for in receiving access 

to one he would get access to all. 



112 

Why would one consider having several devices share a port on the 

device selector? The equivalent happens often in traditional I/0 

systems. If several remote typeWriters are connected to the computer 

through a shared cable, that cable is normally connected to one port. 

Similarly, if several tape drives are run by one tape controller, that 

one controller is usually connected to one port In order that each 
r·-·. 

device have its own port, it will be necessary, for example, that such 

a tape controller be connected to the selector by not just one cable, 

'but by one cable for each device. 

Thus the first conclusion about multiplexing is that whatever sorts 

of multiplexing are done should be done external to the device selector, 

so that each device is connected to its own device selector port. This 

conclusion is valid not just for this specific system. It follows from 

the basic assumptions implied by the goal of mapping devices into the 
,. " 

user's environment in such a way that he cart access them directly. 

! Multiplexed De'Vice Controller 

In order to begin fitting multiplexing into this system, consider 

first the most simple case, which is device controller multiplexing. A 
. -

tape controller running a nUmber of tape drives would be an example. 

Since the controller is shared, it must move itself from one device to 
·; . 

another to support the operation of the various devices. This section 

will consider what algorithm it can or should use to move from device 

to device. 



113 
One common strategy, called block multiplexing, is to assign the 

controller to a particular device for long enough to transfer an entire 

record or some other number of items. Let us first consider an Alter-

native to this, which is that the controller moves itself from device 

to device on an item by item basis. Item by item multiplexing is perhaps 

a more natural technique to program, for as this chapter will show, item 

by item multiplexing can be done automatically, which eleminates the 

need for coping with whatever module performs the allocation in the 

block multiplexing case. 

To understand item by item multiplexing, observe one particular 

device as it operates. At some point the controlling I/0 program will 

issue a command to read or write, The multiplexor will then assign 

itself to the appropriate device and pass it the command. At this point 

the processor running the I/O program will wait until the device is 

ready to perform the data transfer. Clearly, the multiplexed controller 

must not remain assigned to this particular device during this waiting 

period, for it is the waiting period which consumes all the time which the 

processor wastes because it is faster than the device. If the controller 

were to remain assigned during the wait, it would be assigned to the 

device essentially all the time. So the controller must assign itself 

to a device twice during each transfer, once for the command and once for 

the data. The implications of this will be discussed below. 

As more and more processes attempt to use the controller, it must 

share itself among more and more devices. This sharing implies that when 

a particular device is ready to use the controller, the controller may 

not be free. If the devices have no timing constraints, the only result 



114 

of this delay will be to cause the device to run slower. It is 

desirable, however, that the controller multiplex itself so that it 

gives each device a fair share. 

If the devices have timing restrictions, it is possible that 

excessive delays injected by the multiplexing of the controller would 

prevent the device from being serviced in time. In this case it may 

be necessary to restrict the number of simultaneous users of the device. 

Block multiplexing can be viewed as the result of restricting the 

nt:nnber of simultaneous users to one. 

It is not hard to imagine an algorithm as part of the controller 

which gave a fair share to each device on an item by item basis. While 

it is similarly possible to create a controller strategy for sharing 

itself on a block basis, it is not clear that on a block basis the 

controller is the correct piece of the system to make this decision. 

If one process is to proceed, while others are halted, the other 

resources of these halted processes (e.g., pages in memory) ought to be 

freed. This suggests that the allocation of a block multiplexed 

controller should be coupled with the request which assures the user 

his other resources, the request to freeze the environment. 

Doing block multiplexor assignments as part of the request for a 

frozen environment has another advantage in addition to committing 

resources only as needed, which is that the user then need not take 

explicit action because he is using a block multiplexed facility 

(provided that the system knows which devices are to be used during the 

freeze). Not introducing explicit action was one of the goals of 

- -· -- ------



115 

multiplexing. Thus the second conclusion about multiplexing which this 

chapter will draw is that in the context of this system a block multi

plexed facility should be managed just as another resource, by cOIIIIIitting 

it to a process as part of a frozen environment. 

A Multiplexed Communication ~ 

Often, several terminals at a remote locati.on share one cable to 

the main computer. The main difference between this sort of multi

plexed facility and the multiplexed controller discussed above is that 

in this case the device and the communication line are not integrated 

in an arbitrary fashion as the device and the controller were. Rather, 

it is assumed that the device is equipped with the standard interface 

developed in the previous chapters, and the multiplexed line must connect 

to this interface. 

It was observed in the previous section that under the item by item 

multiplexing technique, the multiplexor must assign itself twice in each_ 

transaction. In order for it to assign itself correctly in the second 

part of the transaction, the transfer of the data, it is necessary .that 

the multiplexor be able to determine when the device is ready to do the 

transfer. In the case of the multiplexed controller this represented. 

no problem, for the device and controller could be interconnected in 

any fashion necessary. The multiplexed communication line, however, 

must determine when the device is ready_using only the information 

available at the standard interface. If the operation pending is reading, 

this is easy. When the device is ready to read1 it signals over the 



116 

read ready line, which indicates that it is now appropriate to assign 

the line to this device. If the device is preparing a write operation, 

however, it will present no indication to the multiplexed line, for it 

generates no signal but rather waits for the write ready signal from 

the processor, which will not arrive until the line has been assigned. 

What is needed is a new line running from the device over which the 

device will signal when it is ready to perform the write. The multi

plexor will, on receipt of this signal, assign itself to the device and 

pass the write ready and the data lines from the process on to the device. 

Since this line runs in the reverse direction from the normal write ready 

line, it will be called the reverse direction ~ ready line. The 

existence of this line will not alter the operation of device or buffer 

in any way except for generating the signal as appropriate. Figure 5-l 

displays this addition to the interface. 

The necessity of adding a new line to the interface does not result 

from details of the interface, but rather from two general observations. 

First, in any multiplexed facility such as this, which has "two ends", 

the device end and the selector end, it is preferable that one end only 

make assignment decisions, for if both can make them some additional 

mechanism is needed to prevent the various decisions from conflicting. 

This mechanism will require negotiation between the ends, which may be 

impossible in the case of a communication line due to restrictions of 

the line itself. The second general observation is that if one of the 

two ends provides the slower response of the two (processors wait for 

devices, not the other way) then that slower end (the device end) has 

the best assignment information available and should make the decision. 



device 
selector 

117 

command ready ..... 

- command acknowledge 

command ..... 

- read ready 

read acknowledge ..... 

write ready ..... 

- write acknowledge 

·-data .... 

- error and event signals 

- read operation required 

buffer error recovery ..... 

- reverse write ready 

device 

Figure 5-l: Device interface of Figure 4-4 with reverse write 
ready line added. 



118 

These two observations imply that the device must generate a signal 

whenever it is ready to complete a transaction. The necessity of 

localizing the multiplexing decision at the device end constitutes the 

third conclusion which this chapter will make about multiplexing, or 

about interface protocol in general. 

There are facilities other than communication lines which might be 

multiplexed in the fashion, with two "ends" fanning out to devices and 

selector ports respectively. These observations would apply to any 

such facility. 

Multiplexing of External Buffers 

In the previous chapter, which discussed buffers, it was noted that 

while external buffers would cope with the various processor delays, for 

long delays or fast devices the amount of buffering required would be large. 

Rather than associate a large amount of buffering with each device full 

time, buffers could be assigned only as needed. This is multiplexing of 

external buffers. 

Sometimes buffering is needed for the operation of another multi

plexed facility. Asynchronous time-division multiplexing, often 

identified as ATDM, is the use of a multiplexed communication line 

assigned on an item by item basis with an insufficient limitation on the 

number of users to prevent the peak item arrival rate from exceeding the 

rate at which the line can handle the items. The benefit of operating 

in this mode is that the average number of items transmitted is increased, 

so that the line is more fully used, but in order to prevent the delays 

induced by the occasional peak arrival rates from causing timing failures, 



119 

buffering is.needed. Rather than provide this buffering on a per-device 

basis, it is usually multipleked as~part of the ~TDM scheme. 

We will first propose, and find a flaw with, a stmple-minded 

scheme for buffer multiplexing, which ts to design a buffer element which 

resembles. the one in the previous chapter except that it buffers 

additional information: the identity of the particular device with 

which the item is associated. When these elements are connected 

together to form a buffer, an item would go in one end accompanied by 

its device identification, and when it reaches the 11other end11 of the 

buffer the device identification would be suff:Lcient to send it to 

the proper destination. Clearly, the buffer c&·n only be used in one 

direction at once: if one device is raad:ing, aLl DlUst: be r.ading, and 

this implies that there would be two buffers, one :Ln each direction, for 

full operation. But this is not the flaw :Ln the systaa. 

ConSider operation in one direct ion, say r-eading, and consider the 

end of the buffer adjacent to the device selector. There each buffered 

item in turn will be examined, its device identiflca.tion extracted, and 

the item will be sent on its way to the proper process~ Not exactly; the 

item at the head of the buffer will go on its way only when the progr~ 

in charge of the associated device executes an ins.truction which picks 

the item up. But the user's program is not cer.tified in any way. If 

it is badly written, or maU.ctous, it a:ay never r__,e the item from the 

buffer, in which case the whole buffer is stopped up and the scheme 

fails utterly. 



120 

What has gone wrong? The shared buffer, by putting the item of a 

user in its first element, is assigning itself to that user in such a 

way that the user must act before the buffer is free to assign itself 

to another user. This is a violation of the general rule that whenever 

an I/O program is not guaranteed by the system to behave in a certain 

manner, no multiplexed facility can allow its successful operation to 

be predicated on the co-operation of that I/O program. 

One could attempt ad hoc solutions to this, for example a timer to 

limit the duration an item will be kept in the buffer. The real answer 

is that an item by item allocation .scheme is inappropriate for buffer 

elements. If allocation were performed on a block basis, for example 

as part of obtaining a frozen environment, then the necessary controls 

on resource consumption would follow. 

How might a block-allocated multiplexed buffer be designed. One 

simple configuration is pictured in Figure 5-2. In t,his particular 

scheme, the multiplexor has several buffers, one of which it will assign 

to a particular device as that device becomes active. If none are 

available, the process running the device must wait. Once one of the 

buffers is assigned to a device, it will behave as if it were dedicated. 

MOre complicated multiplexed buffers can be imagined, which are 

capable of varying the amount of buffer allocated to each device 

depending on the dynamic need. A small computer might be used to run an 

external allocation algorithm which operated independently of the 

frozen environment. 

The failure of the simple buffer multiplexing scheme is not a result 

of the details of this system, but is, once again, a general result of 

-,--



device 
selector 

n 
ports 

buffer 

buffer 

buffer 

buffer 

m buffers 
(m<n) 

Figure 5-2: A scheme for multiplexing buffers. 

device 

device 

device 

1-' 
N 
1-' 



122 

the desire to allow the user to write and run an arbitrary I/O program. 

Allowing the user this freedom implies that anything the user can do 

must not disrupt any other user. Multiplexing is an obvious area in 

which this restriction will be felt. 

While the use of multiplexed buffers does cause complexity, buffers 

dedicated to a particular device can be used in conjunction with other 

multiplexing without causing trouble. For example, it might be 

appropriate to buffer each typewriter connected through a multiplexed 

communication line. Such buffering would normally be connected between 

the device and the line, so that it could absorb delays in obtaining 

the line, as well as the other processing delays. In order that this 

work properly, it is only necessary that each buffer element have a 

reverse direction write ready line. 

MUltiplexed Ports Re-examined 

As an earlier section discussed, the multiplexing of ports on the 

device selector is to be avoided because it w~uld imply the loss of the 

ability to allow direct user access to the devices on the port. In a 

practiCal case, however, it may not always be possible to insist that 

each device have its separate port, for the system may have to cope 

with some multiplexed facility designed with the expectation that the 

main processor itself will demultiplex the information from the facility. 

An example of such a facility is the ARPA Retwork, discussed in Chapter 4, 

in which messages from a large number of sites come through one port. 

In order to demultiplex this sort of facility externally, an additional 

computer would be required. In such a situation it may be necessary to 



123 

compromise and multiplex a port. · 

If this is done, the I/O control program which accesses the port 

must be provided by the system for protection reasons, and the user 

must access the devices on the port by communicating with this system 

certified I/O program. The important point about s'uch a solution is 

that, assuming its limitations are accepted, it can be implemented 

easily in the context of this I/O system. The certified program which 

demultiplexes the facility will be run in an I/O process provided by 

the operating system rather than the user. User processes access the 

facility by interprocess communication, which is also true for an I/0 

process provided by the user. Thus the user, from his main computation, 

does not see access to these devices as being strongly different from 

other devices. And the use of one port in this fashion does not affect 

the operation of other ports. Thus in this system a multiplexed port 

does not cause a disruptive effect on other parts of the system; it 

may actually be a very appropriate strategy, if the resulting restrictions 

on that port are reasonable for the situation. 

Sunmary 

The I/O system developed in this thesis can be integrated with 

various sorts of I/0 multiplexing. MUltiple~ing of a port on the device 

selector prevents the user from providtng his own program to access the 

port, but other sorts of multiplexing, such as multiplexing of device 

controllers, communication lines, and buffers can be accomplished. 

The main impact of this system on traditional multiplexing tech

niques is that giving the user direct access to the port implies that 



124 

the multiplexor must not allow faulty programming at one port to affect 

the operation of other ports. Multiplexed facilities must be more 

careful about port behavior than if the program using the port were 

certified. 

The addition of the reverse direction write ready line was a 

reflection of the observation that in an interface protocol such as the 

one devised in this thesis, it is more orderly if the protocol for a 

class of transactions is always initiated on the same side of the 

interface, in this case the device side. The interface with the addition 

of this line is pictured in Figure 5-l. 

In view of the various benefits which derive from the I/O system 

developed in this thesis, the restrictions which the system imposes on 

multiplexing seem worth the price. 



Chapter 6 

Processors as a Scarce COmmodity 

One of the major assumptions of this thesis has been that processors 

were inexpensive enough that one could be dedicated full time to any pro-

cess doing I/0. The economics of today would make this assumption a rather 

expensive one; thus the goal of this chapter is to find ways of reducing 

the cost of dedicating processors full time to I/0. 

There are two techniques which have been used to solve this problem, 

both of which can be made to apply to the I/0 system being developed here. 

The first technique is to assign a processor to the I/0 task only at the 

time when instructions are to be executed, and to assign the processor to 

something else whenever the I/O task waits for the device. In most systems 

which use this technique, the I/O programmer must explictily cope with the 

fact that hts process is periodicafty removed from its processor. This 

chapter will show that in the context of thiS I/O sys.tem it is possible for 

the system to perform processor assignment· autOm.atically, so that a~ I/O 

program written under the asSumption that it would have the processor full 

time need not be modified in order to use this· technique. 

The other technique which has been used to reduce the processor cost 

associated with I/O has been to transfer the I/O processing from the regu-

lar processor to a specialized processor, often called a channel, whose 
.. 

capability and cost are suited to I/O. This chapter will show that one of 

the important advantages of interfacing I/O devices as memory words is that 

a specialized I/O processor can be used in a much more versatile manner 

than in other I/O architectures. To the knowledge of the author, this 

versatility in the use of a specialized I/O processor has not been 

125 



126 

exploited before in systems which represent the I/O device as a region of 

memory. 

Dynamic Assignment of I/O Processors 

The technique of assigning a processor only as needed usually finds 

application for typewriters and other slow devices, for the costs and bene

fits are well matched. In a traditional I/O system the technique might work 

as follows: whenever a typewriter needs to send or receive a character, it 

generates an interrupt. In response to this interrupt, the system runs an 

interrupt handler, a piece of code which takes the appropriate action, and 

then returns. How could this technique be fitted into the I/0 system so 

far developed? 

Clearly, one issue is efficiency. The switching of the processor to 

the I/O interrupt handler program must not be excessively costly, and must 

not cause so much of a delay that the I/O fails to be serviced in time. 

Many systems have demonstrated that this scheme can be made to run effi

ciently, but this thesis must consider whether efficiency is adversely 

affected by some feature of this I/O architecture, or by some feature of 

the sort of system in which it is embedded, for example virtual memories. 

The other issue which this technique raises is one of program structure. 

Chapter 2 argued at some length that for reasons of clarity and ease of 

programming, the interruption of processes and the interrupt handler struc

ture should be avoided. It will be necessary to devise some strategy for 

taking away and restoring the processor which does not destroy the structure 

of the I/O process, which so far has been sequential. Ideally, it would be 

possible to devise a scheme for taking away and restoring the processor 



127 

which is completely invisible to the user, so that he can create his I/0 

control program as if it were to be run ori a dedicated processor. This, 

in fact, can be done. 

The term suspension will be used to describe the act of taking away 

the processor from the I/O process. If suspension is to be done in a 

fashion invisible to the user, the system cannot ask the user for assistance 

in determining those points in the I/O control program where that program 

can be suspended. Instead, the system will have to identify these points 

on its own. But what are these points? They are exactly when the processor 

has attempted to reference an I/O device, and is waiting for the device to 

respond, for at those moments the processor is doing nathing, and can be 

put to some other purpose without affecting the I/O process. 

Consider what state an I/O process iii in when it waits for a device. 

The processor will have issued an instruction to read or wrtte, the device 

selector will have issued the equiva~ent command, and the processor will 

then wait in the middle of the I/0 instrUction for the device to respond 

and the data to be transferred. It is when the process is tn this state 

- that it could be removed from its processor, and restored only when the 

device is ready to complete the transaction. 

How could the conditions for suspension b·e detected by the system? An 

obvious way is with a timer. That is, if the processor makes a memory 

reference to a device selector, (rather than a memory box) and that refer

ence is not completed within some time limit (a time of the magnitude of 

10 memory cycle times, for example), and the request went to a device for 

which suspension were appropriate, then suspension could be initiated. 

This timer could be a part of the processor, which might in any case have 



128 

such a timer to allow recovery from a broken memory box which fails to re-

spond, or it could be part of the device selector, so that the, timer signal 

could be delivered only for appropriate devices. 

How can the condition for restoration be detected? Clearly, the device 

must generate some signal which will cause the I/O process to be restored 

to a processor. How is this signal ~o be generated, and what is to respond 

to it? It is easy to generate the signal. When the device is ready t,o 

complete the transaction, it will signal over one of two lines in the inter-

face. If the operation pending was reading, the device will signal over the 

~ ready line. If the operation was writing, the. device will. signal over 

the reverse direction~ ready line introduced in the last chapter. An 

obvious way to map these into a signal which will cause restoration of the. 

processor is to define another line in the interfaceJ to be called the ~ 

processor line, and adjust the interface so that a signal over the ~ 

ready or reverse direction write ready lines causes !:! signal on .the ~ 

processor line. The ~ erocessor line is shown in Figure 6-1. 

Th,is, need processor signal will be used as follows. When the need -
processor ,s,ignal arrives at the device. selector., the selector will in turn 

send a signal to some processor, the ~ffect of which will be that a system 

routine is executed on that processor, whose function is to schedule the 

appropriate I/0 process to run. Thus when. the signal arrives, the I/0 

prog;ram is restored to·a processo.r • 

.. Suspension and resto.ration by this technique ,is essentially invisible·' 

to the I/O process. (Not completely, for example the quit handler process. 

must be prepared to find the I/O process in a suspended state.) Such 

invisibility means that the program structure has not been disrupted by the 

technique, which was the desired goal. 



device 
selector 

129 

command ready .... 

~ command acknowledge 

command .... 

~ read ready 

read acknowledge .... 

write ready .... 

~ write aeknowledge 

~ data .... 

~ error and event signals 

~ read operation required 

buffer error recovery .... 

~ reverse write ready 

~ need processor 

device 

Figure 6-1: Device interface of Figure 5-l with need processor 
line added. 



130 

This scheme for suspension and restoration shares some of the benefits 

and costs of paging. One benefit is the just mentioned invisibility, the 

fact that the mechanism is supported by the system so that the user need 

think little about it. One cost of this scheme, which has an analogy in 

paging, is the occasional inefficiency of suspending a process and being 

forced to restore it immediately. The equivalent cost of paging, removing 

a page from memory and having to fetch it back immediately, is tolerated 

as being outweighed by the benefits of paging: paging is automatic, per

formed by the system and hidden from the user. It would seem that the cost 

of suspension and immediate restoration would be similarly tolerated, es

pecially since I/0 is more predictable than paging, so the number of occur

rences of this sort of inefficiency should be few. This analogy with 

paging was constructed to try to convince the reader that this scheme is 

viable even though it might sometimes do things which are not optimal. 

Without laboring the point further, let us pass on to other issues of 

efficiency. 

One question of efficiency is will the cost of suspending and restor

ing the process and of holding the process in the suspended state be 

excessive. In many systems using interrupts and handlers it is not 

necessary to activate a complete process environment in responding to a 

signal. Thus this scheme might cost more. Some observations about an 

operational system may shed some light on this issue. In the Multics system, 

suspended processes are divided into two classes, called loaded and unloaded, 

depending on whether the system has kept in memory the tables for each 

process which maps the process virtual address space into the real memory. 

If these tables are loaded in memory, starting up a process is rapid, taking 



131 

about 300 instructions or about lms. Multi.,cs. does such a scheduling each 

time the system takes a page fault. Measurements on the current system, 

with two Honeywell 645 processors, shaw that this. s,cheduling_ can happen 

under peak load 100 times a second. If the. proces8· is unloaded, the cost 

of fetching these tables ups the cost and delay of restoration considerably, 

perhap~ in the vicinity of 15ms. Thus it would seem that to implement this 

suspension scheme efficiently, all processes- suspended for I/O should be 

loaded. If this were the case in Multics, typewrit~r input could be hand~ 

led now on a per character basis, for measurements on the same system with 

40 to 50 users show that the chaFacter inpu~. rat~ seldom peaks over 15 

charac:ters per second for the whole system, .which .would only:. add 15% to the 

loaded schedulings already do-qe for Pfl&ing. . ~hese ,additiona~ sc;hedulings 

would clearly not be unreasonable. 

These schedulings are not now done in Multics because the memory to 

keep thi~ many processes loaded costs too much. It was ~ot a design goal of 

the Multics address mapping strategy to keep this many processes loaded, but 

as ha.rdware costs decreas.e it does not seem at all unreasonable as a design 

goal for future systems. There are two techniques to reduce the cost of a 

loaded process. One is to. restrict the generality of processes which are 

allowed to be I/O processes, i.e., to be kept loaded. A limitation on the 

number of segments (or a prohibition against making new ones while doing 

I/O) would fix the size of the necessary tables. The other approach is to 

r~ve any excess material from loaded tables. For example, in Multics, 

every address conversion table contains information about all the segments 

which compose the system supervisor itself, some 200 in number. This 

informat:i,.on is identical for· all processes. If it were extracted and. 



132 

plac~·in a cdnmem table, mapping tables thus specialized might shrink by 

an order of magnitude. This thesis has not de\reloped a detailed virtual· 

memorymapping scheme, sono context exists' to'pursue this issue in detail. 

Hopefully;· the reader is convinced by these general observations, an·d also 

by the' falling prices of memory, that it is not unreasonable to keep I/O 

proc!essesloaded. This topic is really the efficient use of memory, not 

processor:; and will be dUcu·ssed in the next chapter. Let us therefore 

leave·:f.t, fbr there is more·'t6 say about scheduling efficiency. 

Can the device tolerate the delay in completing the transaction caused· 

by restoring the I/O process?· Obviously, this depends on the device. Some· 

devices, once they are ready to complete the transaction, will tolerate 

little £urther delay. Others will tolerate·a~ amatint of delay. Clearly, 

the tolerable delay is a limitation of this scheme. The other limitation · 

is the overhead of the system schedulin:g ro'utines, which will take more and 

moTe resources the more often·the device transfers items. To circumvent 

these limitations, some mechanism is needed which will allaw more to be 

done on each scheduling, 80 as to'reduce the frequertcy of ·scheduling, and 

which will· help cope with the delay in proce·ssor scheduling~ Does such a 

mechanism present itself? 

well. 

The eit'ernal buffer of chapter 4 will work qtiite· 

, .. 

Buffers .!! .! Tool for Processor Sthedulirig 

It is easy to shllw that the external buffer of Chapter 4 will increase 

the amount done at each scheduling, ·and will cushion the scheduling delay. 

Clearly, the buffef' can cushion the schedufing delay, .·for the delay in 

schedulirt~f atprocess is no different than any other delay with which the 



.· '!- _,. - •• :--~: 

133 

buffer was designed to cope. In order to s.ee how the buffer provides more 

work at each scheduling•, consider reading as an example. If, before the 

processor is restored, the device is allowed to fill the buffer up, then 

the processor, when restored, can read not just one item, but all the items 

in the buffer. Obviously, it is not appropriate to let the buffer fill 

completely up, for then there would be no roam left to cushion delays in 

scheduling. But sufficient buffering can be provided to allow a certain 

number of items to accumulate. 

In order to delay restoration until the buffer is .partially full, it 

is only necessary to signal over the .!!.!!!! processor line when the buffer is 

appropriately full. A clean way to implement this is to propagate the 

~ processor line through the buff~rs so that any buffer can turn it on, 

and then provide a modified buffer element which will signal over the line 

when it changes from the empty to the full state. By positioning this 

element properly in the middle of the buffer, the signal can be generated 

when the buffer is filled to any desired degree. This simple modification 

is all that is required to make the buffer work as a tool in processor 

scheduling. 

Clearly, this scheme works for writing as well as reading; the only 

difference is that the device empties rather than fills the buffer, so that 

a buffer becoming empty rather than full must trigger the need processor 

line. 

What are the limitations of the buffer scheme? First, it does not 

avoid but only puts off the issue of efficiency. This scheme decreases the 

scheduling cost associated with a given transmission rate, but does so only 

by use of a larger and larger buffer. Clearly, when the cost of the buffers 



134 

equals the cost from excessive scheduling of processors, the scheme has no 

further use. Moreover,· as was noted ·in the -las·t chapter, buffers are one 

of the most difficult items to multiplex,. so it might in fact be necessary 

to provide this large amount of buffer separately for each device; which 

seems especially inefficient. 

The other limitation of the buffer is the previously discussed fact 

that the data flow algorithm in the buffer is fixed; and built in as part of 

the buffer. The inflexibility of the algorithm is a special hindrance when 

the buffer is used to help schedule the processor, fdr.the reason that for 

certain kinds of devices _(typewriter input is the bes.t example) certain 

computations must be done on each item as it arrives; Type-writer input may 

require checking for the arrival of a c.ontrol character, echoing a character 

(or a sequence of characters if any sort of automatic typing completi()n ls 

implemented), and checking for characters which indicate the end of message. 

The use of buffers postpones these computations until the pro·cessor is 

scheduled. In the previous chapter, the processor was always trying to 

catch up with the buffer, and the only postponement·was caused by delays 

such as paging. Now, with buffers serving as a scheduling tool, the post

ponement is of a-different degree; it lasts until the processor is 

scheduled, and scheduling will only.happen when samething causes it. What 

will cause it? Not the buffer. It only knows to signal· for process sched

uling when it is filled up to a certain amount, and that is not the right 

criterion. One character along might arrive, which should get immediate 

processing, but if it doesn't fill up the buffer, the character could sit 

forever. Clearly, to avoid the delay, these sorts of computations would 

- ------n------~~---

·' 



135 

better be done at the device end of the buffer. But the buffer cannot do 

this, for that part of the algorithm is fixed. 

There are three solutions to this problem, two. ad hoc and one general. 

The rest of this chapter will deal with the general solution, but the two 

ad ~ solutions ought to be mentioned in passing. First, if the computa-

tions which need to be done at the device end of the buffer can be determined 

in advance, special boxes can be built which will do them. These boxes 

could then be spliced in between the device and the buffer. The box could 

either do the computation or detect that it needed to be done and signal on 

the need processor line. The limitation of this .scheme .is obvious: the 

algorithms needed must be correctly predict~d in advance. Any error is 

awkward and expensive, for once again the box~s with their algorit~s are 

prefabricated and not programmable. The other ad hoc scheme is to set a 
. ·--·-

timer which goes off periodically and causes.a processpr scheduling. In 

order to provide reasonable response, the timer should probably go off 

fairly often, perhaps every few seconds, and this in turn implies th.at to 

avoid hopeless inefficiency the timer should go off only if soxp.ething is.in 

the buffer .. Otherwise the process of a logged in user would be scheduled 

every few seconds for the whole console session. Even with this condition 

on the timer, the scheme provides an upper limit on. efficiency, at the sam~ 

time providing an upper limit on response. If a suitable value of the timer 

interval can be found to satisfy both criteria, the scheme can be made to 

work. But there is no guarantee of success in any particular case. Clearly 

what is needed is some programmable module less expensive than a processor, 

which can execute I/O programs. This is the topic of the next section. 



136 

A Specialized I/O Processor 

Traditional systems have often used a specialized I/O processor to 

execute some parts of the I/0 control program. · Such a processor is often 

called a channel. The term "channel", however, has many·different meanings, 

so this thesis will not use· it~ but will instead use the term specialized 

protessor, or SP, by which will be meant a:ny processor the characteristics 

of which have been tailored for executing the I/O program. Perhaps the SP 

can be scheduled with less overhead, so that it is especially appropriate 

for the technique of suspension and restoration. Or perhaps the SP might 

be a very inexpensive version.<)£ the main-processor, perhaps lacking a cache 

or some fancy machine instruction, so that minimal cost is incurred if it 

sits idle. This section will explore haw; ·in the conte~t of this I/O 

system, a processor might. be specialized ·for I/0. 

Structurally, what is th~ difference between; a speCialized processor 

and a traditional channel? In trad·itional I/0 systetltri ln which all I/O is 

done through channels, one important role of the channel has been to pro

vide the connecting point for. the dey ices. Obviously:, SP 1 s will not serve 

that role in this thesis, for the device selector has that function. Thus 

in this system a SP is nothing more· than an alternative· form of a processor, 

differing in cost and capability, but identical to a'processor in the manner 

of its interface to the rest .of the system mad'ulea. That is, an SP, like 

any processor, will do I/0 by making memory-to-memory !DOVes. And like a 

processor, an SP is not attached to one deviee; but may be used to operate 

any device (or combination of devices). Structurally, then, an SP is 

rather different from a channel in a traditional I/O architecture. Compare 

Figure 6-2, which shows an SP added to this system, with Figure 2-1, which 

shows a traditional I/O processor. 



Processor 

Memory 
box 

137 

Processor 

Memory 
box 

Specialized 
Processor 

device 
selector 

devices 

Figure 6-2: I/O system augmented by addition of specialized 
processor. 



138 

This structural difference is an important advantage of the I/O scheme 

of this thesis. By taking the traditional role of the channel, and splitting 

it into two parts, one of which is performed by the device selector, the 

scheme eliminates many restrictions imposed on SPs. Fewer SPs are needed, 

since an idle device does not imply an idle SP. Rather, an SP will be 

assigned to operate the device only as needed. Similarly, the failure of 

a particular SP does not mean that some particular device is inoperable 

until the SP is fixed. The system can just operate w.ith one less SP during 

repairs. 

What sort of criteria will define a successful· SP design? Two conclu-

sions from previous chap.ters seem especially relevant. First, to this 

point I/O has been programmed using the normal computer language. This is 

a desirable feature, so hopefully SPs can be designed which execute a 

language similar to that of the main processor. The other conclusion is 

that the primitive communication mechanisms, e.g., interrupts, which often 

are used between channel and processor can lead to awkward program struc

ture. Hopefully, SPs can be desi8ned which do not disrupt the sequential 

nature of I/O programs. 

The previous paragraphs have listed some constraints on SP design, 

I 

two goals: minimum cost and maximum flexibility, and two bad features to 

avoid: special languages and awkward program structures. Subject to these 

constraints, what sort of SP might be built for this system? Before pro

ceeding, let the reader be warned that this thesis will not present the 

detailed design for a particular SP. A detailed design is inappropriate 

because there are several alternatives, depending on relative merits and 

costs of the particular system. To pick among them here would serve no 

-------~·. ---· 



139 

useful purpose. Rather, this section will discuss various design techniques 

which seem appropriate. 

The following is a list of various techniq,u,~s which. might be used to 

produce a less costly version of a processor t() use f,or I/O. 

Speed reduction: processors of tod~y often EmJploy sophisticated tech:-

niques to increase !!'Peed, such as instruction stream, pipelining or 

caches. This speed may be ~cessary for I/0, which.is often much 

slower than the processor. 

Elimination of special instructions: hopefully tpe SP and processor will 

have similar instructions seta.. On~ differep.ce which might make lilense ... 

would be the eliminatic;m of certaiJ:l, complex ~nt~tr,uctions unrelateci to 

I/O. sp-:cial decimal arithmetic inst;tu~t~o~IJ, foJ;" ex~le, migQt be 

omitted from a SP. 

Sharing of hardwar.e among SPs: certain functions. which are needed by 

several SPs can be implemented as a single module which :i,s shared 

among them. The effect, m:i,ght, be a 10ss in SP speed, but this is not . 

necessarily bad. ,Examples of functions which might be shared include 

the support of certain special instructions,. 411d .the conversion of 

yirtual to real add!ess~s. 

The last technique, sharing., suggests an alternative approach to re-

ducing. the cost of SPs. One limit of the technique of suspension and re-

storation was the overhead of switching. Sharing of processor parts is an 

alternative technique for giving processing power to a proc.ess only as 

needed. By pushing the idea of sharillg to its limit and building a pro-

cessor which, by sharing .all its components~ among s,everal processes, tried 

to multiplex itself to produce the effect of several processors, one could 
. t . ' ' ' I. 

perhaps produce a variant of suspension, implemented by the hardware 



140 

itself,· which was less expensive, or more rapid, than suspension of 

regular processors. 

Thus there seem to be two techniques for the production of inexpensive 

SPs. Make the SP so cheap 'tha·t the cost of letting it idle is negligible, 

or make the SP multiplex it'self very efficiently between several processes. 

Multic·s, for example, ·contains a hardware module, the generalized I/0 

controller, or GIOC (32) which attempts to provide inexpensive processors 

to perform I/O, by sharing modules among the several processors. Examples 

of shared functions include the module which references memory and the 

module which increments the instruction counter and picks up the next 

instruction fbr the I/O program. For slow devices, the GIOC even shares 

the live registers which the control programs use. In many respects, the 

processors provided by the GIOC differ strongly from SPs, and rather 

< 

resemble traditional channels. They execute a special language having 

nothing to do with the·central processor language, they provide the con-

nection point for the device, and they communicate using interrupts. The 

idea of cost reduction by sharing is, however, well demonstrated. 

The next section of the chapter will discuss other implications of SPs. 

Before going on, it seems appropriate to pause and review the role of SPs 

and the various other techniques for controlling processor utilization. 

Four techniques have been identified: suspension and restoration, appro-

priate for very slow devices, suspension and restoration with buffers, 

appropriate for medium speed devices where no special computation is neededJ 

SPs, appropriate when programming flexibility is needed or buffers would be 

too large, and· ·lastly', the· technique of the previous chapter, use of the 

processor' itself. Initial reaction may 'b·e that·. this· last technique is 



141 

never appropriate by today' s economics, but in the Multics system today 

there are devices which transfer so rapidly that, even though the transfer 

is performed by a channel, no other use can be made of the processor during 

the transfer, for there is not time even to start another task running on 

it. Clearly, for this sort of device the channel is superfluous. There is 

another class of I/O for which the use of·the processor itself may be appro

priate; this is a very infrequent transaction. If a device is usedvery 

seldom, it may be worth the cost of inefficient use of processor during its 

operation to avoid the cost of maintaining special mechanisms, such as 

dedicated bu.ffers. As processors get cheaper, which seems to be the current 

trend, this technique will have a wider and wider range of applicability. 

It is also appropriate to discuss the economic practicality of the SPs 

here proposed, for clearly they ar& complicated compared to the channels to 

be found in existing systems. First, it is very important that SPs can be 

shared from device to device, for fewer of them are thus required, which 

raises the allowable maximum cost. Second, the cost of hardware is coming 

down. If the regular processors can be used for really fast transfers so 

that the speed required of SPs is not excessive, then various current 

fabrication techniques such as micro-programming may allow the production 

of sophisticated SPs very cheaply. For these reasons we have no hesitat,ion 

in saying that for these circumstances inwhich SPs are required, it would 

be feasible to provide them. 

Program Structure Induced kl ~ 

This section will show that the execution of some portions of the I/O 

program by a. specialized processor can not fail to hwe an effect on the 



142 

form of the I/O program. However, this effect can be minimized, so that 

undesirable program structures such as the interrupt handler structure do 

not occur. 

It is possible to imagine that in general the programs which execute 

on processor and on SP must be viewed as two processes executing in parallel. 

In fact this view is appropriate under certain circumstances, but it cer

tainly embodies a considerable complexity, so let us begin with the most 

simple case, which is that the I/O program is written as if it were to run 

just on the processor. Without other modification, this program could be 

broken up into various parts, some of which execute on the SP. A scheme to 

do this which used "switch-processor" instructions inserted at appropriate 

points was proposed by Smith (37). That is, the switching from processor 

to SP and back was programmed explicitly by the user. It seems that it is 

necessary to perform this move explicitly, for no criterion can be stated 

which will enable the system to determine when a process should change 

processors. Actually, it is easy for the system to tell when the I/O 

process should be moved from processor to SP; the conditions are exactly 

the same as those which triggered suspension: excessive delay in the 

device's response to a read or write request. But when is the process to be 

moved back to the processor? Clearly, when the I/O transaction is finished. 

But there is no way for the system to detect this. It seems simpler to let 

the user decide what portions of his code should be run on which processor. 

Under what circumstances would a more complicated program structure be 

required? When would it be necessary to view the program on the processor 

and the program on the SP as two processes, executing at the same time? 

Exactly when the SP, because of the steps taken to simplify it, lacks the 



143 

power to execute some computation which must. be done by the I/O control 

program, and in addition, the time which would be spent switching to a 

processor to do the computation and then back to the SP would cause such a 

delay that the I/O program might _fail to mei!t timing constraint·s. It is 

possible to claim that the occurrence of this situation indicates that the 

SP was improperly constructed, but issues of econOmics might force this 

undesirable ~ituation to hold. Certainly for channels found on current 

hardware, _where even a simple computation such as sending a message to 

another process is beyond the Ccapability of a channel, it is necessary to 

invoke the main processor in parallel with the :charmel. -. In this case the 

simple "switch-processor" instructlon liW;Bt be repl.aced with something more 

compl~x. ~p. appropriate mechanism. is described inthe·next section. 

I' ( 

A Channel-Processor Prqgramming Scheme 

This sec;:tion describes a specific •chaniam which was devised on 

Multics to deal with the coordination involved wben the processor and the · 

SP must operate in parallel. Since, as the proeviQ.us• section .pointed out; 

the necessity for this coordination can b~ avoided by proper SP design, the 

description of this mechanism ,is not crucial to the ~-thesis. It has been 

includ.ed to make the foll(JWing point. 'l'he tlle.sis has argued the advantages 

of eliminat:i,.ng_ interru}>t driven programs and replac.ing. them wLth programs 

having sequential structure. Ev~n if- the reader has been convinced in the 

abstract, he may think ~hat in practice he cann.Qt exploit this beneficial 

st:r:ucture, becB:use he ~s constrained by his hard.lrare, which uses channels 

and interrupts. The purpose of this ex~le is to present a_ scheme which, 



144 

in the context of channels and interrupts, allows the user to construct I/0 

control programs which appear to be sequential in nature, and which mask 

the existence of interrupts. 

The scheme to be described is an idealized version of the I/O control, 

or IOC language, which was developed and implemented by Stanley Dunten on 

the Multics system for the control of typewriters. As stated above, in the 

Multics system all I/O is under the control of channels, and these channels 

communicate with the main processor by means of interrupts. Associated with 

each interrupt (in this reather idealized version of IOC) is a short message, 

the interrupt index, which is one of the integers between zero and some 

small number. (Numbers less than ten would be sufficient for all the 

currently wr.itten programs.) This interrupt index is used by the run-time 

environment of roc, as will be shown. 

The following is a description of the typical sequence of operations 

which one would use in the IOC language to start a channel program, and to 

coordinate pieces of processor code with· it. The programmer would. first 

code.the channel program itself, in line in the IOC program. This program, 

in the special channel language, would specify, among other things, the 

particular interrupt index to be returned at each point where the channel 

program might generate an interrupt. Following the instructions for the 

channel in the IOC program will be instructions to be executed by the 

processor. The first of these will normally be a!!!! instruction, the 

effect of which is to put the process in a ~ state where it abandons 

the processor pending an interrupt. The interrupt index is used as follows. 

Part of the wait instruction is an array of labels. When an interrupt arrives, 

if the process is in the ~ state, a transfer is executed to the label 



145 

selected in the array by the interrupt index. If the process is not in the 

wait state, the interrupt will be queued until sUch time as it is. 

The code which is executed by transferring to one of these labels will 

be of two sorts. If it represents some computation which the processor 

should do in parallel with the running channel, then the sequence of code, 

when: it finishes, must return to the wait state so that further interrupts 

can be accepted. To do this the code ends either with a new wait instruc

tion or with a waitagain instruction, which returns to the previous wait 

state. Alternatively, if the IOC program does not execute a wait or 

waitagain instruction, it is assumed that control has returned permanently 

from the channel, and that after sending the interrupt the channel program 

has. halted. 

Signals may be received from bWo sources other than the channel: from· 

the timer, and from other processes in the use~•s·computation. These sig

nals,·. just .as those fr0111 the channel, can be received· only while the process 

is in the wait ~' and these other signals are made to have a syntax 

similar to the channel signal by mapping them into special interrupt indexes 

which cannot be generated by the hardware. These other signals are used as 

follows. Normally a timer ts'started whenever a channel program is started. 

If the channelfails to opel.'ate properly, and no interrupts are generated, 

the signal from the timer prevents the process· from waiting forever. The 

signals from other processes are the means by which those other processes 

make requests of the I/O process. ln Mltltics there are four requests, 

whose meaning is as·follows. 1) Abort any writing in progress. 2) Start 

writing (the data to be written is in a shared area). 3) Hang up the 



146 

terminal and destroy the I/O process. 4) Update the count of input 

characters typed. These are the only signals which the I/O program can 

receive. 

The significance of this program structure is that although the 

channel generates an interrupt, the IOC program does not see it as an 

interrupt, but rather as a signal which arrives only at the points at which 

the program is prepared to receive it: at wait instructions. Thus using a 

channel with only limited expressive ability, the wait instruction produces 

an interprocess cmmnunication with the property discussed in Chapter 2 that 

the signal arrives only when process has p~aced itself in a state where it 

is prepared to accept it. The I/O program is, in the literal sense of the 

word, never interrupted. If the reader will remember what in Chapter 2 was 

called the interrupt handler program struct~r~~ he·wi11 see that the awk

wardness of such a structure has been avoided. Thus, even in the case of 

limited channel capabilities and excessive ov-erhead in process switching, 

sequential program structure can b.e achieved. 

Impact of Process Suspension ;2g Multiplexing 

In order to complete this development o.f processor sharing, it is 

necessary to discuss the impact of process suspension on the material pre

sented in earlier chapters. This section discusses the modification to the 

multiplexing scheme of Chapter 5 which is implied by the scheme of process 

suspension and restoration. One assumption of that chapter has been 

invalidated: that when the device is ready for the transaction, the processor 

will always be ready. This assumption was used in deciding when to allocate 

a multiplexed controller or line to a particular device in that the controller 



147 

tested only the readiness of the device. Now it would seem necessary to 

test both device and processor to make sure both are ready before assigning 

a multiplexed module, in order to avoid having the module sit idle while 

the processor is scheduled. This, in the case of a multiplexed communica~ 

tion line, requires negotiation back and forth bet\Jeen the ends of a multi

plexed line, which is not always possible within the design of the line. 

There !Ls an alternative to this, which is to assign the multiplexed 

line as before, whenever the device is ready, but to observe that the line~ 

like a device, has a time limit within which the transaetion must be com-· 

pleted.. If, because of delays due· to process restoration, the time 1 ilhit 

cannot be met, then, as before, buffers can be used to absorb the delay. 

This is a different use of buffers than the one diScussed in the chapter on 

multiplexing. ·That chapter considered plaeing buffers be~een a multiplexed 

communication line and a device. This problem requires that the buffer be 

placed next to the processor. 

How would this· buffering work? Consider reading. When the device has 

an item ·ready, it will Signal over the read ready line, and at some point 

will be assigned the cOtmnlnication line. Assuming that the buffer is empty; 

the item will be transferred immediately into the buffer, and the line will 

be relinquished. At some later point, the processor will remove the item 

from the buffer. Now in order that this work properly, the device must 

never signal over the~ ready line while the·buffer is full. But a quick 

review of the buffer algorithm will convince the reader that this signal can 

never happen, for the buffer will never pass a~..!!!!! command on to the 

device so long as it contains an -item, and· until '·the device receives a ~ 



148 

data comma.nd, it will not give a ~ ready signal. The interested reader 

may wish to convince himself that writes work as well. 

Sunmary 

The goal of this chapter is to reduce. the cost which results from 

dedicating a process full time to I/O. Four te-chniques are identified. 

The first technique, and the most simple, is to observe that for cer

tain kinds of devices (very fast devices and infrequently used devices), 

the cost of the scheme of the earlier chapter, in which the processor itself 

was used,· is not as .great a~ might be imagined. Observations about the 

decreasing cost of hardware are used to support this approach. 

For very slow devi!!es, the chapter discusses the technique of suspen

sion and restoration, in which the. process is.· assigned to a processor only 

when program execution is required. This techniql,le required the addition 

of one line, the need processor line, to the interface. 

For those cases in which this technique causes too much scheduling 

overhead, the external buffers of Chapter 4 can be used to extend the num

ber .of operations done on each sch.eduling, and to cushion the device against 

scheduling delay. 

The fourth and final technique is the use of a specialized processor or 

SP, useful if the fixed algorithm of the buffe.r is insufficient or the 

amount of buffer needed is excessive. 

The chapter does not propose a specific SP design, but discusses 

several design criteria. It proposes two goals, maximum programming flexi- . 

bility and minimum cost, and two feature-s to avoid, creation of a special 

programming language and introduction of an awkward program structure. 



149 

The chapter discusses in s.ome detail the- effect of SPs on program 

structure, and concludes that while SPs will hav~ some effect on the 

structure of the I/O program, the awkwardness of the interrupt handler 

structure can be avoided. Indeed, the chapter shows by example that de~ 

sirable prbgram structure can be produced in a less than ideal I/O 

environment. 

By interfacing devices as memory addresses, the function of providing. 

a system interface for the device, which is often the task of the channel 

in traditional I/O architecture, is s~parated fr~ the functions of the 1/0 

processor and is made the task of the device selector. The simplificatiqn. 

of the SP wh~ch results from this separatiOD is very important, in that ~P!!J 

thus perform 1/0 by executing memory-to-memory moves rather than special 

I/0 instructions. Further, SPs are no lonser fixed to a par.ticular «Jevice, 

but c~n be used on any device, as needed. 

Not only can an SP be moved from device to device, but &py device 

can be referenced equally well by any of the SPa or main processors. For 

a device which operated at more than one speed,, for example, the user 
.> 

might write an 1/0 program which referenced· the device sometimes using a 

SP and sometimes using the processor itself. Or the user might experiment 

with some new device using the processor, and then wri.te a final program, 

more efficient but more complex, which used a SP. !Pis flexibility waul~ 
" ,, -

vanish if the device were to be connected to any s~ec~fic processing 

element, e.g., a channel or an I/0 bus.wbich is cotmected to some register 

in a processor. Only in this chapter, when the possil>ility is raisec;l of 

more than one kind of processor, does this v~ry larse advantage of the 

device selector as a separate entity become appar~~t. 



Chapter 7 

Memory as a Scarce Commodity 

The last chapter considered ways of reducing the processor cost of 

I/0. This chapter will consider memory in a similar way, discussing tech-

niques for reducing the committment of.memory required for I/O. 
) 

In Chapter 3, the discussion of memory management listed three goals 

which a particular allocation scheme must meet. They were first, that 

the allocation· of memory to I/O must not prevent other tasks of the 

system (the example was reconfiguration of memory) from operating 

properly. Second, memory must be allocated in such a way that no user 

can get more than his fair share. ihf..~d and last, the allocation of 

·memory must be done in such a way that the cost to the user of doing 

I/0 is not out of proportion to other costs in the system. The frozen 

'environment scheme using a fixed time limit 'aiet the first two goals, 

but did not attempt to deal with the third. Rather it assumed that the 

costs associated with using paging as the storage allocation scheme for 

I/O would he acceptable. Unfortunately, examination of a system such 

as Multi.cs will reveal that by today's standards 'the cost would be 

unacceptably high. (It is asslDDed that the price the user pays does 

refledf tr~e cost.) 

This chapter will reduce memory costs associated with I/O by 

introducing an alternative to paging which allocates memory in a manner 

more suited to the characteristics of I/0. It will then show that by 
-

introducing this more efficient scheme, the groundwork has been laid for 
. . 

a variety of improvements to the frozen environment scheme which will allow 

additional sorts of devices, including typewriters and interactive 

terminals, to take advantage of the scheme. 



151 

Enlarging the class of devices which can use the frozen environment 

scheme becomes more important with the introduction in the last chapter 

of speciaUzed processors, or SPs. The introduction of SPs as an 

alternative to processors did not ch.angethe requirements which the I/O 

makes of, memory. 'nle SP still must,either .run in a frozen environment 

or. in conjunction with buffers. The last chapter observed that the use 

of SPs will force a modification of the program etructure to at least 

a small extent. .It would be very nice if th-e prograumer coping with SPs 

did not at the same ti~e have to cope .with the complexity of buffers. 

The alternative of the frozen environment :is not acceptable, however, 

unlesfil ~he I/O is capable of running with~n the conttraint of a fixed 

time limit, which is not always .the case. A.n even stronger reason for 

wishing to use .a frozen environment with SPa arises .1£ the SP has reduced 

functional. capability c~ared to a processor. It is possible that in 

this c1u.e the SP does not have the capability to handle a page exception. 

In this case, when the SP must request another processor to fetch missing 

pages, the ability to avoid page exceptions by use of the frozen 

environmen~ is especially important. 

This. chap,ter, then,. has two objectives. First, reduce the cost 

associated with frozen memory, and second, increase the kinds of devices 

which can take advantage of the frozen envirQmD.ent scheme. As we show 

that achievement of the first objective is central to achievement of the 

second, we will show that memory costs are the cause of a variety of 

compromises and restrictions which are part of many I/O systems, as 

indeed they were a part of the first frozen enyil'o~ent scheme. 



152 

Memory Costs Associated ~ I/O 

One of the assumptions which was made early in the thesis was that 

the system in which the I/O was to operate used paging as its memory 

allocation scheme. The use of this allocation scheme for the memory 

which is involved in I/O causes the high cost associated with using the 

frozen environment scheme in a Multics-like system. The reason is that 

the page sizes commonly used (Multics currently uses 1024 words per page) 

are very large compared to the storage needed for I/O. An example of 

typewriters in Multics will show how much memory is saved if only the 

storage needed is frozen in memory, rather than all of the page containing 

that storage. A running typewriter in Multics requires three storage areas 

in memory, the area holding the I/O program, the area holding the data 

items, and an area for program variables. · Each of these is less than 

sixteen words (there may be more than one data area). If holding each 

of these areas in memory required a full page, the storage consumed 

V170uld jump from 48 words to 3072 words. If the areas could be arranged 

in the same page, they could still use 1024 words. The increased cost 

of these extra words is sufficient to deter the use of the straight

forward frozen environment scheme, even if the other two goals could 

be met. 

·Obviously, in the Multics case, in order to achieve acceptable cost; 

paging. has been abandoned for typewriters in favor of a specialized 

memory management technique which allows very small blocks of storage 

to stay in memory efficiently. In fact, some specialized management 

strategy for storage related to I/O is U81!dfor every device in the 

Multics system. The next sections will try to integrate a special I/O 



15.3 

storage managemeQt strategy into the sys~em in such a way that the 

good features of the I/O systelll are not disrupted. · 

..££!.!: Reduction th·rouih Memory Management 

The techniques used in Multics to implement special management 

strategies_l)ave certain drawbacks. The normal technique is to write 

a special storage manager for: use with each particular device, which 

obtains a segment from the virtual memory manag.er, and then i~plements 

its t¥na~ement .algorithmwithin the segmt~~nt. The disadvantage of this 

techniqu~ is that along with the management algorithm the manager must 

implemeqt the protection strategy which controls the acces$ .to this 

speciaUy managed storage. Clearly the access controls of the virtual 

me~ot::y_ manager will not help; they protect the se~t as a whole, not 

the areas allocated within it. r..cking these access cont]:ols:,. the 

special storage manager ~s no alt~rnative ~~t to deny the user-direct 

access to the managed area~ The. re41ult, of .course, is that the user 

cannot write his own I/O program,. but must rely on syst.em software to 

perfo~ his I/o. 

In order that the user to allowed. dir~ct acc~ss to the specially . . . 

managed area, the access controls of the vir.tual mempry must be used to 

regulate the area, which means that the special management strategy must 
~ ' ' . 

be implemented by the virtual memory manager itself, and not some 

other module. 

In the introduction to the thesis it was observed that I/0 would 

become tractable when the similarities rather than the differences between 

devices were identified and exploited. This is a good example. The virtual 



154 

memory manager cannot· be. expected to implement a different strategy for 

each device. It will be necessary to sacrifice a little of the 

efficiency of memory usage and ident.ify a common strategy which many 

devices can use, before the benefits of management by the virtual 

memory can be obtained. 

To see what sort of management strategy would be appropriate for 

I/O, look again at Multics.- The various storage areas required in core 

vary in size but are often very small. Many of the I/O control programs 

are between ten and twenty words. Auxiliary areas for variables are 

often similar in size. The data items themselves require storage areas 

of "Various size, ranging upward from 16 words. (Some of the larger 

areas are the size they are in order to int~ract well with the paging 

mechanism, rather than from device constraints,) Another observation is 

that none of these areas ever change size. Under certain circumstances 

the effect of growth is simulated by using a greater or fewer number of 

areas, but in no case does the size of areas change. 

One could try to improve the efficiency of memory utilization by 

using a very small page size. This reduces the number of extra words 

which fill the rest of the page, but requires the use of a page table 

which for small pages gets more and more wasteful, since it uses up one 

entry for each page, regardless of page s.tze.. More importantly, the use 

of small pages increases the overhead associated with moving pages in and 

out of primary memory, since tfte cost of keeping track of the pages in 

memory, selecting pages for removal, preparing the control program for the 

secondary storage device, and so on, is. i'ndependent of page size. 



155 
An alternative memory allocation strategy which works well. for 

small segments of fixed size is ,contiguous allocation of these areas in 

memory. By contiguous allocation is meant the following. Instead of 

breaking the segment up into blocks of fixed size (pages), store the 

segment as one piece in a region of memory big eno~ugh to hold it. This 

scheme eliminates the waste of putting a small segment into a large page, 

since the region of memory ho.lding the segmen~ need be no bigger than 

that required to contain it. This is especially important for small 

segments. Thus contiguous allocation makes mu~h more efficient use 

of memory. 

What are the disadvantages of _contiguous storage? Consider removing 

a segment from memory. The result is an area of free memory which is the 

size of the segment. The system snust keep t~ack of this and other exi_sting 

free areas, so that when a new segment is to be put in memory an area 

the correct size can be found. There 1.8 also .the possibility that for. 

some particular segment being added there is no free area of a size. to 

hold it. In this case it is necessary to rearrange the segments already 

in memory to make room.. This is called compaction. 

The advantages and disadvantages of contiguous allocation compared 

to paging are well known, and will not be detailed h~re further. The 

important observation to be made here is that because of certain features 

of the I/O task, the disadvantages of contiguous allocation are not as 

great as in the general case. The reason is that contiguous allocation 

is being proposed in addition to, not in replacement for paging. Thus . 

whichever scheme is more advantageous can be used in any particular case. 

For example, the contiguous allocation scheme can be specialized for 



:'.''~"":<•'< 

156 

small segments, for any segment near in size to a page or larger can be 

handled by paging. For another elCatnple, the overhead of the contiguous 

allocation scheme occurs at the time the segment moves in and out of 

memory, for at those times the area must be allocated and freed. Thus 

once a segment is in memory it is more efficient to keep it there for a 

' long time~ so that the overhead of bringing it in can be spread over 

many references to the segtilen·t. Happily, it is reasonable to use paging 

for segments which stay in memory a short time, since the waste from 

using a whole page to hold a small segment is proportional to the length 

of use. Thus the memory manager can pick the proper technique, based 

on the time limit supplied with the request to freeze the environment. 
,· 

Another simplification results from the fact that, as noted above, 

·segments for r/o need never grow. Growing a segment which is stored 

contiguously is expensive, for a whole Dew area must be found for it. 

This disadvantage of contiguous allocation is thus avoided. 

The real memory needed to impfement the contiguous allocation 

scheme can most conveniently be obtained from the blocks of memory used 

to hold pages. This source of storage would mean that allocation was 

done in several areas each the size of a page, rather than in one area, 

which would increase the waste area, but allow the amount of memory used 

for contiguous allocation to grow and shrink easily. This strategy is 

an example of tailoring the scheme for small segments; clearly using 

blocks of memory for allocation would not work if the scheme had to deal 

with segments larger than a page. 

Note that if a contiguous allocation scheme were available for small 

segments, there are other uses which could be made of it. Chapter 6 



157 

discussed how storage must be used to hold the address mapping tables 

for the I/f) process~ and showed how the size of the tables might be 

reduced from those found in MUltics. Clearly, contiguous allocation 

would be used to keep these small tables in core efficiently. There 

might ·well be other system tables which could he implemented as small 

segments (thus giving the user direct access). once the alternate 

allocation scheme were instituted. Thus the utility of the conttguous 

allocation scheme is not limited to I/0. 

We turn now to the other objective of the chapter, which was to 

enlarge the class of devices for which the frozen environment is 

approprtate, while still fulfilling the goals of fair share resource 

distribution and compatibility with other system functions. As will 

be shown, the steps taken to reduce cost will assist in this endeavor too . 

.!!..!! ~ Resource Distribution 

In Chap-ter 3 the time limit on the frozen environment was proposed 

as a single solution which would.achieve both goals at once. This 

section will attempt to broaden the class of acceptable devices by 

proposing a separate solution 'to each goal.· We will first consider how 

to allocate resources in a fair fashion. 
•.-:.. 

The effect of the time limit in resource allocation W&s to predict 

and control the extent of the committment repres.ented by a request to 

freeze memory. Measuring the commitment in this way as a product of 

space a:rid time, it should be clear that an efficient allocation strategy, 

which reduced the space required for a given r~~~t, can allow a 

proportionally longer time limit within the corist'taints of a fair share. 



158 

Thus the fixed time limit will continue to be the technique to enforce 

fair share allocation; the improvement will be the increased time limit 

allowed by more efficient allocation techniques. 

What sorts of time limits might be reasonable? Again Multics will 

be used as an example. As part of typewriter I/O certain small areas 

of 16 words are allocated without any time limit at all. They are 

considered so small that they. represent negligible storage consumption. 

The only limit is on the number of such areas which the I/O program may 

claim at once. This is a different interpretation of fair share. 

Earlier it was that resources would be made available some fraction of 

the time. Now it is that the user may have some small fraction of 

the resources all of the time. 

Such a reinterpretation of the fair share criterion allows many 

more devices to use the frozen environment technique. Devices such as 

typewriters, which were formerly excluded, can now use the technique 

subject only to a restriction of the amount of resource consumed. The 

choice of whether to use the frozen environment then becomes a matter of 

economics. The user must compare the cost of keeping the resources in 

memory all the time with the cost on the other hand of external buffering 

plus fetching the resources as needed. 

If the system cannot allow data to remain in memory for all time, 

then the technique will be insufficient for a continuously operating 

device. Clearly, the device can operate for no more than that fraction 

of the time the system will allow the resources to be frozen in memory. 

The sorts of devices which will operate under these conditions depends 

on details of the requirements. A typewriter could not operate 

continuously, but a typewriter which expected input only at certain times, 

-------~- ~---



159 

and which expected it within some time limit, could be made to work, 

since it is quite possible now to expect time limits on the order of 

minutes rather than seconds. 

Without detailed information about the costs and capacities of a 

given system, it is impossible to predict the actual time limits which 

might be acceptable. Multics serves as an example, however, that even 

with today's costs, devices such as typewriters could be operated 

according to this technique if a compatible memory management scheme 

were devised. Thus, looking to tomorrow, with memory getting cheaper, 

it is reasonable to believe that proper memory management can essentially 

eliminate the fair-share problem. 

Compatibility With Other System Functions 

There remains the other goal, that of being compatible with other 

system functions. The example of a system function used earlier was 

reconfiguration of the real memory. This chapter has given another: 

compaction of the contiguous allocation area. In the original frozen 

environment scheme, the time limit, being enforced by the system, allowed 

reconfiguration processes to wait for the storage to become unfrozen. 

The maximum acceptable time limit was exactly the amount of time the 

reconfiguration process would be willing to wait. Again using Multics 

as an example, the maximum time reconfiguration would wait is probably a 

few seconds. The success we had in the last section stretching the limit 

out to minutes, or indefinitely, would thus vanish if time limits were 

used to insure the success of reconfiguration. It is thus necessary to 

abandon the time limit as a means of achieving this goal, and seek other 



160 

techniques. This section will introduce two techniques. The first 

moves the frozen area while the I/O is using it. The other observes that 

events such as reconfiguration are not frequent, so that the disruption 

caused by just doing the reconfiguration may be tolerated as a rarity. 

These alternatives will be considered in turn. 

In order to see how it might be possible to move a piece of frozen 

virtual memory without disrupting I/O, consider the technique used in 

Multics to move pages which must remain in primary memory. This is a 

variantora technique which was developed and described by Schell (36), 

who discussed reconfiguration in some detail. We begin with a review 

of address conversion. The tables which would be used to convert from 

Virtual to real addresses were discussed in Chapter 2. The segment number 

was used as an index into the segment descriptor~' which gives, for 

each segment, the location of the ~ table for that segment. Each 

entry in the page table contains the current location of the given page; 

it also contains a bit, the modified bit, which is crucial to the 

reconfiguration algorithm. The bit is set on by the hardware whenever 

a reference which will write into the page is made. To move a page 

without disrupting the process which expects it to remain in memory, 

proceed as follows. First turn off the modified bit for the page, then 

make a copy of the page in the new location .. The resulting copy may 

not be identical to the original if the original was modified during 

the copy. The modified bit can be inspected to see if the original has 

changed. If it has not, the address of the page which is contained in 

the page table entry can be changed to indicate the new copy, and 

processes referencing the page will continue smoothly using the new copy. 



161 

(Inspection of the modified bit and changing the address must be done 

as one indivisible step. This will be discussed below.) If the modified 

bit is on, the attempt to make a valid copy has failed. This failure 

causes no disruption to the operation of the system; it just means that 

another attempt must be made to copy the page. 

Clearly, what is needed is some guarantee that if the copying 

operation is retried, it will eventually succeed. In the case of I/O, 

this is easy to guarantee, for I/O references a page at a regular rate, 

or at least at a maximum rate. Thus, in order that the copy be good, 

the copying operation must fit between two successive references to the 

page. Knowing how long it takes to ·copy a page allows us to calculate 

the maximum rate at which I/O can run if this scheme is to work. For 

example, on the current Multics, with the Honeywell 645 processor, a page 

can be copied in about 1.5 ms. This would mean an absolute maximum of 

an I/O reference each 1.5 ms. or 666 I/O references each second. If 

each reference transmitted 36 bits, the resulting bit rate would be 

about 24,000 bits per second. 

Unless the copying operation is synchronized with the I/O references, 

there is no guarantee that the I/O may not just happen to reference 

the page during the copy. It is difficult to achieve synchronization; 

a better solution is to try the copying opera.tion several times. If, for 

example, the actual allowed maximlXIl I/O rate were less than one half the 

limit calculated above, then if during a copy an I/0 reference occurred, 

it follows that before the next reference occurs there is bound to be 

time to fit in a second copying operation. Restricting the actual I/O 

transfer rate to one half the theoretic maximum is thus a simple solution 

to assure success of the copy on at most the second try. 



162 

Since the copying time is normally proportional to the size of the 

item to be copied, the cost reducing storage allocation technique 

developed in the last section can be used to advantage here. If, 

because of contiguous allocation, only the area itself need be moved, 

rather than the whole page which contains it, less time is required for 

the move. For example, if a 100 word area rather than a 1000 word page 

must be moved, the maximum acceptable I/O rate is increased tenfold. 

What if a device is too fast for this technique? One obvious 

solution is to insist that such a device not run continuously. It would 

then be possible to use the alternate technique of waiting (with a fixed 

time limit) for the area to become unfrozen. Looking at practical devices, 

it is difficult to find a device which runs faster than the 24,000 bits 

per second estimated above for which the fixed time limit technique 

would not be applicable. Thus it might seem that these two techniques 

have covered all the situations, especially since the speed of processors 

is going up, which will increase the allowable device rate. 

If there exist devices which run too fast and continuously, there 

is an alternative to the above technique, less elegant but perhaps 

useful, which is to turn off access to the page during the copying 

operation. This will have the effect of bringing the I/O process to an 

unexpected temporary halt as it attempts to reference the area. If this 

halt causes the irreversible loss of data, the technique is unacceptable. 

If the only result is that the device must stop, so that throughput is 

reduced, then the technique is probably usable, for events such as 

reconfiguration are normally infrequent so that the overall effect is 

minor. 



163 

It was noted above that the actions of checking the modified bit 

and changing the address in the page table entry must be done as one 

step. Clearly, if another process were to modify the area between the 

two steps, the modification would be lost. There are several ways 

these two steps could be done as one. The bit could be tested and the 

address stored using an interlocked read-rewrite memory cycle. Or an 

additional bit could be added to the page table entry which, when set, 

would cause the referencing processor to halt until the bit is turned 

off. This bit could be used to protect the two actions. The bit could 

also be used to halt the I/0 during the actual copying operation, if that 

were to be done. Another way to make the actions indivisible is to stop 

all the other processors during the steps. This requires no special bit, 

but has a more widespread effect. 

Additional complexity is introduced into these schemes if, as in 

Multics, an associative memory is used in the processor to remember 

recently used virtual-real mappings. The interested reader should be 

able to convince himself that by clearing the associative memory at the 

proper moments, the scheme will still work. For further details the 

reader may consult the thesis by Schell. 

Summary 

The purpose of this chapter has been to find an alternative to the 

fixed time limit technique which would allow a wider class of devices to 

use the frozen environment as an interface to the virtual memory. Such 

an alternative has been described. Central to its success was the 

efficient use of memory by means of some scheme such as contiguous 



164 

allocation. The goal of fair share resource distribution was still met 

by use of a tbne limit, with increased efficiency of memory usage 

lengthening the time limit to the extent that it might in practice be 

infinite. The goal of compatibility with the need of the system to 

rearrange virtual memory was met by abandoning the technique involving 

the time limit for a scheme in which the rearrangement occurs between 

successive memory references. The resulting variant of frozen environment 

is capable, under appropriate circumstances, of interfacing such devices 

as typewriters, which before were completly incompatible. 



Chapter 8 

Conclusion 

The intent of this thesis has been to construct an I/O system which, 

in the context of a large virtual memory time sharing system, allows I/0 

control programs to be expressed naturally and to be executed efficiently. 

The purpose of this chapter is to review the system, and to consider the 

extent to which it has met its goals. 

Chapters 3 through 7 have built up this I/O system as a series of 

additions to a basic framework presented in Chapter 2. The reader may 

feel a little uncertain as to the nature of the total system thus assembled, 

especially since several chapters have presented alternative techniques 

(such as Chapter 6, with four techniques for efficient use of processors) 

which lead to alternative forms of the total system. It thus may be help

ful in review to summarize the system which results when these pieces are 

put together. 

The arrangement of the physical modules which compose the system has 

been pictured in Figure 8-1. The devices are connected to the system via 

the device selector, which, in conjunction with the address mapping hard

ware, lets a processor refer to a device as if the device were a segment 

in a virtual address space. This device interface is the crux of the 

basic system developed in Chapter 2. 

There are, from the user's viewpoint, two major additions to this 

basic system. One, a physical modification to the arrangement of the 

modules, is the several buffers pictured in Figure 6-1, which are used 

to cope with the timing characteristics of the devices, and which are 

used in conjunction with the technique of suspension and restoration 

165 



166 

Processors Processors 

Memory box Memory box 

Figure 8-1: Final configuration of system modules. 

device 
selector 

devices 



167 

to control the use of processors. The other addition to the basic system 

is the technique of the frozen environment, which does not involve 

modification to the hardware modules, but rather a modification to the 

software which comprises the virtual memory manager. This technique, 

like the buffer, is used to cope with the timing constraints of devices, 

and is used in conjunction with the technique of contiguous storage 

allocation to control the use of memory. 

The fashion in which these two techniques are employed in the 

operation of a device depends on the characteristics of the device in 

question. There is a trade-off between the techniques, since both can 

be used to deal with timing delays, while each is useful in eliminating 

some other problems. For example, in the case of very slow or very fast 

devices, it will be possible to dispense with the use of the buffers 

altogether, which is desirable when possible, because of the complexities 

of buffers. It is perhaps unfortunate that because of the choice between 

these two techniques no single thumbnail sketch can be constructed showing 

the operation of a device. It is unfortunate but it is also crucial that 

this choice exist, in order to cope with the wide variation in device 

characteristics. For example, the range of transmission rates found in 

devices varies by more than six orders of magnitude. It should not be 

surprising that any architecture which can deal with this variability 

must contain some choices. 

As the various chapters have added pieces to the basic system of 

Chapter 2, they have also added new lines to the interface between the 

device and the device selector. Appendix B has been included for the 

benefit of those readers who would like a review of the interface in its 



168 

final form. 

One module which was omitted from Figure 8-1 was the specializ~d 

processor, or SP, of Chapter 6. The reader may remember that the SP 

was proposed as an alternative to the buffer, in order to deal with 

certain special problems. Thus it has been assumed that for the system 

summarized here SPs are unnecessary. Another possible system which 

could be built out of the pieces described in the various chapters 

would be a configuration which used SPs to control the cost of 

processors, and which dispensed with the use of buffers completely by 

using the frozen environment to deal with all questions of timing. ' 'Such 

an alternative might be appropriate in certain cases. 

The above SJJDIII&ry of the system reflects the user's point of view. 

Another form of a suumary is a list of the particular modules in the 

operating system which must be modified or created so that. the I/0 

works properly. 

A contiguous. storage allocator must be created to provide 

storage at acceptable cost for the small segments typically 

used in I/0. 

The virtual memory manager must be modified so that it accepts 

requests to.free~e and unfreeze the environment. This will 

require that the manag~r use the contiguous storage allocator, 

and also that it interface to the modules responsible for 

managing resources other than memory. 

The processor scheduler must be modified so that in response 

to the ~ processor signal the relevant process is scheduled. 

A device manager must be created, which allocates devices to 

011 ------------------



169 

particular processes, and which creates the segment representing 

the device in the virtual address space of the process. 

The memory reconfiguration routine must be modified so that it 

can deal with frozen memory. 

Yet another way to summarize this system is to remember the two 

goals propsed in Chapter l, which were that the user have direct 

access to his device, and that he be able to construct his I/O control 

program in a natural manner, and to note which features of the system are 

important in achieving these goals. 

The first goal was that the user be allowed direct access to his 

device, or put another way, that it not be necessary for some system 

program to interpret the user's I/O control program for him. Three features 

of the system contribute to this goal. First, the representation of the 

device as a segment provides a means of controlling the user's access 

to each device individually. Otherwise some special registers would be 

needed to control which user accesses which device. Secondly, the fact 

that the I/O control program executes in the environment of the user means 

that the program is automatically constrained by the protection controls 

on the environment. Multics is an example of the alternative; the channels 

which perform the I/O in Multics do not have address mapping ability, 

so they must operate in the environment of real rather than virtual 

addresses. Since this environment provides no memory protection, the user 

cannot write programs for the channels. The third point is related to this 

last one; it is presumed that the cost of activating the user's environ

ment is sufficiently small that it is economically reasonable to provide 

this environment each time the I/O control program runs. In other words 

-----n-



170 

it must be cheap to start a process running. These three features: 

representation of the device as a segment, running the I/O control 

program in the user's environment, and keeping the I/O process cheap to 

bring into execution, are the crucial features in giving the user direct 

access to his device. 

The other goal was that the user be able to construct his I/O 

control program simply and naturally, Two features of the system 

contribute to achieving this goal. The first is the elimination of the 

interrupt from the environment of the user, and the elimination of the 

so-called "interrupt handler structure" of the I/O control program. 

Chapter 2 argued at some length that the natural form of the I/O control 

program was sequential, rather than being structured by interrupts. The 

other feature which contributes to the goal of programming simplicity 

was the ability to write the I/O control program using the language of 

the central processor, or in fact using a high level language. 

This thesis has proposed one particular I/O architecture. It 

should be clear to the reader that there is nothing unique about the 

details of the architecture. Indeed, the thesis itself has pointed out 

certain alternatives to the scheme. The role of this particular proposal 

is, first, to serve as an existence proof that in the context of virtual 

memory it is possible to construct an I/O system which allows the user 

to program his device directly in a natural and efficient manner. 

The other role of this proposed architecture is to clarify the 

various interactions which exist among the features of the I/O system. 

It is clear that to build a successful I/O architecture, one must solve 



171 

several problems. One must deal with issues of protection, efficiency, 

program structure, timing and so on. Further, it is clear that each 

feature of the I/O system will have an effect on several of these problems. 

The resulting interaction between the features means that one cannot 

consider each feature in isolation, for the success of a feature depends 

on the fashion in which it meshes with other features. This thesis has 

tried to find an order for considering the problems of I/O which reduces 

the degree of interaction between the various features, first considering 

issues of program structure, then considering timing and efficiency. 

Thus again the architecture here proposed serves as an existence proof 

that there exists an orderly procedure for designing an I/O system. 

Future Research 

An obvious question which must be asked about any research such as 

this is where to go from here. The purpose of this section is to 

identify various areas in which further research would be appropriate and 

fruitful. 

It would be most valuable to test out the I/O system proposed in this 

thesis by implementing it. Only in this way can the practicality of the 

system be proven. More importantly, only by implementing the system will 

it be possible to determine how users will take advantage of it. This 

thesis has not proposed specific I/O strategies which the user might 

employ; rather it has built a framework within which the user is given 

the freedom to construct whatever mechanisms he needs. By observing 

the mechanisms which he actually builds it may be possible to discover 

new tools or modifications to existing facilities which the system ought 

to provide for the user or simplifications which would be acceptable. 



172 

There are several parts of this I/O system which would have to be 

specified much more completely if the system were to be implemented. For 

example, several design decisions must be made about the device selector. 

The selector must be implemented in such a way that requests from one 

processor do not interfere with or delay requests from other processors, 

because a request to read or write data may be pending for a considerable 

time. The selector must operate properly if a process with a pending read 

or write is suspended and restored. ~nd the behavior of the selector 

must be specified for the case where more than one process tries to 

reference the same device. There are also detailed questions about the 

interface between the device and selector, such as what sequence of signals 

occur if a pending operation is aborted and another started. These sorts 

of questions have not been considered in the thesis, for they do not 

contribute to the understanding of the basic structure being developed, 

but clearly in a practical case they would be important. 

This thesis has not discussed certain auxiliary modules needed as 

part of the I/O system. For example, the system must contain a module 

which is called at the time a device is assigned to a process, whose 

function is to regulate the utilization of devices. It must make certain 

that one process does not hog devices to the detriment of the others, 

it must confirm the user's authorization to use the device, and it 

must implement any charges which the system imposes for the use of devices. 

It is common to alter the number and arrangement of devices 

attached to the system, so it is important that there be an orderly way 

for the I/O system to determine which devices are connected. It might 

be useful or necessary to add a new line to the device interface by 



173 

means of which the processor may check the existence and identity of the 

device. The module described in the previous pa~J'aph, which regulates 

device utilization, must have access to thJ.• inforaaation in order to make 

proper allocation decisions. Hopefully, it will b~ p@Ssible to change 

the arrangement of devices while the system is runa.ing. 

One asp.ect of I/O which could be considered in greater detail is· 

what features should be present in a high-level laeguage:which is to be 

used for I/O. This thesis has discussed t~ a certain extent the semantics 

of I/O, and has talked about program struet\lre_,. but;: there remain such 

questions as the language representation of tl:te S9&me~t which is the device, 

the syntax for error recovery and procel[ls syncb.roni~~~tti!lln,. and the form 

of the data transfer operation. In gene~al tt would be worth-while to 

catalog the features which must be present l~ a 1a~gQ$ge so that it can 

perform I/O. 

The thesis has ment.ioned that convers:Lon from virtual to real 

addresses is usually expedited by means of an associative memory which 

remembers virtual-real relationsbips. If a specU,U,zecl processor, or SP 

is used for any I/O, then it is necessary to.deciae whether the SP should 

have an associative memory, and how tbat •emo~ should be structured. For 

example, could parts of the associative meuaory .be shared among several 

SPs to reduce the cost? For one view of this pl'oblSIU the reader may see 

the thesis by Smith (37). 

This thesis has restricted itse~f to cons.Wering I/O performed 

by the user, and has not discussed I/O perfol)lle.d by-the syStSill, for example 

disk or drum I/O to support paging. There i~ no reason, however, why the 

device interface described here cannot be used by the system as well, 



174 

and this is clearly desirable, as it avoids the need for a separate I/O 

structure for the system. The systemwould use this I/O structure in 

a slightly different manner than the user, however, and this thesis has 

not considered these differences. For example, in what address space 

does the system refer to its device? What process structure does the 

system use to handle errors? What timing _problems does the system have 

and how does it cope with them? 

Chapter 6 discussed the possibility that execution delays might 

be introduced in the I/O control program because of processor scheduling, 

and it suggested that buffering might be used to deal with these delays. 

Buffering may be inappropriate if, for example, a computation must be 

performed promptly on an incoming item, for buffers do not eliminate 

delays. An alternative solution is to modify the process scheduler 

so that it is able to provide a guaranteed upper limit on the time from 

the arrival of the need processor signal until the process is running. 

The thesis has not discussed such a scheduler, and it would be an interesting 

project to show that one could be integrated into this scheme. One 

scheduler which the author believes to be suitable is described by 

Fiala (19) and by Strollo, Tomlinson an-d Fiala (38). 

A problem which is currently under study in the computer industry is 

how to build a multiple processor which uses cache memories. The cache 

memory, a small, fast memory used to hold recently referenced pages 

in a quickly accessible fashion, is a part of the processor. Thus 

if two processors reference the same page they will each get a separate 

copy in their their own cache, and if one or both write in the page, they 

will create two inconsistent copies. Thus any multiple processor cache 



175 

system must have some inter-processor communication scheme to insure 

that the copy in each cache is identical. I/O can interact with the use 

of caches because one of the two processors referencing a page may be 

an SP, or specialized processor. While an SP might not have a cache, it 

must have all the mechanisms needed to maintain consistent copies, for it 

may modify a page which is currently in the cache of some other processor. 

The addition of this mechanism to the SP may run counter to the desire 

to keep the SP as simple as possible. Another difficulty arises if there 

are a large number of SPs, as there might be if SPs are indeed very cheap. 

A large number of SPs might render impractical any co-ordination scheme 

which required each processor to be connected to every other. 

While in these fashions I/0 may make the use of caches more 

difficult, I/O also provides a simplification if the frozen environment 

scheme is being used, for the system can always tell which pages may be 

referenced by an SP. This knowledge may represent a way to special-case 

the problem of SPs and caches. 



Appendix A 

Details of Buffer Algorithms 

Chapter 4 describes a particular buffer algorithm which had as a goal 

that the interface which the buffer presents to the selector should be 

identical in behavior to the interface provided by the device itself, and 

similarly that the interface which the buffer presents to the device be 

identical to that from the selector. This appendix presents the details 

of these algorithms for the benefit of the reader who wishes to confirm 

that the algorithms can be constructed, and to give an idea of their 

complexity. 

The device-selector interface is reviewed in detail in Appendix B, 

where the function of all the lines is discussed. The algorithm involves 

the following lines from the interface: 

Command lines, from selector to device -- the two commands used 

in these algorithms are read-data and write-data. 

Ready acknowledge pair to control command lines -- (c-rdy and 

c-ack). 

Data lines, in either direction -- (d). 

Read and write ready-acknowledge pairs, to control data lines -

(r-rdy, r-ack, w-rdy, and w-ack). 

Reverse write ready line, from device to selector-- (rev-w-rdy); 

this was introduced in Chapter 5. 

Read operation required (ror) and write operation required (wor) 

from device to selector. 

In review, the procedure for transferring an item across the inter

face consists of two parts: first the command, from the selector 

176 



177 

to the device, and second the item itseif, on the data lines. The 

transfer of the cOIIIDand and of the item are, each under control of a pair 

of lines called ready and acknowledge. When the command or item has been 

placed on the appropriate lines, a signal will be sent from sender to 

receiver on the appropriate ready line, indicating that the information 

may be read. When the item has been successfuily read, the receiver will 

signal back to the sender on the a.ssociated·. acknowledge line. 

The first algorithm to be presented will read data from device to 

selector. As stated in Chapter 4, it was as follows: 

When empty buffer receives read data command· frotli selector, acknow

ledge it and pass it on to the device •. 

After handling the read command, wait for device to send data back. 

When data arrives, acknowledge it, and pass it on to the selector. 

When empty buffer receives ror signal from device, fabricate a read 

data command and send it to device. Send rot to selector. When 

data arrives from device and read data command arrives from selector, 

pass data to selector. 

In order to specify in detail all the various sequences of signals 

which may arrive at the two interfaces to the buffer, this algorithm is · 

presented in Figure A-1 as a state transition diagram. In this diagram, 

states 1-4 represent the first two parts of the algorithm; states 5-9 

deal with the ror signal. 

Two algorithms were presented for the writing of data, one with and 

one without the write operation required line (wor). The one not involving 

the wor line, being simpler, has been preferred throughout the thesis. 

Both will be presented here to show the relative cOmplexity. 



178 

c-ack/d 

Legend 

c-rdy and read-data/s 
state # 

signal/origin 

Origin: 

d = device interface 
s = selector interface 

Figure A-1: Read data algorithm for buffer. 



179 

The algorithm not involving 'the wor line is as follows: 

Whenever the buffer contains a data item from the selector, 

send a write data command to device, and an acknowledgement, 

send data to device. When a write data command arrives from 

selector, acknowledge, to wait until buffer is empty. Then 

wait for data from selector, pickup data and acknowledge it. 

This is pictured as a state transition diagram in Figure A-2. Figure 

A-3 presents the variant which contains the wor line. As the diagrams 

show, the use of the wor line adds considerable complexity to the buffer's 

algorithm. 



180 

w-ack/d 

w-rdy/s c-ack/d 

rev-w-rdy/d 

Figure A-2: Write data algorithm for buffer without wor line. 

rev-w-rdy/d 

c-rdy and 
write-data/s 



181 

w-rdy/s 

6 

c-ack/d 

rev-w-rdy/d 

Figure A-3: Write data algorithm for buffer with wor line. 

----- -----------~--------



.l 

Appendix B 

Review of Interface Between Device and Device Selector 

The interface between device and device selector has been designed 

to allow asynchronous interchange of data, state information, record 

numbers, and potentially other sorts of values. Modifications to the 

interface have allowed it to operate successfully in conjunction with 

buffering, with multiplexing of various sor~s, and with processor 

scheduling. 

Because the interface is asynchronous, control lines are needed to 

co-ordinate the transfer of information. In particular, two lines, called 

read7 and acknowledge. are used for any set of information lines. The 

ready line runs from the sender to the receiver of the information, and 

a signal over it means that the information lines are now carrying a 

valid set of signals and may be read. The acknowledge line runs in the 

reverse direction, from the receiver to the sender of the information, and 

a signal over this line means that the information has been received, and 

that the sender of the information need no longer hold the information 

lines in a valid state. 

The various lines in the interface are diagrcmmed in Figure B-1. 

The following is a description of the function of ea~ line. 

ColliD!lnd - The steps necessary to move an- tt• of information acro.ss 

the interface consist of two parts: the ftr•• a. ~nd frQIB selector 

to device declaring what is to be transferred and in which direction, 

the second the item itself. These linea oarry the command. It is 

presumed that there are sufficient lines to diatinguish the various 

commands •. 

182 



device 
selector 

. 183 

command r~ady ..... 

~ command acknowledge 

command ..... 

~ read ready 

read acknowledge -

write ready ..... 

~ write acknowledge 

~ data -

- error and event signals 

... read-operation required 

buffer error recovery ..... 

- reverse write ready 

... need processor 

Figure B-1: Complete device-selector interface. 

device 

---------------------~----



184 

Command ready and command acknowledge - these two lines control the 

flow of information across the command lines, in the fashion 

described above. 

Data - the second half of each transaction at the interface is the 

transfer of the item specified by the command. These lines carry 

the item itself. Whethe.r the item is data, state word, or record 

number; and whether the item is read or written is specified by the 

command. The number of lines in this connection has not been 

specified as part of the thesis , but unless the interface is modified 

there must be sufficient lines to hold the state word and the record 

number information. 

Read ready and ~ acknowledge - these lines control flow of infor

mation in the data lines in the case in which the information moves 

from device to dev.ice selector. 

Write ready and write acknowledge - these lines control the flow of 

information on the data lines in the case in which the information 

flows from selector to device. 

Reverse write ready - in order that certain kinds of multiplexing 

work properly, it is necessary that the device itself generate a 

signal whenever it is ready to perform the data transfer. For reading, 

the read ready line serves this function; the reverse write ready is 

provided in the case of writing. The meaning of the signal to a 

multiplexor is that it should now assign itself to this device. This 

line is not strictly a ready line, for it does not control information 

transfer as a ready line does, but the buffer algorithms of Appendix A 



185 

have been adjusted so that the write ready signal is generated only 

in response to a reverse write ready. 

~ and event signals - these .are lines which the device uses to 

report errors and events as discussed in Chapter 2. · Errors and events 

are distinguished in that an error signal reports a synchronous 

occurence and results in an error handler being run on the I/O 

process, whereas an event signal reports an asynchronous event and 

results in the scheduling of an event process. 

~ operation required - this line runs ft'OIIl device to buffer, and 

is used during reading, to force the buffer to accept an item from 

the device if the processor lags behind. See Appendix A for the 

specific sequence of signals. 

Buffer error recovery - these lines run from the processor through 

the buffers, and serve to restore the buffer to a known state after 

an error. Two specific recoveries were discussed in Chapter 4: 

discarding the buffer contents and reversing the direction of flow 

from writing to reading. 

~ processor - this signal is received by the processor, and is 

generated by a device or by a buffer. Its meaning is that the I/O 

process in charge of the service should be scheduled. 

Comparison ~ Other I/0 Interfaces 

A discussion of two other I/O interfaces will give some further 

insight into the operation of this interface, and will at the same time 

show that this interface is not greatly different from interfaces in use 

today. 

---------- ---------------------



186 

The interface which is used on Multics for control of devices other 

than communication devices is the "Common Peripheral Interface" (25) which 

is standard over much of the Honeywell line. In major respects it is 

similar to the one proposed here. ~11 information is transferred 

asynchronously, using control lines similar to ready and acknowledge. 

Also, one set of lines is used both for data and status, the uses being 

distinguished by a command. The interface differs in that there are 

separate lines in each direction, and the data lines to the device also 

carry the commands. A special control line is used to signal the presence 

of a command on these lines. 

There are two important differences between this interface and the 

one proposed in this thesis. First, the Honeywell interface has four lines 

running from the device, which at all tUnes indicates the state of the 

device. Thus it is always possible to te~t the state without sending a 

command and receiving a state word across the interface. This avoids the 

complex interaction which results from needing to test the state in the 

middle of some other interface transaction. Since additional state infor

mation can be obtained by sending a command across .the interface, these 

four lines could be viewed as a cross between state information and the 

error and event lines. The Honeywell interface does contain a separate 

line to report asynchronous events. 

The other important distinction between the interfaces is that the 

Honeywell interface allows a command to trigger not one but a number of 

data transfers. The advantage of this is that it increases throughput 

across the interface by eliminating the repeated command transfer. This 

form of the command is consistent with the view that a channel executes 



187 

a ~ingle instruction which results in a sequence of data transfers, The 

one instruction would then trigger the one command. In the system of this 

thesis, in which each data transfer is performed. by a separate machine 

instruction, it is more t'e&sonable to itll4lgine the command to be generat~d 

and sent anew as part of each transfer. However, one could devise a 

special line to achieve the same effect as the HCDneywell interface: 'a line 

from selector to device whose meaning is "use again the same command as 

last time". 

The IBM System/360 and System/370 have a standard interface 

between channel and device control unit which serves the same function 

as the interfaces so far discussed (26). It is again similar, with 

asynchronous transfers over one set.of data lines in each 9irection 

regulated by control lines similar to ready and acknowledge. Like the 

Honeywell ittterface, the IBM interface alloWs one c~nd to trigger not 

one but a sequence of transfers. The IBM interface differs in that the 

sequence of control signals across the interface is much more complicated, 

to some extent because the channel may be shared among several devices, so 

that the interface control signals must also, select the proper device. An 

interesting question is whether the protocol used to select the device 

could be used as a means of implementing the device selector of this 

thesis. 



Bibliography 

(1) Bolt Beranek and Newman, Inc., Specifications!££ the Interconnection 
£! ~ ~ ~ ~ ~' Report 1822, Cambridge, Mass. 

(2) Boulton, P.I.P., and P. Reid,"A Process-Control Language," IEEE 
Trans. Computers, Vol C-18,11, Nov. 1969. 

(3) Chang, W., "Computer Channel Interference Analysis," IBM Systems 
Journal, Vol 4,2, 1965. 

( 4) Chu, W .W., "Buffer Behavior for Batch Poisson Arrivals and Single 
Constant Output," IEEE Trans. Communication Technology, Vol COM-18,5 
Oct. 1970. 

(5) Chu, W.W., "A Study of Asynchronous Time Division Multiplexing for 
Time-sharing Computer Systems," Proc. AFIPS 1969 FJCC, Vol. 35 
AFIPS Press, Montvale, N.J. 

(6) Chu, W.W., "Buffer Behavior for Poisson Arrivals and Multiple 
Synchronous Constant Output", IEEE Trans. Computers, Vol C-19,6 
June 1970. 

(7) Chu, W.W., "Design Considerations of Statistical Multiplexors," 
ACM Symposium on Problems in Optimization of Data Communication 
Systems, Pine Mtn, Georgia, Oct. 1969. 

(8) Corbat~, F.J., J.H. Saltzer, and C.T. Clingen, '~ultics --The First 
Seven Years," Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press, Montvale 
N.J • 

(9) Corbat~, F.J., and Vyssotsky, V.A., "Introduction and Overview of 
the Multics System," Proc. AFIPS 1965 FJCC, Spartan Books, Washing
ton, D C. 

(10) Cosserat, D.C., "A Capability Oriented Multi-processor System for 
Real-time Applications," International Conference on Computer Commu
nication, Washington, DC, 1972. 

(11) Digital Equipment Corporation, PDP-11 Processor Handbook, Maynard 
Mass, 1971. 

(12) Digital Equipment Corporation, PDP-11 Peripherals and Interfacing 
Handbook, Maynard, Mass., 1971. 

(13) Delgalvis, I, and J.P. Bricault, "An Analysis of a Request Queued 
Buffer Pool,",!.!:! Systems Journal, Vol 5,3, 1966. 

(14) Delgalvis, I, and G. Davison, "Storage Requirements for a Data 
Exchange," ..!!!! Systems Journal, Vol 3,1, 1964 

188 

--rn --------------



(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

189 

Dijkstra, E.W., ''The Structure of the 'THE'-Mult;iprogr81Qming System," 
Comm ACM Vol 11, 5, May 1968. 

Dor, N.M., "Guide to the Length of Buffer Storage Required for 
Random (Poisson) Input and Constant Output Rates'," IEEE Trans. 
Electronic Caaputers, Vol EC-16, Oct. 1967 _ ,_ 

England, D.M., ''Operating System of System 250," International 
Switching Symposium, MIT Cambridge Mass, 1972 

Feiertag, R.J., and E.I. Organick, ''The Multics Input/Output System," 
ACM Third Symposium on Operating Systems Principles, Oct 1971. 

Fiala, E., Scheduling£! Real-time Processea !a~ Time•shared !n!!
ronment, MS Thesis, Dept. Electrical Engineering, MIT, 1968. 

Gaver, D.P., and Lewis, P.A.W., Probapility lk>dels !2£. Buffer Storage 
Allocation Problems, IBM Research Report No. iC 2590, Aug 1969. 

Gertler, J., "High-level Prograuming for Process Control", Computer 
Journal, Vol 13,1, Feb. 1970. 

Halton, D., "Hardware £! !h! System ~ .!.£!. ColllllUnications Control," 
International Switching Symposium, MIT, Cambridge, Mass. 1972. 

Hatch, T.F. Jr., and J.B. Geyer, "Hardware/software Interaction on 
the Honeywe 11 Mode 1 8200", Proc. AFIPS 1968 FJCC, Vo 1 33, AFIPS 
Press, Montvale, N.J. 

Held, M., and R. Carp, "Dynamic Programming and Sequencing Problems" 
l· !2£· £2! Industrial~ Applied Math~atics, Vol 10,1, 1962. 

Honeywell Information Systems, Inc, Product P~formance Specification 
Coumon Peripheral Interface, No. 43Ai30·S2'4 · · · · · · 

IBM, System/360 ~ System/370 I/O Interface- Chanpel S2 Control 
Unit (Original Equipment HaDufa~turers• Information), GA22- 6974.;. 0 

Manchester, G.K., ·~reduction and Stabilization of Real-time Task 
Schedules," JACM Vol 14,3 July 1967. 

McKenzie, A., Host/Host Protocol £2! !h! ~Network, Network 
Information Center Doc. 8246, Augmentation Research Center, 
Stanford Research Institute, Menlo Park, Cal. 

McQuillan, J.M., and others, "Improvements in the Design and Perform
ance of the ARPA Network," Proc. AFIPS 1972 FJCC, Vol 41, AFIPS Press 
Montvale, N.J. 



(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

190 

Muntz, R.R., and E.G. Coffman, Jr., "Preemptive Scheduling of Real
time Tasks on Multiprocessor Systems, 11 J ACM Vol 17,2, April, 1970. 

Organick, E.I., The Multics System:~ Examination£!£!! Structure, 
MIT Press, 1972.---

Ossanna, J.F. and others, "Coumunication and Input/Output Switching 
in a Multiplex Computing System," Proc AFIPS 1965 FJCC, Spartan Books 
Washington DC. 

Plessey Telecommunications Research, Ltd., Architectural _F_e_a_t_u_r_e_s 2f 
System 250 • 

Roberts, L.G. and B.D. Wessler, "Computer Network Development to 
Achieve Resource Sharing", Proc AFIPS 1970 SJCC, AFIPS Press, 
Montvale, N.J. 

Saltzer, J .H., Traffic ControlJE. .!. Multiplex'd Computer System, 
SeD Thesis, MIT Dept. Electrical Engineering, 1966. Also as 
Project MAC report TR-30~ 

Schell, R.R., Dynamic Reconfiguration ..!!!. ~Modular Computer System, 
PhD Thesis, MIT Dept. Electrical Engineering, 1971. Also as · 
Project Mac report TR-86. 

Smith, A.A., Input/Output~ Time-shared, Segmented, Multiprocessor 
Systems, MS Thesis, MIT Dept.Electrical Engineering, 1966. Also as 
Project MAC report TR-28. 

Strollo, T.R., R.S. Tomlinson, and E.R. Fiala, "A Time-shared I/O 
Processor for Real-time Hybrid Computation," Proc • .AFIPS 1969 FJCC 
AFIPS Press, Montvale, N.J. 

Telnet Protocol Specification, Network Information Center Doc. 15372 
Augmentation Research CenteJ;, Stanford R.es.earch Institute, Menlo 
Park, Cal. 

Wolman, E., "A Fixed Optimum Cell-size for Records of Various Lengths" 
JACM Vol 12,1, Jan. 1965. 

Wirth, N., "On Multiprogramming, Machine Coding, And Computer Organi
zation," Coum. ACM, Vol 12,9, Sept 1969. 

·-.--····-,----·--------------------------------



Biographical Note 

David Dana Clark was born on April 7, 1944. He grew up in St. Louis, 

Missouri, where he attended John Burroughs High School. He then attended 

Swarthmore College, majoring in Electrical Engineering. He was awarded 

the McCabe Engineering Award as the outstanding engineering student in his 

class. In 1966 he received the degree of BSEE with distinction. 

He attended graduate scho9l in Computer Science at MIT starting in 

1966, receiving the MS and EE degrees in September, 1968. Since 1967 he 

has been associated with Project MAC, where his principal interest has been 

research on the Multics system. He has also worked in the area of program-

ming linguistics; one project was the design of a high-level language for 

operating system impl~entation. 

He was a teaching assistant in introductory circuit theory courses 

at MIT; he also taught a semester introductory course on computers at 

Wellesley College. As part of this latter project, he participated in the 

writing of a manual for the language PL, which has since been used at MIT. 

He is a member of Sigma Xi, Sigma Tau, the IEEE, and the ACM. 

His Master's thesis was: A Reductions Analysis System for Parsing PL/I 

He has written: 

~ Classroom Information ~ Computing Service, Project MAC 
report TR-80, January 1971 ( with M.D. Schroeder, R.M. Graham, 
and J.H. Saltzer). 

~Programming Language~' MIT Dept. Electrical Engineering, 
1969 (with A.L. Anger, A.A. Bushkin, and J.R. Coffman). 

191 



This empty page was substih1ted for a 
blank page in the original document. 



CS-TR Scanning Project 
Document Control Form 

Report# L<-s-~ ... fl I 

Date : J... J!J..Cf !9 ( 

Each of the following should be identified by a checkmark: 
Originating Department: 

~ Artificiallntellegence Laboratory (AI) 
A Laboratory for Computer Science (LCS) 

Document Type: 

').( Technical Report (TR) D Technical Memo (TM) 

D Other: ----------------------
Document Information Number of pages: /9~(1CC1? -i tnAG$S) 

Not to Include DOD forms, printer lntsttuctionS, etc ... original pages only. 

Originals are: 

D Single-sided or 

X Double-sided 

Print type: 
0 Typewriter 0 Offset Press 0 Laser Print 

Intended to be printed as : 

D Single-sided or 

)(Double-sided 

D InkJet Printer ~Unknown D Other:. ______ _ 

Check each if included with document: 

~ DOD Fonn ( J;) D Funding Agent Fonn D CoverPage 

D Spine D Printers Notes D Photo negatives 

D Other: ------------------------
Page Data: 

Blank Pages(by.-eenumbefl: Fa Llow5 LI\IT fAG='( V9 1) 

Photographs/Tonal Material (by.-ee number): ________ _ 

Other (nee. c~eK~iptianlp•ue numbefl: 
Description : Page Number: 

:::J:"roAGt( m5ff: { 1-- ICfd... ') U.Nlf.JaC T;TU fA c;y;) J.- Jq I 
) ) 

lwltx=o GlANk. 

Scanning Agent Signoff: 

Date Received: J.- I :l-9 11 {, Date Scanned: _L1..!J_1 ~ Date Returned: ..l_1 I~ I £-6 

~(l_J~ Scanning Agent Signature: ___ --=~---!....:::.:o~:....r-.!-:-.IV_~:::::::so~.~.;;;:_--



BIBLIOGRAPHIC DATA 
SHEET 

4. Title and Subtitle 
1

]. Report No. 

MAC TR-117 

An Input/Output Architecture for Virtual Memory 

Computer Systems 

7. Autbor(s) 

David D. Clark 
9. Performing Organization Name and Address 

PROJECT MAC: MASSACHUSETTS INSTITUTE OF TECHNOLOGY: 

3. Recipient's Accession No. 

s. Report Date • Is sued 
January 1974 

r---
6. 

8. Performing Organization Rcpt. 

No. MAC TR-117 
10. Project/Task/Work Unit No. 

11. C:ontract /Grant No. 

545 Technology Square, Cambridge, Massachusetts 02139 
N00014-70-A-0362-0006 

12. Sponsoring Organization Name and Address 

Office of Naval Research 
Department of the Navy 
Information Systems Program 
Arlington, Va 22217 

15. Supplementary Notes 

Ph.D. Thesis, Department of Electrical Engineering 

13. Type of Report & Period 
Covered: Interim 

Scientific Report 
14. 

16. Abstracts. In many large systems, user I/0 must be performed for the user by the system, 
in order to assure such system goals as security, response, and efficiency. However, 
reduced overhead and increased flexibility would result if the user could perform his 
I/0 directly. This thesis presents a design for an I/O subsystem architecture which, ir 
the context of a segmented, paged, time-shared computer system, allows the user direct 
access to I/0 devices. Some conclusions of this thesis are:l) that in order to provide 
a coherent program structure, I/O operations should be contained in a separate I/0 pro 
cess~ 2) that to allow the user to refer to his devices in a simple fashion while pro
tecting his devices from other users, the I/O device should be represented to the user 
as a segment, 3) that the virtual memory can meet the timing needs of the I/O system 
without compromising its own functions by the use of time limits on the duration of thE 
I/0 operations, and 4) that interrupts should not be part of the user environment, but 
should be hidden from the programmer, so that the I/O program he constructs is sequen
tial rather than interrupt driven in structure. 

17. Key Words and Document Analysis. 17a. Descriptors 

Computer Operating Systems 

Input/Output 

Virtual Memory 

Time-Sharing 

17b. Identifiers/Open-Ended Terms 

17c. COSATI Field/Croup 

18. Availability Statement 

Unlimited Distribution 

Write Project MAC Publications 
t--ORM NTIS-35 (REV" 3-72) 

19. Security Class (This 
Report) 

UNCLASSIFIED 
20. Security Class (This 

Page 
Ui\:CLASSIF lED 

THIS FORM MAY BE REPRODUCED 

21. :\o. of Pages 

192 
22. Price 

I_.ISCOMM-DC '.4952-P72 



INSTRUCTIONS FOR COMPLETING FORM NTIS-35 ( 10-70) (Bibliographic Data Sheet based on COSA TI 

Guidelines to Format Standards for Scientific and Technical Reports Prepared by or for the Federal Government, 

PB-180 600). 

l. Report Number. Each individually bound report shall carry a unique alphanumeric designation selected by the performing 

organization or provided by the sponsoring organization" Usc uppercase letters and Arabic numerals only. Examples 

FASEB-NS-87 and FAA-RD-68-09. 

2. Leave bLink. 

3. Recipient's Accession Number. Reserved for use by each report recipient. 

4. Title and Subtitle. Title should indicate clearly and briefly the subject coverage of the report, and be displayed promi

nently. Set subtitle, if used, in smaller type or otherwise subordinate it to main title. When a report is prepared tn more 

than one volume, repeat the primary title, add volume number and include subtitle for the specific volume. 

S. Report Date. Lach report shall carry a date indicating at least month and year. Indicate the basis on which it was selected 

(e.g., date of issue, date of approval, date of preparation. 

6. Performing Organization Code. Leave blank. 

7. Author(s). Give name(s) in conventional order (e.g., John R. Doc, or ).Robert Doe). List author's affiliation if it differs 

from the performing organization. 

8. Performing Organization Report Number. Insert if performing organization wishes to assign this number. 

9. Performing Organization Name and Address. Give name, street, city, state, and zip code. List no more than two levels of 

an organizational hierarchy. Display the name of the orgcwizaiion exactly as it~ should appear in Government indexes such 

as USGRDR-1. 

10. Project/Task/Work Unit Number. Use the project, task and work unit numbers under which the report was prepared. 

11. Contract/Grant Number. Insert contract or grant number under which report was prepared. 

12. Sponsoring Agency Name and Address. Include zip code. 

13. Type of Report and Period Covered. Indicate interim, final, etc., and, if applicable, dates covered. 

14. Sponsoring Agency Code. Leave blank. 

15. Sup pi ementary Notes. Enter information not included e lscwhere but useful, such as: Prepared 1n cooperation with 

Translation of Presented at confncncc of ... To be published in. . . Supersedes.. . Supplements 

16. Abstract. Inc! udc a br id (2 00 words or less) fact ua 1 summary of the most s ignif ic ant i nf ormation c onta incd in the report. 

If the report cont<1ins a significant bibliography or literature survey, mention it here. 

17. Key Words and Document Analysis. (a). Descriptors. Select from the Thesaurus of Engineering and Scientific Terms the 

proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be used 

as index entries for cataloging. 

(b). Identifiers and Open-Ended Terms. Lse identifiers for project names, code names, equipment designators, etc. Usc 

open-ended terms written in descriptor form for those subjects for which no descriptor exists. 

(c). COSATI Field/Group. field and Croup assignments arc to be taken from the 1965 COSATI Subject Category List. 

Since the majority of documents are multidisciplinary in nature, the primary field/Group assignment(s) will be the specific 

discipline, area of human endeavor, or type of physical object. The application(s) will be cross-referenced with secondary 

Field/Group assignments that will foil ow the- primary posting(s ). 

18. Distribution Statement. Denote releasability to the public or limiution for reasons other than security for example "Re

lease unlimited". Cite any availability to the public, v.ith address and price. 

19 & 20. Security Classification. llo not suhr:1it classified reports to the National Technical 

21. Number of Pages. [nsert the total numbn of pages, including this one and unnumbered pages, but excluding distribution 

list, if any. 

22. Price. Insert the price set by the National Technical Information Service or the Government Printing Ofticc, if known. 

FORM NTIS-35 (REV :3-72) USCOMM-DC 14952-P72 



Scanning Agent Identification· Target 

Scanning of this document was supported in part by 
the Corporation for National Research Initiatives, 
using funds from the Advanced Research Projects 
Agency of the United states Government under 
Grant: MDA972-92-J1029. 

The scanning agent for this project was the 
Document Services department of the M.I. T 
Libraries. Technical support for this project was 
also provided by the M.I. T. Laboratory for 
Computer Sciences. 

darptrgt.wpw Rev. 9/94 


