P

TO: MULTICS Programmers,
FROM: J, H. Saltzer.
SURJ: PL/! Documentation.

DATE: July 10, 1965,

Enclosed are three documents describing the PL/I
language as it will be available on the MULTICS system,
Together with the | .B.M, PL/| Reference Manual, they provide
both a tutorial summary and introduction to the PL/I
language, and a complete reference description of MULTICS
PL/! (including early PL/Il.) The four documents required
for the complete description are:

1. A Brief Summary of the PL/| Language. (Saltzer)
2, Early NPL Subset. (Morris, Mcllroy)

3., Data Layouts in ENPL for the GE636, (Mcllroy)

4L, PL/! Language Specifications, IBM form C28-6571-0,

The reader should realize that this documentation 1is
temporary and detailed specifications are subject to change.
As a rough guide, the following assumptions may be made:

1, There will be minor changes in the Early PL/Il subset,
but a translator for the subset will be available

shortly,

2. Data layouts will remain the same for the complete PL/I
translator,

3. The complete translator will probahly not be available
until mid=-1966, and it may not correspond precisely
with the complete PL/| reference manual. ‘

L, More adequate documentation will someday be available,

PAGE 1

A Brief Summary of the PL/|l Language

J.H. Saltzer
June 28, 1965

Introduct ion

These notes have been written in an attempt to provide
quickly some readable documentation on a reasonably useful
subset of the PL/I! language. They should do 1little more
than provide an anchor point from which a programmer may
build up detailed knowledge with the help of published
complete reference manuals., (e.g., IBM manual S360-29, form
C28-6571-0,) Although every effort to insure correctness in
this summary has been made, the reader should bear in mind
that the author has not had an opportunity to write,
translate, and run a PL/| program; his only contact with the
language has been with published manuals and technical
reports. It should also be kept in mind that the precise
implementation of this language on the GF 636 has not vyet
been completely established. Preliminary specifications
have been taken into account in this summary.

, The PL/! language requires many pages to describe in
all its glory. The programmer may specify any of dozens of
options at any point in his program. Fortunately, the
concept of "default" specification has permeated the
language. Through default, if the programmer fails to
specify an option, he is given automatically (by "default")
the option he will most likely need. This summary will, in
most cases, describe the 1language as though the default
options were the only ones available; the programmer should
realize however, that the language provides the ability to
specify virtually any meaningful combination of facilities.

Substitution Statements and Expressions

Substitution statements are statements of the form
A = X+3

or, more generally,

variable expression.

In fact, In PL/I, the most general substitution statement
has the form

data structure = expression

This last form Is illustrated by the statement

PL/! Summary PAGE 2

A = B+C

in which A, B, and C are all arrays of the same dimension;
~each element of A is set equal to the sum of the
corresponding elements of B and C.

Identifiers are used to name variables, arrays, etc, They
contaln 31 or fewer <characters and must start with an
alphabetic character. Examples:

ALPHA
LopP1
INITIALIZATION

Variables are named by an identifler. A variable may be
declared to represent data of one of at 1least four types:
FLPAT, FIXED, CHARACTER, and BIT. Variables starting with
l1,J,K,LLM,N are assumed FIXED, all others are assumed
floating unless declared otherwise.

Integer arithmetic is done with FIXED variables, on numbers
of magnitude less than 2%*17,

Normal arithmetic is done with FLOAT variables, with range

107 5 || » 107

A CHARACTER variable or a BIT variable represents a string
of characters or bits (often the string is of length one).

Constants of all four data types are provided as follows:
FIXED: a decimal integer. Example: 12, 7942

FLOAT: a decimal number with a decimal point and a
required exponent of the form Fn where '"n"
represents a multiplying power of ten.

example: 12,5FE1, .OLI1EO

CHARACTER: Any ASCIIl characters except single quote
between single quote marks
example: 'ABC' , '$100.00'

BIT: A string of zeros and ones between quote
marks, followed by the letter B,
example: '1100101'B

Any meaningful combination (mix) of data types in an
arithmetic expression is allowed. For example, iIf Y 1Is a
BIT string variable, Z Is FIXED, and X is FLOAT

X = Y+Z
would cause the bit string Y to be converted to a binary

integer, and the resulting Iinteger sum 1is converted to
floating. Note: 1in the early PL/! translator, CHARACTER

PL/! Summary PAGE 3

mode variables cannot be mixed with other types.

Allowed arithmetic operations are:

* % exponentiation
* multiplication
/ division
+ addition

subtraction

evaluated with the usual rules of precedence. Parenthetical
expressions may be used to insure correct precedence.

Although expressions such as X< Y are allowed, there is no
"Boolean" data type. Instead such expressions are given BIT
values of 0 or 1, and are manipulated in RIT mode. For
example, if Q is a BIT variable.

0 = X<KY;

will give 0 the BIT wvalue '1'B if X is 1less then VY.
Mixtures of such BIT data with other data can be used for
special effects. For example, in the statement

X = Y+*(A< B);
A and B are compared, producing a BIT value of 0 or 1, which
is then converted to the decimal integer 0 or 1, and used to
multiply Y. If A is not less than B, X 1is assligned the
value 0,

Allowed relational operations are:

> greater than
< less than
<= less than or equal
>= greater than or equal
= equal
-\ = not equal

The following operations may be used on pieces of BIT data:

& logical 'and'
| logical 'or'
-1 logical 'not'

& B has value '0'B
| B has value '1'B
A has value '0'BR

PL/1 Summary PAGE 4

Program Structure

Statement syntax is free format. The usual statement
has the form

label: statement ;

Where "1abel" is an optional identifier naming the
statement. The colon appears only if the 1label is used,
The semicolon 1Is always required at the end of the
statement. Tabs and carriage returns are considered as
blanks by the translator. Note that in general, blanks are
not ignored, but are considered delimiters between syntax
elements. Thus, ABCD and AB CD may have different meanings,

A subroutine is a set of statements bracketed by the
pair of statements:

label: PR@PCEDURE (ARG1l, ARG2,...)

END label;

The 1label is required, and gives a name to the
subroutine. (The matching label after the END statement is
optional, but good practice.) ARGl, ARG2, etc., are formal
parameters of the subroutine, to be replaced by actual
arguments when the subroutine 1is called. The words
PROCEDURE and END are keywords of the language, but they are
not reserved.

Control Statements

G@ TO 1abel;
causes control to be transferred to the statement
having the label "label.

CALL subname (ARG1l, ARG2, ...);

invokes the subroutine 'subname'", with arguments
ARG1, ARG2, etc., used in the place of the
corresponding formal parameters in the PROCEDURE
declaration in the subroutine. The number of
arguments In the calling sequence must be the same
as the number of parameters in the parameter list of
the subroutine.

RETURM;
used within a subroutine to return control to the
caller., When the RETURN statement is executed all
subroutine variable storage is released; speclal
declarations are required if some variables are to

PL/ 1 Summary PAGE 5

be remembered from call to call.

DP iteration 1ist;

END;

any set of statements

The set of statements up to the matching END
statement is executed repeatedly under control of
the iteration list. The set of statements including
DP and END is known as a group. The iteration 1list
may be absent, In which case the group 1Is executed
once; this degenerate form is used to control the
extent of the IF statement (see below,) The general
form of the iteration list is

NP variable =\3xpr1 BY expr2 TP expr3, WHILE exprb;

~ I
part | part |!

Both parts of the iteration 1list are optional,
providing the ability to do simple counting of
loops, tests for complex termination conditions, or
both simultaneously. Both tests are done before the
loop is entered the first time.

EXAMPLES: to add up ten numbhers in an array:

SUM = 0;

DG J=1BY1TH 10;
SUM = SUM + A(J);

END;

Same example, but stopping if SUM exceeds 100,

SUM = 0;

D J =1 BY 1 T@ 10 WHILE SUM< 100;
SUM = SUM + AC(IL);

END;

In the 1last example, when control 1leaves the
DO-group, J will point to one place after the array
element that caused the sum to overflow.

IF expression THEN statementl; ELSE statement2;

If the expression has non-zero bit-value, statement
1l is executed; otherwise statement 2 s executed.
The suffix "ELSE statement2;" is optional., A group
of statements delimited by DP and END may be used in
place of either single statement.

PL/ 1 Summary PAGE 6

Declarations

A11 declarations describing identifiers are made with a
single multipurpose statement, DECLARE. The general method
of attaching attributes to names is to type an identifier
followed by all of its attributes separated by blanks. A
comma allows a second identifier to be declared in the same
statement,

For example,
DECLARE ALPHA FIXED, INPUT CHARACTER(1), SWITCH BIT(1)

would make the wvariable "ALPHA" of YFIXED" type, the
variable "INPUT" a one-character string, etc.

Arithmetic data may be given any one of the attributes:
FLOAT
FIXED

CHARACTER(n)
BIT(n)

whe re n Is a required integer giving the number of
characters or bits in the string.

Arithmetic data may be preset by the INITIAL attribute, as
in

DECLARE LIMIT FIXED INITIAL (100);
The FIXED variable LIMIT is preset to the value 100,

An array may be declared by putting subscript ranges in
parentheses after the array identifier in a DECLARE

statement. Any number of subscripts may be used. The
subscript range is specified as (lower bound:upper bound).
If lower bound is missing, it is assumed 1. An array

transmitted to a subroutine is declared in the subroutine by
an asterisk in the place of the subscript range.

Example:
DECLARFE LIME(100) CHARACTER(1), BOX(-1:10,15), [INPUT(=*)

would declare the array LINE to contain 100 character
strings (each of length 1). The first subscript on the
array BOX varies from minus one to ten, the second from 1 to
15, Array INPUT, a formal argument of this subroutine, has
its subscript range declared in the calling program.

PL/1 Summary PAGE 7

Structures

The PL/1 language includes the ability to arrange data
in arbitrary groupings, called structures. These structures
resemble an outline in form, and permit the programmer to
talk about subgroupings of his data. A complete description
of data structures is very lengthy, and better left to the
complete reference manual,

Programming Style

In PL/1, as in all languages, it is possible to write
obscure programs. For the programmer who prides himself on
his clearly-written, easy-to=-understand programs, the
following suggestions may be of some help:

1, Liberal use of tabulate characters will make a
listing easier to read. An appropriate technique
would be to type an initial tab on all statements
not having a label, with an extra tab for each
level of nesting within DO END blocks. Statement
labels are then inserted immediately before the
first tab character.

2. The language syntax permits blank lines to be used
for vertical punctuation between logical pieces of
coding.

3. Although the 636 PL/! translator will map upper
and lower case alphabetic letters of program text
into the same Internal code, it would appear to be
wise not to utilize this facility to identify a
variable with "AbC" in one place and then '"aBc"
elsewhere in the program. The readability of a
program can be greatly increased if all
Identifiers are typed in upper case, while all
PL/! key words (do, procedure, etc.) are typed in
lower case.

L, Comments of the form
/* comment */
may be placed in the program anywhere that a blank
may appear. This freedom should not, however, be
considered as a license to strew comments
Iindiscriminately about in the middlie of arithmetic
expressions,

5. The usual warnings about not making a program
depend on the specital tricks of a particular
language implementation apply in force. A
reasonable rule of thumb might be: '"Would this
program produce correct results on a machine with,
say, 32 bits per word and a translator written by

PL/1 Summary PAGE 8

a different programmer?" It should be clear that
the question of whether the program would be
efficient on a different machine 1Is somewhat
irrelevant; the 1issue is whether or not the
program's results can be duplicated precisely.

[

Sample Program

On the next page is a PL/! subroutine that might be
used by the RUNOFF command. The subroutine right-justifies
a line of characters by inserting blanks between words., The
calling sequence is

CALL ADJUST (LINE,NCHARS,SIZE,RMARG)

where LINE(1)..,LINE(NCHARS) contain the characters of the
1ine. Since not all characters move the carriage forward,
SIZE is the physical length of the 1line; RMARG is the
desired physical 1ine length.

PL/! Summary PAGF 9

/* Routine to right-justify a line. J. H. Saltzer, May, 1965, =/

ADJUST: procedure(LINE, NCHARS, SIZE, RMARG):
declare LINE(*) character(1l), (SIZE, RMARG, TMARG,
POINTER, DEL, BEGIN, END) fixed;
if (SIZE %= RMARG) then return;

/* Make sure that there are some blanks after the first character.

do | = 1 to NCHARS while LINE(I) = ' '; end;
ISTART = |I;
do | = I+1 to NCHARS while LINE(I) —= ' '; end;

if (I >= NCHARS) then return;
/* Scan line backwards, inserting spaces where there are spaces,

TMARG = NCHARS + RMARG - SIZF;
BACK: POINTER = TMARG;
DEL = =-1;
BEGIN = NCHARS;
END = |ISTART;
SCAN: LNOW NCHARS;
do J BEGIN by DEL to END;
LINECPOINTER) = LINE(J);
POINTER = POINTEP + DFL;
if (LINE(J) = " ') then
do;

LINE(POINTER) = ' ';
POINTER = POINTER + DFL;
NCHARS = NCHARS + 1;
SIZE = SIZE + 1;
if (SIZE >= RMARG) then return;
end;
end;:
if (LNOW = NCHARS) then return;
if (DEL 7 0) then go to BACK;

/* Scan line forwards this time. =/

FORWARD: DEL = +1;
BEGIN = POINTER + 1;
POINTER = |ISTART;
END = TMARG;
go to SCAN;

end ADJUST;

*/

