
RESEARCH PROBLEMS OF DECENTRALIZED SYSTEHS WITH LARGELY AUTONOHOUS NODES

by

Jerome H. Saltzer

Massachusetts Institute of Technology

A currently popular systems research project is to explore the

possibilities and problems for computer system organization that arise from

the rapidly falling cost of computing hardware. Interconnecting fleets of

mini- or micro-computers and putting intelligence in terminals and

concentrators to produce so-called "distributed systems" has recently been a

booming development activity. While these efforts range from ingenious to

misguided, many seem to miss a most important aspect of the revolution in

hardware costs: that more than any other factor, the entry cost of acquiring

and operating a free-standing, complete computer system has dropped and

continues to drop rapidly. Where a decade ago the capital outlay required to

install a computer system ranged from $150,000 up into the millions, today the

low end of that range is belm-1 $15,000 and dropping.

The consequence of this particular observation for system structure comes

from the next level of analysis. In most organizations, decisions to make

capital acquisitions tend to be more centralize.d for larger capital amounts,

and less centralized for smaller capital amounts. On this basis we may

conjecture that lower entry costs for computer systems will lead naturally to

computer acquisition decisions being made at points lower in a management

hierarchy. Further, because a lower-level organization usually has a smaller

mission, those smaller-priced computers will tend to span a smaller range of

€) 1977 by J. H. Saltzer. All rights reserved.

applications, and in the limit of the argument will be dedicated to a.single

application. Finally, the organizational units that acquire these computers

will by nature tend to operate somewhat independently and autonomously from

one another, each following its own mission. From another vie\~oint,

administrative autonomy is really the driving force that leads to acquisition

of a computer system that spans a smaller application range. According to

this view, the large multiuser computer center is really an artifact of high

entry cost, and does not represent the "natural" way for an organization to do

its computing.

A trouble with this somewhat oversimplified analysis is that these

conjectured autonomous, decentralized computer systems will need to

communicate with one another. For example: the production department's

output will be the inventory control department's input, and

computer-generated reports of both departments must be submitted to higher

management for computer analysis _and exception display. Thus we can

anticipate that the autonomous computer systems must be at least loosely

coupJed into a cooperating confeaeracy thet represents the corporate

informatibn system. This scenario describes the corporate computing

environment, but a similar scenario can be conjectured for the academic,

government, military, or any other computing environment. The conjecture

described here has been explored for validity in an undergraduate thesis

[d'Oliveira, 1977].

The key consequence of this line of reasoning for computer system

structure, then, is a technical problem: to provide coherence in

communication among what will inevitably be administratively autonomous nodes

of a computer network. Technically, autonomy appears as a force producing

·~

incoherence: one must assume that operating schedules, loading policy, level

of concern for security, availability, and reliability, update level of

hardware and software, and even choice of hardware and software systems will

tend to vary from node to node with a minimum of central control. Further,

individual nodes may for various reasons occasionally completely disconnect

themselves from the confederacy, and operate in isolation for a while before

reconnecting. Yet to the extent that agreement and cooperation are

beneficial, there will be need for communication of signals, exchange of data,

mutual assistance agreements, and a wide variety of other internode

interaction. One-at-a-time ad hoc arrangements will probably be inadequate,

because of their potential large number and the programming cost in dealing

with each node on a different basis.

Coherence can be sought in many forms. At one extreme, one might set a

company-wide standard for the electrical levels used to drive point-to-point

communication lines that interconnect nodes or that attach any node to a local

communication network. At the opposite extreme, one might develop a data

management protocol that allows :my user of any nocl.e to 1:-e~.ieYe that there is

a central, unified database management system with no identifiable boundaries.

The first extreme might be described as a very low-level protocol, the second

extreme as a very high-level protocol, and there seem to be many levels in

between, not all strictly ordered.

By now, considerable experience has been gained in devising and using

relatively low-level protocols, up to the point that one has an uninterpreted

stream of bits flowing from one node of a network to another [Cerf, 1974].

The ARPANET and TELENET are perhaps the best-developed examples of protocols

at this level, and local networks such as the ETHERNET [Metcalfe, 1975]

__ ..,

provide a similar level of protocol on a smaller scale geographically. In

each of those networks, standard protocols allow any two autonomous nodes (of

possibly different design) to set up a data stream from one to the other; each

node need implement only one protocol, no matter how many other differently

designed nodes are attached to the network. However, standardized coherence

stops there; generally each pair of communicating nodes must make some

(typically ad hoc) arrangement as to the interpretation of the stream of bits;

it may represent a stream of data, a set of instructions, a message to one

individual, or something else. For several special cases, such as exchange of

mail or remotely submitting batch jobs, there have been developed higher-level

protocols; there tends to be a d'istinct ad hoc higher-level protocol invented

for each application [Feinler, 1976]. Some workers have explored the problems

of protocols that interpret and translate data across machines of different

origin [Levine, 1917]. Others have tried to develop a network-wide file

system without user-noticeable boundaries [Thomas, 1973; Millstein, 1976].

The image of a loose confederacy of cooperating autonomous nodes requires

at a minimum the level of coherence provided by these networks; it is not yet

clear how much more is appropriate, only that the opposite extreme in which

the physically separate nodes effectively lose their separate identity is

excluded by the earlier arguments for autonomy. Between lies a broad range of

possibilities that need to be explored.

Coherence and the object model

The first problem is to develop a framework for discussion that allows

one to pose much more specific questions. As a way to put some structure on

the range of possibilities, it is appropriate to think first in terms of

familiar semantic models of computation, and then to inquire how the semantic

model of the behavior of a single node might be usefully extended to account

for interaction with other, autonomous nodes. To get a concrete starting

point that is as developed as possible, let us give initial consideration to

the object mo-del [Liskov, 1975; Liskov, 1977]*. Under that view, each node is

a self-contained system with storage, a program interpreter that is programmed

in a high-level object-oriented language such as CLU or Alphard, and an

attachment to a data communication network of the kind previously discussed.

We immediately observe that several interesting problems are posed by the

interaction between the object model and the hypothesis of autonomy. There

are two basic alternative premises that one can start with in thinking about

how to compute with an object that is represented at another node: send

instructions about what to do with the object to the place it is stored; or

send a copy of the representation of the object to the place that wants to

compute with it. (In-between combinations are also possible, but conceptually

it is simpler to think about the extreme cases first.) An initial reaction

might be to begin by considering the number of bits that must be moved from

one node to another to carry out the two alternatives, but that approach

misses the mos. t interesting .:ssues: reliability, integr:tty, responsibi:!.ity

for protection of the object, and naming problems. Suppose the object stays

in its original home. Semantics for requesting operations, and reporting

results and failures are needed. For some kinds of objects, there may be

operations that return references to other, related objects. Semantics to

properly interpret these references are required. Checking of authorization

to request operations is required. Some way must be found for the

(autonomous) node to gracefully defer, queue, or refuse requests, if it is

overloaded or not in operation at the moment.

* Two other obvious candidates for starting points are the data flow model
[Dennis, 1976] and the actor model [Hewitt, 1977], both of which already
contain the notion of communications; since neither is developed quite as far
as the object model we leave them for future examination.

Suppose on the other hand, that a copy of the object is moved to the node

that wants to do the computation. Privacy, protection of the contents,

integrity of the representation, and proper interpretation of names embedded

in the object representation all are problems. Yet, making copies of data

seems an essential part of achieving autonomy from nodes that contain needed

information but aren't always accessible. Considering these two premises as

alternatives seems to raise simultaneously so many issues o-f performance,

integrity of the object representation, privacy of its content, what name is

used for the object, and responsibility for the object, that the question is

probably not posed properly. However, it begins to illustrate the range of

considerations that should be thought about. It also suggests the following,

more specific, problems that require solutions:

1. To arrange systematically that an object have multiple representations at

one point in time but stored at different places. One would expect to

achieve reliability and response speed this way [Alsberg, 1976]. An

example of non-systematic multiple representation occurs whenever one

user of a tin.e-sharing £ystem confront3 another with the cotlplaiat~ "I

thought you said you fixed that bug", and receives the response, "I did.

You must have gotten an old copy of the program. What you have to do is

type ••• " Semantics are needed to express the notion that for some

purposes any of several representations are equally good, but for other

purposes they aren't.

An object at one node needs to "contain" (for example, use as part of its

representation) objects from other nodes. This idea focuses on the

semantics of naming remote objects. It is not clear whether the names

involved should be relatively high-level (e.g., character-string file

names) or low-level (e.g., segment numbers). Ideas involving the

interaction among semantics and mechanics of naming in very large address

spaces may turn out to have application to the decentralized case

[Bishop, 1977].

3. Related to the previous problem are issues of object motion: suppose

object A, which contains as a component object B, is either copied or

moved from one node to another, either temporarily or permanently. Can

object B be left behind or be in yet another node? The answer may depend

on the exact combination of copy or new, temporary or permanent.

Autonomy is deeply involved here, since one cannot rely on availability

of the original node to resolve the name of B. The Distributed Computing

System (DCS) at the University of California, Irvine, provided a first

cut trial of this idea by arranging for processes to move from one node

to another without having to change their na~~s [Farber, 1972].

4. More generally, semantics are needed for gracefully coping with objects

that aren't there when they are requested. (Information stored in

autonomous nodes will often fall in this category.) This idea seems

closely related to the one of coping with objects that have multiple

versions and the most recent version is inaccessible*.

5. Algorithms are needed that allow atomic update of two (or more) objects

stored at different nodes, in the face of errors in communication and

* Semantics for dealing systematically with errors and other surprises have
not really been devised for monolithic, centralized systems either. However,
it appears that in the decentralized case, the problem cannot so easily be
avoided by the ad hoc tricks or finesse as it was in the past.

,,,~
~ .

failures of individual nodes*. There are several forms of atomic update:

there may be consistency constraints across two or more different objects

(e.g., the sum of all the balances in a bank should ahvays be zero) or

there may be a requirement that several copies of an object be kept

identical. Process coordination semantics that were adequate for

single-node syste~ do not necessarily stand up under the pressures of

robustness and delay of the decentralized system. Reed and Kanodia have

developed a promising semantics together with an implementation model in

terms of messages [Reed, 1977]. The semantic view that objects are

immutable may provide a more hospitable base for extension to interaction

among autonomous nodes than the view that objects ultimately are

implemented by cells that can contain different values at different

times. (The more interesting algorithms for making coordinated changes

in the face of errors seem to implement something resembling immutable

objects [Lampson, 1976; Thomas, 1976]).

Constraining the range of errors that must be tolerated seems to be a

promising way to loC'k at these last two problems. Not all failures are

equally likely, and more important, some kinds of failures can perhaps be

guarded against by specific remedies, rather than tolerated. For example, a

common protocol problem in a network is that some node both crashes and

restores service again before anyone notices; outstanding connections through

the network sometimes continue without realizing that the node's state has

* Most published work on making atomic updates to several objects or several
sites has concentrated on algorithms that perform well despite communication
delay or that can be proven correct [Lamport, 1976 Acta Inf.; Stearns, 1976;
Eswaren, 1976; Ellis, 1976; Rothnie, 1977]. Unfortunately, algorithms
constructed without consideration of reliability and failure are not easily
extended to cope with those additional considerations, so there seems to be no
way to build on that work.

been reset. Careful choice in the semantics of the host-net interface can

locally eliminate this kind of failure instead of leaving it as a problem for

higher level protocols.

The following oversimplified world view, to be taken by each node may

offer a systematic way to think about multiply represented objects and atomic

operations: there are two kinds of objects, mine and everyone else's. My

node acts as a cache memory for objects belonging to others that I use, and

everyone else acts as a backing store. These roles are simply reversed for my

own objects. (One can quickly invent situations where this view breaks down,

causing deadlocks or wrong answers, but the question is whether or not there

are real world problems for which this view is adequate.)

Finally, it is apparent that one can get carried away with generalized

algorithms that handle all possible cases. An area requiring substantial

investigation is real world applications. It may turn out that only a few of

these issues arise often enough in practice to require systematic solutions.

It may be possible, in many cases, to cope with distant objects quite

successfully as special cases to be programmed one at a time. For example,

recent measurements on the Hultics system suggest that even though that system

is designed for maximum ease in sharing data, actual use of the facilities for

shared writable objects is mostly quite stylized: the full generality is

exploited quite rarely [Montgomery, 1977].

Other problems in the semantics of coherence

Usual models of computation permit only "correct" results, with no

provision for tolerating "acceptably close" answers. Sometimes provision is

made to report that no result can be returned. In a loose confederacy of

autonomous nodes, exactly correct results may be unattainable, but no answer

at all is too restricting. For example, one might want a count of the current

number of employees, and each department has that number stored in its

computer. At the moment the question is asked, one department's computer is

down, and its count is inaccessible. But a copy of last month's count for

that department is available elsewhere. An "almost right" answer utilizing

last month's count for one department may well be close enough for the purpose

the question was asked, but we have no semantics available for requesting or

returning such answers. A more extreme example would be if the Federal

Reserve tried to determine the money supply by interrogating every bank's

computer so as to obtain the sum of all checking account balances in the

United States. Obtaining an exact result seems unrealistic as well as

unnecessary.

A general solution to the problem of providing acceptably close answers

seems to require a perspective from Artificial Intelligence, but particular

solutions may be programmable if there were available semantics for detecting

thnt one obje-ct is an out-of-1ate version of anoth~r, or that a :r:equested but

unavailable object has an out-of-date copy. It is not clear at what level

these associations should be made.

Semantics are also needed to express constraints or partial contraints of

time sequence. (e.g., "reservations are to be made in the order they are

requested, except that two reservation requests arriving at different nodes

within one minute may be processed out of order.") Lamport has suggested one

approach to thinking about this problem [Lamport, March, 1976]. Note that the

possibility of unreliable nodes or communications severely complicates this

problem.

l()

The semantics of protection of information, just beginning to be

understood in the single system case, are a bewildering maze when one

considers the decentralized system. The capability model seems to offer

little help when the capabilities must be sent from one node to other,

potentially hostile ones, since one can't be sure that the capability won't be

tampered with. Nevertheless, the capability model may be useful for cases

where the nodes are known to be friendly [Donnelley, 1976]. Cryptographic

techniques seem to offer some aid in authentication and in protecting control

signals in addition to their traditional use in protecting data in transit

[Branstad, 1975; Diffie, 1976; Kent, 1976]. Application of information flow

models to decentralized systems is a promising idea [Karger, 1977].

The semantics of autonomy are not clear. When can I disconnect my node

from the network without disrupting my (or other) operations? How do I refuse

to report information that I have in my node in a way that is not disruptive?

If my node is overloaded, which requests coming from other nodes can be

deferred without causing deadlock? Early work in this area on DCS points the

Wa), but needs to be extendeC. to more cases [Rowe, 1973].

Heterogeneous and Homogeneous Systems

A question that is immediately encountered is whether or not one should

assume that the various autonomous nodes of a loosely coupled confederacy of

systems are identical either in hardware or in lower level software support.

The assumption of autonomy and observations of the way the real world behaves

both lead to a strong conclusion that one must be able to interconnect

heterogeneous (that is, different) systems. Yet, to be systematic, some level

of homogeneity is essential, and in addition the clarity that homogeneity

provides in allowing one to see a single research problem at a time is very

appealing.

It may be that the proper appro~ch to this issue lies in careful

definition of node boundaries. Suppose that we insist that every node present

to every other node a common, homogeneous interface, whose definition we hope

to specify. That interface may be a native interface, directly implemented by

the node, or it may be simulated by interpretation, using the (presumably

different) native facilities of the node. This approach allows one to work on

the semantics of decentralized systems without the confusion of hetrogeneity,

yet it permits at least some non-conforming systems to participate in a

confederacy. There is, of course, no guarantee that an arbitrary previously

existing computer system will be able to simulate the required interface

easily or efficiently.

Conclusion·

The various problems suggested here are by no means independent of one

another, although each seems to have a flavor of its own. In addition, they

probably do not span the complete range of issues that should be explored in

establishing an appropriate semantics for expressing computations in a

confedera~y of loosely coupled, autonomous ~omputer systems. Further, some

are recognizable as problems o£ semantics of centralized systems that were

never solved very well. But they do seem to represent a starting point that

can to lead to more carefully framed questions and eventually some new

conceptual insight.

Acknowledgement

Many of the ideas discussed here were suggested by David D. Clark, David

P. Reed, Liba Svobodova, and students in an M.I.T. graduate seminar held

during the Spring Semester, 1976-77.

. ' ' ..

References

Alsberg, P.A., Belford, G.G., Day, J.D., and Grapa, E., "Multi-Copy Resiliency
Techniques," University of Illinois Center for Advanced Computation
Document #202, May, 1976.

Bishop, P.B., "Computer Systems with a Very Large Address Space and Garbage
Collection," Ph.D.· thesis, M. I. T. Department of Electrical Engineering
and Computer Science, May, 1977; also Laboratory for Computer Science
Technical Report TR-178.

Branstad, D.K., "Encryption Protection in Computer Data Communications," E!.2.£.•
Fourth Data Communications Symposium, Quebec, October, 1975, pp. 8.1-8.7.

Cerf, V.G., and Kahn, R.E., "A Protocol for Packet Network Interconnection,"
IEEE Trans. ~ Communications 22, 5 (May, 1974) pp. 637-648.

d'Oliveira, C., "A Conjecture About Computer Decentralization," B.S. thesis,
M.I.T. Department of Electrical Engineering and Computer Science,
expected date of completion, August, 1977.

Dennis, J.B., "First Version of a Data Flow Procedure Language," H.l.T.
Laboratory for Computer Science Technical Memo TM-61, May, 1975.

Diffie, W., and Hellman, M.E., "New Directions in Cryptography," IEEE Trans.
on Info. Theory 22, 6 (November, 1976) pp. 644-654.

Donnelley, J.E., "A Distributed Capability Computing System (DCCS),rr ARPANET
Request for Comments #712, Network Information Center, Stanford Research
Institute, Menlo Park, California, February, 1976.

Ellis, C.A., "The Duplicate Database Problem," to appear in the Sixth ACM
Symposium on Operating System Principles, November, 1977.

Eswaran, K.P., et al., "The Notions of Consistency and Predicate Locks in a
Database System," Comm. of ACM 1:2., 11 (November, 1976) pp. 624-633.

Farber, D.J., and Heinrich, F.R., "The Sfructure of a Distributed Computer
System: The Distributed File System," f.!:££· First Int. Conf. on Computer
Comm., 1972, pp. 364-370.

Feinler, E., and Postel, J., ARPANET Protocol Handbook, NIC 7104, Network
Information Center, Stanford Research Institute, Menlo Park, California,
April, 1976.

Hewitt, c., "Viewing Control Structures as Patterns of Passing Messages," to
be published in A.~. Journal.

Karger, P., "Non-Discretionary Access Control for Decentralized Computing
Systems," M.S. thesis, H.I.T. Department of Electrical Engineering and
Computer Science, May, 1977, also Laboratory for Computer Science
Technical Report TR-179.

.. .

Kent, S.T., "Encryption-Based Protection Protocols for Interactive
User-Computer Communication," S.M. thesis, M.I.T. Department of
Electrical Engineering and Computer Science, May, 1976, also Laboratory
for Computer Science Technical Report TR-162.

Lamport, L., "Time, Clocks, and the Ordering of Events in a Distributed
System," Mass. Computer Associates Technical Report CA-7603-2911, March,
1976.

Lamport, L., "The Synchronization of Independent Processes," Acta Informatica,
7, 1976, pp. 15-34.

Lampson, B., and Sturgis, H., "Crash Recovery in a,Distributed Data Storage
System," to be published in the Comm. of ACM.

Levine, P.H .. , "Facilitating Interprocess Communication in a Heterogeneous
Network Environment," S.M. thesis, M.I.T. Department of Electrical
Engineering and Computer Science, June, 1977.

Liskov, B.H., and Zilles, S., "Specification Techniques for Data Abstraction,"
IEEE Trans. Software Engineering SE-1, 1, (1975) pp. 7-19.

Liskov, B.H., et al., "Abstraction Mechanisms in CLU," to appear in~· of
ACM 20, 7 (July, 1977).

Metcalfe, R.M., and Boggs, D.R., "Ethernet: Distributed Packet Switching for
Local Computer Networks,"~· of ACM _!i, 7 (July, 1976) pp. 395-404.

Millstein, R.E., "s"econd Semi-Annual Report," Massachusetts Computer
Associates Report CADD-7608-1611, August, 1976.

Montgomery, W., "Measurements of Sharing in Multics," to appear in the Sixth
ACM Symposium on Operating Systems Principles, November, 1977.

Reed, D.P., and Kanodia, R.J., "Synchronization with Eventcounts and
Sequence:..·s," to appear in the Sixth ACM Syttposium on Operc:.ting Systerts
Principles, November, 1977.

Rothnie, J.B., et al., "The Redundant Update Methodology of SDD-1: A System
for Distributed Databases," Computer Corporation of America Report
CCA-77-02, February, 1977.

Rowe, L.A., Hopwood, M.D., and Farber, D.J., "Software Methods for Achieving
Fail-Soft Behavior in the Distributed Computing System," Proc. IEEE
Symposium on Computer Software Reliability, 1973, pp. 7-11.

Stearns, R.E., et al., "Concurrency Control for Database Systems," extended
abstract, IEEE Symposium on Foundations of Computer Science, CH1133-8 C,
October, 1976, pp. 19-32.

Thomas, R.H., "A Resource Sharing Executive for the ARPANET," Proc. AFIPS Nat.
~· Conf., 1973, pp. 155-163.

Thomas, R.H., "A Solution to the Update Problem for Multiple Copy Data Bases
Which Use Distributed Control," Bolt Beranek and Newman Report #3340,
July, 1976.

