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A currently popular systems research project is to explore the 

possibilities and problems for computer system organization that arise from 

the rapidly falling cost of computing hardware. Interconnecting fleets of 

mini- or micro-computers and putting intelligence in terminals and 

concentrators to produce so-called "distributed systems" has recently been a 

booming development activity. While these efforts range from ingenious to 

misguided, many seem to miss a most important aspect of the revolution in 

hardware costs: that more than any other factor, the entry cost of acquiring 

and operating a free-standing, complete computer system has dropped and 

continues to drop rapidly. Where a decade ago the capital outlay required to 

install a computer system ranged from $150,000 up into the millions, today the 

low end of that range is belm-1 $15,000 and dropping. 

The consequence of this particular observation for system structure comes 

from the next level of analysis. In most organizations, decisions to make 

capital acquisitions tend to be more centralize.d for larger capital amounts, 

and less centralized for smaller capital amounts. On this basis we may 

conjecture that lower entry costs for computer systems will lead naturally to 

computer acquisition decisions being made at points lower in a management 

hierarchy. Further, because a lower-level organization usually has a smaller 

mission, those smaller-priced computers will tend to span a smaller range of 
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applications, and in the limit of the argument will be dedicated to a.single 

application. Finally, the organizational units that acquire these computers 

will by nature tend to operate somewhat independently and autonomously from 

one another, each following its own mission. From another vie\~oint, 

administrative autonomy is really the driving force that leads to acquisition 

of a computer system that spans a smaller application range. According to 

this view, the large multiuser computer center is really an artifact of high 

entry cost, and does not represent the "natural" way for an organization to do 

its computing. 

A trouble with this somewhat oversimplified analysis is that these 

conjectured autonomous, decentralized computer systems will need to 

communicate with one another. For example: the production department's 

output will be the inventory control department's input, and 

computer-generated reports of both departments must be submitted to higher 

management for computer analysis _and exception display. Thus we can 

anticipate that the autonomous computer systems must be at least loosely 

coupJed into a cooperating confeaeracy thet represents the corporate 

informatibn system. This scenario describes the corporate computing 

environment, but a similar scenario can be conjectured for the academic, 

government, military, or any other computing environment. The conjecture 

described here has been explored for validity in an undergraduate thesis 

[d'Oliveira, 1977]. 

The key consequence of this line of reasoning for computer system 

structure, then, is a technical problem: to provide coherence in 

communication among what will inevitably be administratively autonomous nodes 

of a computer network. Technically, autonomy appears as a force producing 
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incoherence: one must assume that operating schedules, loading policy, level 

of concern for security, availability, and reliability, update level of 

hardware and software, and even choice of hardware and software systems will 

tend to vary from node to node with a minimum of central control. Further, 

individual nodes may for various reasons occasionally completely disconnect 

themselves from the confederacy, and operate in isolation for a while before 

reconnecting. Yet to the extent that agreement and cooperation are 

beneficial, there will be need for communication of signals, exchange of data, 

mutual assistance agreements, and a wide variety of other internode 

interaction. One-at-a-time ad hoc arrangements will probably be inadequate, 

because of their potential large number and the programming cost in dealing 

with each node on a different basis. 

Coherence can be sought in many forms. At one extreme, one might set a 

company-wide standard for the electrical levels used to drive point-to-point 

communication lines that interconnect nodes or that attach any node to a local 

communication network. At the opposite extreme, one might develop a data 

management protocol that allows :my user of any nocl.e to 1:-e~.ieYe that there is 

a central, unified database management system with no identifiable boundaries. 

The first extreme might be described as a very low-level protocol, the second 

extreme as a very high-level protocol, and there seem to be many levels in 

between, not all strictly ordered. 

By now, considerable experience has been gained in devising and using 

relatively low-level protocols, up to the point that one has an uninterpreted 

stream of bits flowing from one node of a network to another [Cerf, 1974]. 

The ARPANET and TELENET are perhaps the best-developed examples of protocols 

at this level, and local networks such as the ETHERNET [Metcalfe, 1975] 
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provide a similar level of protocol on a smaller scale geographically. In 

each of those networks, standard protocols allow any two autonomous nodes (of 

possibly different design) to set up a data stream from one to the other; each 

node need implement only one protocol, no matter how many other differently 

designed nodes are attached to the network. However, standardized coherence 

stops there; generally each pair of communicating nodes must make some 

(typically ad hoc) arrangement as to the interpretation of the stream of bits; 

it may represent a stream of data, a set of instructions, a message to one 

individual, or something else. For several special cases, such as exchange of 

mail or remotely submitting batch jobs, there have been developed higher-level 

protocols; there tends to be a d'istinct ad hoc higher-level protocol invented 

for each application [Feinler, 1976]. Some workers have explored the problems 

of protocols that interpret and translate data across machines of different 

origin [Levine, 1917]. Others have tried to develop a network-wide file 

system without user-noticeable boundaries [Thomas, 1973; Millstein, 1976]. 

The image of a loose confederacy of cooperating autonomous nodes requires 

at a minimum the level of coherence provided by these networks; it is not yet 

clear how much more is appropriate, only that the opposite extreme in which 

the physically separate nodes effectively lose their separate identity is 

excluded by the earlier arguments for autonomy. Between lies a broad range of 

possibilities that need to be explored. 

Coherence and the object model 

The first problem is to develop a framework for discussion that allows 

one to pose much more specific questions. As a way to put some structure on 

the range of possibilities, it is appropriate to think first in terms of 

familiar semantic models of computation, and then to inquire how the semantic 

model of the behavior of a single node might be usefully extended to account 



for interaction with other, autonomous nodes. To get a concrete starting 

point that is as developed as possible, let us give initial consideration to 

the object mo-del [Liskov, 1975; Liskov, 1977]*. Under that view, each node is 

a self-contained system with storage, a program interpreter that is programmed 

in a high-level object-oriented language such as CLU or Alphard, and an 

attachment to a data communication network of the kind previously discussed. 

We immediately observe that several interesting problems are posed by the 

interaction between the object model and the hypothesis of autonomy. There 

are two basic alternative premises that one can start with in thinking about 

how to compute with an object that is represented at another node: send 

instructions about what to do with the object to the place it is stored; or 

send a copy of the representation of the object to the place that wants to 

compute with it. (In-between combinations are also possible, but conceptually 

it is simpler to think about the extreme cases first.) An initial reaction 

might be to begin by considering the number of bits that must be moved from 

one node to another to carry out the two alternatives, but that approach 

misses the mos. t interesting .:ssues: reliability, integr:tty, responsibi:!.ity 

for protection of the object, and naming problems. Suppose the object stays 

in its original home. Semantics for requesting operations, and reporting 

results and failures are needed. For some kinds of objects, there may be 

operations that return references to other, related objects. Semantics to 

properly interpret these references are required. Checking of authorization 

to request operations is required. Some way must be found for the 

(autonomous) node to gracefully defer, queue, or refuse requests, if it is 

overloaded or not in operation at the moment. 

* Two other obvious candidates for starting points are the data flow model 
[Dennis, 1976] and the actor model [Hewitt, 1977], both of which already 
contain the notion of communications; since neither is developed quite as far 
as the object model we leave them for future examination. 



Suppose on the other hand, that a copy of the object is moved to the node 

that wants to do the computation. Privacy, protection of the contents, 

integrity of the representation, and proper interpretation of names embedded 

in the object representation all are problems. Yet, making copies of data 

seems an essential part of achieving autonomy from nodes that contain needed 

information but aren't always accessible. Considering these two premises as 

alternatives seems to raise simultaneously so many issues o-f performance, 

integrity of the object representation, privacy of its content, what name is 

used for the object, and responsibility for the object, that the question is 

probably not posed properly. However, it begins to illustrate the range of 

considerations that should be thought about. It also suggests the following, 

more specific, problems that require solutions: 

1. To arrange systematically that an object have multiple representations at 

one point in time but stored at different places. One would expect to 

achieve reliability and response speed this way [Alsberg, 1976]. An 

example of non-systematic multiple representation occurs whenever one 

user of a tin.e-sharing £ystem confront3 another with the cotlplaiat~ "I 

thought you said you fixed that bug", and receives the response, "I did. 

You must have gotten an old copy of the program. What you have to do is 

type ••• " Semantics are needed to express the notion that for some 

purposes any of several representations are equally good, but for other 

purposes they aren't. 

An object at one node needs to "contain" (for example, use as part of its 

representation) objects from other nodes. This idea focuses on the 

semantics of naming remote objects. It is not clear whether the names 

involved should be relatively high-level (e.g., character-string file 



names) or low-level (e.g., segment numbers). Ideas involving the 

interaction among semantics and mechanics of naming in very large address 

spaces may turn out to have application to the decentralized case 

[Bishop, 1977]. 

3. Related to the previous problem are issues of object motion: suppose 

object A, which contains as a component object B, is either copied or 

moved from one node to another, either temporarily or permanently. Can 

object B be left behind or be in yet another node? The answer may depend 

on the exact combination of copy or new, temporary or permanent. 

Autonomy is deeply involved here, since one cannot rely on availability 

of the original node to resolve the name of B. The Distributed Computing 

System (DCS) at the University of California, Irvine, provided a first 

cut trial of this idea by arranging for processes to move from one node 

to another without having to change their na~~s [Farber, 1972]. 

4. More generally, semantics are needed for gracefully coping with objects 

that aren't there when they are requested. (Information stored in 

autonomous nodes will often fall in this category.) This idea seems 

closely related to the one of coping with objects that have multiple 

versions and the most recent version is inaccessible*. 

5. Algorithms are needed that allow atomic update of two (or more) objects 

stored at different nodes, in the face of errors in communication and 

* Semantics for dealing systematically with errors and other surprises have 
not really been devised for monolithic, centralized systems either. However, 
it appears that in the decentralized case, the problem cannot so easily be 
avoided by the ad hoc tricks or finesse as it was in the past. 
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failures of individual nodes*. There are several forms of atomic update: 

there may be consistency constraints across two or more different objects 

(e.g., the sum of all the balances in a bank should ahvays be zero) or 

there may be a requirement that several copies of an object be kept 

identical. Process coordination semantics that were adequate for 

single-node syste~ do not necessarily stand up under the pressures of 

robustness and delay of the decentralized system. Reed and Kanodia have 

developed a promising semantics together with an implementation model in 

terms of messages [Reed, 1977]. The semantic view that objects are 

immutable may provide a more hospitable base for extension to interaction 

among autonomous nodes than the view that objects ultimately are 

implemented by cells that can contain different values at different 

times. (The more interesting algorithms for making coordinated changes 

in the face of errors seem to implement something resembling immutable 

objects [Lampson, 1976; Thomas, 1976]). 

Constraining the range of errors that must be tolerated seems to be a 

promising way to loC'k at these last two problems. Not all failures are 

equally likely, and more important, some kinds of failures can perhaps be 

guarded against by specific remedies, rather than tolerated. For example, a 

common protocol problem in a network is that some node both crashes and 

restores service again before anyone notices; outstanding connections through 

the network sometimes continue without realizing that the node's state has 

* Most published work on making atomic updates to several objects or several 
sites has concentrated on algorithms that perform well despite communication 
delay or that can be proven correct [Lamport, 1976 Acta Inf.; Stearns, 1976; 
Eswaren, 1976; Ellis, 1976; Rothnie, 1977]. Unfortunately, algorithms 
constructed without consideration of reliability and failure are not easily 
extended to cope with those additional considerations, so there seems to be no 
way to build on that work. 



been reset. Careful choice in the semantics of the host-net interface can 

locally eliminate this kind of failure instead of leaving it as a problem for 

higher level protocols. 

The following oversimplified world view, to be taken by each node may 

offer a systematic way to think about multiply represented objects and atomic 

operations: there are two kinds of objects, mine and everyone else's. My 

node acts as a cache memory for objects belonging to others that I use, and 

everyone else acts as a backing store. These roles are simply reversed for my 

own objects. (One can quickly invent situations where this view breaks down, 

causing deadlocks or wrong answers, but the question is whether or not there 

are real world problems for which this view is adequate.) 

Finally, it is apparent that one can get carried away with generalized 

algorithms that handle all possible cases. An area requiring substantial 

investigation is real world applications. It may turn out that only a few of 

these issues arise often enough in practice to require systematic solutions. 

It may be possible, in many cases, to cope with distant objects quite 

successfully as special cases to be programmed one at a time. For example, 

recent measurements on the Hultics system suggest that even though that system 

is designed for maximum ease in sharing data, actual use of the facilities for 

shared writable objects is mostly quite stylized: the full generality is 

exploited quite rarely [Montgomery, 1977]. 

Other problems in the semantics of coherence 

Usual models of computation permit only "correct" results, with no 

provision for tolerating "acceptably close" answers. Sometimes provision is 

made to report that no result can be returned. In a loose confederacy of 



autonomous nodes, exactly correct results may be unattainable, but no answer 

at all is too restricting. For example, one might want a count of the current 

number of employees, and each department has that number stored in its 

computer. At the moment the question is asked, one department's computer is 

down, and its count is inaccessible. But a copy of last month's count for 

that department is available elsewhere. An "almost right" answer utilizing 

last month's count for one department may well be close enough for the purpose 

the question was asked, but we have no semantics available for requesting or 

returning such answers. A more extreme example would be if the Federal 

Reserve tried to determine the money supply by interrogating every bank's 

computer so as to obtain the sum of all checking account balances in the 

United States. Obtaining an exact result seems unrealistic as well as 

unnecessary. 

A general solution to the problem of providing acceptably close answers 

seems to require a perspective from Artificial Intelligence, but particular 

solutions may be programmable if there were available semantics for detecting 

thnt one obje-ct is an out-of-1ate version of anoth~r, or that a :r:equested but 

unavailable object has an out-of-date copy. It is not clear at what level 

these associations should be made. 

Semantics are also needed to express constraints or partial contraints of 

time sequence. (e.g., "reservations are to be made in the order they are 

requested, except that two reservation requests arriving at different nodes 

within one minute may be processed out of order.") Lamport has suggested one 

approach to thinking about this problem [Lamport, March, 1976]. Note that the 

possibility of unreliable nodes or communications severely complicates this 

problem. 
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The semantics of protection of information, just beginning to be 

understood in the single system case, are a bewildering maze when one 

considers the decentralized system. The capability model seems to offer 

little help when the capabilities must be sent from one node to other, 

potentially hostile ones, since one can't be sure that the capability won't be 

tampered with. Nevertheless, the capability model may be useful for cases 

where the nodes are known to be friendly [Donnelley, 1976]. Cryptographic 

techniques seem to offer some aid in authentication and in protecting control 

signals in addition to their traditional use in protecting data in transit 

[Branstad, 1975; Diffie, 1976; Kent, 1976]. Application of information flow 

models to decentralized systems is a promising idea [Karger, 1977]. 

The semantics of autonomy are not clear. When can I disconnect my node 

from the network without disrupting my (or other) operations? How do I refuse 

to report information that I have in my node in a way that is not disruptive? 

If my node is overloaded, which requests coming from other nodes can be 

deferred without causing deadlock? Early work in this area on DCS points the 

Wa), but needs to be extendeC. to more cases [Rowe, 1973]. 

Heterogeneous and Homogeneous Systems 

A question that is immediately encountered is whether or not one should 

assume that the various autonomous nodes of a loosely coupled confederacy of 

systems are identical either in hardware or in lower level software support. 

The assumption of autonomy and observations of the way the real world behaves 

both lead to a strong conclusion that one must be able to interconnect 

heterogeneous (that is, different) systems. Yet, to be systematic, some level 

of homogeneity is essential, and in addition the clarity that homogeneity 

provides in allowing one to see a single research problem at a time is very 

appealing. 



It may be that the proper appro~ch to this issue lies in careful 

definition of node boundaries. Suppose that we insist that every node present 

to every other node a common, homogeneous interface, whose definition we hope 

to specify. That interface may be a native interface, directly implemented by 

the node, or it may be simulated by interpretation, using the (presumably 

different) native facilities of the node. This approach allows one to work on 

the semantics of decentralized systems without the confusion of hetrogeneity, 

yet it permits at least some non-conforming systems to participate in a 

confederacy. There is, of course, no guarantee that an arbitrary previously 

existing computer system will be able to simulate the required interface 

easily or efficiently. 

Conclusion· 

The various problems suggested here are by no means independent of one 

another, although each seems to have a flavor of its own. In addition, they 

probably do not span the complete range of issues that should be explored in 

establishing an appropriate semantics for expressing computations in a 

confedera~y of loosely coupled, autonomous ~omputer systems. Further, some 

are recognizable as problems o£ semantics of centralized systems that were 

never solved very well. But they do seem to represent a starting point that 

can to lead to more carefully framed questions and eventually some new 

conceptual insight. 
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