
THE DESKTOP COMPUTER AS A NETWORK PARTICIPANT

by: Jerome H. Saltzer, David D. Clark, John L. Romkey, and Wayne L. Gramlich1

Prepublication version of January 18, 1985

Abstract

A desktop personal computer can be greatly extended in usefulness by attaching it
to a local area network and implementing a full set of network protocols, just as one
might provide for a mainframe computer. Such protocols are a set of tools that allow
the desktop computer not just to access data elsewhere, but to participate in the
computing milieu much more intensely. There are two challenges to this proposal.
First, a personal computer may often be disconnected from the network, so it cannot
track the network state and it must be able to discover and resynchronize with that
state very quickly. Second, full protocol implementations have often been large and
slow, two attributes that could be fatal in a small computer. This paper reports a
network implementation for the IBM Personal Computer that uses several
performance-oriented design techniques with wide applicability: an upcall/downcall
organization that simplifies structure; implementation layers that do not always
coincide with protocol specification layers; copy minimization; and tailoring of protocol
implementations with knowledge of the application that will use them. The size and
scale of the resulting package of programs, now in use in our laboratory for two years, is
quite reasonable for a desktop computer and the techniques developed are applicable to
a wider range of network protocol designs.

© IEEE 1985. This paper was originally prepared using the word processor FinalWord
on an IBM personal computer. To produce this version It has been transcribed into
pages.app for the Macintosh. Paragraph and page flow are thus slightly different from
the original.

1 Massachusetts Institute of Technology, Department of Electrical Engineering and

Computer Science, and Laboratory for Computer Science. Address: M.I.T. Room NE43-513,

545 Technology Square, Cambridge, Massachusetts, 02139.

Overview

This paper describes the issues encountered and lessons learned in the design,
implementation, and deployment of a full-scale network protocol implementation for a
desktop personal computer. The protocol family implemented was the United States
Department of Defense standard Transmission Control Protocol and Internet Protocol
[1,2]. The desktop computer was the IBM Personal Computer attached to one of several
local area networks: Ethernet, PRONET, and an RS-232 asynchronous serial line
network. The collection of programs is known as PCIP.

The project was undertaken in December, 1981, shortly after the IBM PC became
available. Initial implementations using an RS-232 asynchronous serial line network
were in operation in the summer of 1982, and a complete implementation for the
Ethernet was placed in service at M.I.T. in January, 1983. Since that time the
implementation has been polished, drivers for other networks have been added, the
software has been used in many applications unrelated to network research, and the
programs have been placed in service at several other sites. Enough experience with
the implementation has been gained to provide a convincing demonstration that the
techniques used were successful.

Introduction

A comparison of "large mainframe" computers attached to networks and similar
machines with no networking capabilities makes a clear case for the value of network
attachments. The value includes the abilities: to move files from one machine's file
system to another that has better long-term reliability, more space, or cheaper storage;
to use a unique printer that has better fonts or higher speed on another computer; to
log in as a user on another machine to get to a different data base manager or different
programming language; and to send and receive electronic mail within a large
community. Such abilities have all proven to be important extensions of the basic
standalone capability of a computer system. The desktop personal computer, whose
main advantage lies in its administrative autonomy, potentially can be extended in
value by network attachment even more than the large shared mainframe. The reason
is that by itself it is likely to have a smaller range of facilities than does a large, shared
mainframe, and thus a mechanism that offers the ability to make occasional use of
unique services found elsewhere is especially useful.

In the mainframe world, this added function has come with a substantial cost,
however. Implementations of network protocols have usually turned out to be large and
slow. Although size of software packages is of somewhat less concern than it once was
(because the cost of memory to hold those large packages seems to drop faster than the
packages grow) long path lengths through those packages can produce bottlenecks and
limit data rates. For example, although the hardware links in the ARPANET are
mostly of 56 kbit/s, few attached systems can sustain a data rate much above 15 kbit/s.
When those same systems are attached to local area networks that can accept data
rates of 10 mbit/s their software continues to be a bottleneck in the 15 kbit/s area.

PCIP paper Prepublication version of January 18, 1985 Page 2

Thus the question arises: can one put together a useful implementation of a
network protocol family, one that fits into a desktop computer that does not have a
virtual memory in which to hide bulky programs and that has a processor perhaps one-
tenth the speed of a mainframe? Our particular experiences in doing protocol
implementations for several different mainframes suggested that the slow, bulky
implementations are not intrinsic. Instead, they are brought about by a combination of
several conquerable effects:

1) Although protocols are described in terms of layers, the particular layer
structure chosen for description is not necessarily suitable for direct implementation.
A naive implementation that places software modularity boundaries at the protocol
layer boundaries can be extremely inefficient. The reason for the inefficiency is that in
moving data, software modularity boundaries usually become the points where buffers
and queues are inserted[3]. But the protocol layer boundaries are not necessarily the
most effective points for buffering and queueing. A particular issue is that it is vital to
minimize the number of times that data gets copied on the way from the application out
to the wire and vice-versa. (The operating system sometimes encourages extra copying,
too, but that is part of point three, below.)

2) There are usually several ways to implement a protocol, all of which meet the
specifications, but that can have radically different performance; the way that produces
best performance for one application may be quite different from the way that produces
best performance for another application. An implementation that tries to provide a
general base for a wide variety of applications can perform much worse than one that is
designed with one application in mind. This application variability of performance
shows up strongly in the choice of data buffering strategies and in the choice of flow
control strategies.

3) The current generation of operating systems is ill-equipped for integration of
high-performance network protocols. Problems are often encountered in the form of a
long time required to switch contexts, clumsy interprocess communication, or
inadequate memory sharing. Good implementation of network protocols requires a very
agile, light-weight mechanism for coordination of intrinisically parallel
activities_sending packets, receiving packets, sending packets at low levels as a result
of receiving packets that require further processing at high levels, dallying in packet
dispatch in hope that further processing will allow the piggybacking of responses at
different levels into a single response packet, and so on. The various parallel activities
of a network implementation are characterized by substantial sharing of both protocol
state and packet data, so shared-variable communication is another essential feature.
For an operating system to give really substantial support it needs to provide three
forms of memory sharing: among operating-system-provided processes, between such
processes and the operating system kernel, and between real and virtual memory areas.
Often one or more of these three sharing mechanisms is missing or weak, so the
protocol implementation is forced to spend time making copies.

One might summarize all three of these points by the single observation that
current network protocol implementations, especially for high-speed local area
networks, are quite early on the learning curve of this software area. Most experience
so far is on large mainframes and with networks that operate at telephone line speeds.
A particularly unexplored area is protocol implementations that work well with

PCIP paper Prepublication version of January 18, 1985 Page 3

network speeds that span the four orders of magnitude from 1.2 kbit/s to 10 mbit/s.
One would expect that as experience is gained implementations will improve. One of
the primary purposes of the PC network implementation was to take one or two steps
higher on that learning curve. In the remainder of this paper, we first describe what
was implemented, and then discuss the organizing strategies that make the
implementation interesting.

What was implemented

Figure one shows the various protocols and drivers used within the PCIP software
packages. PCIP divides naturally into three levels_the driver level, the transport level,
and the application level. At the driver level are modules that manage different local
area network hardware interfaces: the 3COM EtherLink Ethernet interface, the
Proteon PRONET 10 mbit/s token ring interface, and the RS-232 asynchronous serial
line port.

The transport level has three major components. The Internet Protocol (IP)
provides for packets originating on one network to be sent to a destination on another
network. (In this paper the term "packet" describes the object delivered from one
network-attached computer to another via the Internet Protocol.) The User Datagram
Protocol (UDP) is a connection-less protocol intended for the transmission of a single,
uncontrolled datagram. The Transmission Control Protocol (TCP) provides a reliable,
full-duplex byte stream connection usually between a user process at one network node
and a server process at another.

One application-level protocol, Remote Virtual Disk (RVD), is built directly on the
IP layer. RVD is implemented as a device driver that allows one to read and write
individual disk blocks on a remote machine as if they were on a local disk.

Several application-level protocols are built on UDP, each providing its own
application-specialized error control. For example, the node name protocol takes a
character string name for a node and consults a series of name servers to learn that
node's 32-bit internet address, using UDP. The Trivial File Transfer Protocol (TFTP) is
a lock-step file transfer protocol built on UDP, in which the file receiver must
acknowledge each datagram before the sender may dispatch the next one. The Print
File program permits a user to print a text file, using TFTP to transport the file to a
printer server. The get time protocol obtains the time and date from a set of time and
date servers.

The application programs that use TCP are the remote login protocol, named
Telnet, and several information lookup protocols. In addition, some TCP-based mail
facilities are currently being implemented. The Telnet program uses a Heath H19
terminal emulator in managing the keyboard and screen of the PC[4]. An unusual, but
very useful, application program, Netwatch, built directly on the local-area network
drivers, allows monitoring of all or selected traffic on the local network. The ability to
turn any PC into a network monitoring station at a moment's notice has been used to
solve dozens of performance, configuration, and trouble isolation problems.

PCIP paper Prepublication version of January 18, 1985 Page 4

You get more than remote terminal emulation

Although a remote login protocol is an important function, it is not by itself
justification for a network implementation_if that were the only function obtained, one
could use one of the many terminal emulator programs for the PC instead. The interest
in a fuller protocol family implementation for a PC comes about when considering the
range of services that become directly available for the PC user, and the ease of building
new applications. Examples range from seemingly trivial ones to major work-savers.

Among the apparently trivial features is the PC command that sets the PC system
clock (date and time) by sending datagrams to several network servers[5]. This
command is included in most of our PC users' automatic bootload batch files, where it
eliminates the need for an extra battery-powered clock card. Only after this command
became available did the date and time records kept in DOS floppy disk directories
become reliable indicators of which version of a file one was looking at. Another
remarkably useful command is one that obtains from any timesharing system in the
internet a list of currently logged-in users and identification information on any
particular named user of that system. A similar command obtains directory
information from the ARPANET Network Information Center. Another command sends
a request for an echo response to any network node, to allow trouble isolation. These
tools, each not very important in itself, become part of an operation repertoire that
makes the desktop computer much more useful than when it stands alone.

Probably the single most important tool is the file transfer protocol, TFTP. TFTP
provides the ability to move a file between the PC and any network-attached
timesharing system or file server. With TFTP, one can casually undertake quite
complex operations. A typical use, such as the preparation of this paper, involves
several authors each using a favorite editor on the PC to prepare individual
contributions. Each moves contributions to a common directory on a central file server,
so the others can look them over and provide comments and suggestions. One author
moves all the paper fragments to a private PC, assembles them, runs them through a
formatter and then sends them, again using TFTP, to a sophisticated laser printer
server located elsewhere in the network. Because the network is not just local, but is
seamlessly interconnected by the ARPANET to many other sites nation- and world-
wide, the authors and other facilities can be assembled from a geographically dispersed
set. And because TFTP is an independent entity, it can be used as a subsystem in a
more complex application, such as sending a text file to a manuscript preparation
server, sending the result to a laser printer, and retrieving result log files, all in an
under-the-cover application package that runs on the PC. Perhaps more important, if
some file transfer mechanism had not been available, so that terminal emulation were
the only means of communication, it would not have been easy to include stand-alone
programs on the PC, such as text editors, as part of this process.

When added to this set of network tools, a remote login protocol becomes a
migration and extension tool, since it makes functions that are missing on the PC, such
as specialized languages or databases, easily available by allowing the PC user to
attach to a timesharing system anywhere in the network. The most prominent example
of a function currently missing in our repertoire is electronic mail handling. While
waiting for a mail handling package to be implemented for the PC, sending and

PCIP paper Prepublication version of January 18, 1985 Page 5

receiving mail is accomplished by logging in to one of the large timesharing systems.
Another useful feature of implementing remote login as a network package rather than
as a simple terminal emulator is that TFTP is available at the same time. This feature
allows one to use any timesharing system commands to locate, collect, or create files,
and then send them immediately back to the PC. It also allows other users to move
files to and from the PC at the same time it is being used for remote login.

The sum of these tools is greater than the individual parts, because the
application user can blend remote with local operations as the job requires. An
application programmer finds even more flexibility, since any service offered by any
network site can be incorporated in an application program. It is exactly this ability to
compose network functions in unanticipated ways that makes a complete network
protocol implementation for a PC so powerful.

Remote Virtual Disk

A good example of an extended service possibility is our implementation of the
Remote Virtual Disk protocol (RVD) for the PC. This protocol, locally developed at
M.I.T., permits a machine to have access to disk storage which appears to be local, but
which is in fact remotely located at a server across the network[6]. To accomplish this
appearance, a device driver is written that, instead of reading and writing to a real
disk, sends messages across the network to the RVD server which does the actual reads
and writes.

There are a number of uses for the function provided by RVD. Most important, the
disk made available through RVD can be shared, thus providing a mechanism for
distribution of software, especially making a large library of tools available to a
community. In this use, an RVD disk strongly resembles the virtual minidisk provided
by the VM/370 operating system[7]. (Note, however, that if sharing is the primary goal,
sharing at the physical disk block level is not as flexible as sharing at the logical file
level. Remote file system protocols have been the subject of much research and
development activity lately.[8,9])

A simple but helpful use of the RVD disks is as an extension to the private disk
storage of the individual machine. The economics of large and small disks is currently
such that one has only a modest price advantage over the other, but the functional
advantage of RVD is threefold. First, any RVD disk can be available to every PC on the
net, so in contrast to the permanently attached Winchester disk, the file stored on an
RVD disk can still be reached if one's private PC is down, by walking down the hall and
finding another network-attached PC. Second, since the RVD disks are actually
partitions of centrally-located large disks, one can arrange for a central operations staff
to make backup copies of the information stored on RVD disks. The need to make
backup copies of information stored on private Winchester disks has proven to be one of
the operational headaches of those devices; with RVD the headaches can be
subcontracted to someone else. Third, the effective data rate of the RVD disk is
comparable to a local hard disk and substantially better than that of a floppy disk.
Large block transfers using RVD take place across the Ethernet at about 240 kbit/s.

PCIP paper Prepublication version of January 18, 1985 Page 6

The PC environment

Development of a network implementation for the PC required that a number of
choices be made, both in the development environment and in the programming
environment. This section describes those choices. The development environment,
while it entailed difficult choices, did not involve any new ideas or breakthroughs.
Programming was done on a microcomputer development system that runs on a nearby
UNIX time-sharing system. That approach was used rather than doing the
programming entirely on the PC because in 1981, when the choice was made, very little
support software (editors, choice of compilers, library managers) was yet available to
run on the PC. The programming was done in the C language, with the choice again
based primarily on the combination of compiler and assembler availability. It was
apparent that some assembly language programming would be required, and the only
assembler that we could locate for the PC at the time was one that came as part of an
integrated C compiler/assembler/loader package.

The programming environment used was the IBM DOS operating system[10].
This choice was easier than it might have appeared: all of the operating system
alternatives provided very little support for the kinds of operations needed to do a
network protocol implementation, so all required that support to be added. Thus the
choice was made on predicted ubiquity, on which point DOS appeared strongest. The
primary run-time facility added was a tasking and timer management package that
permits as many parallel tasks as necessary to operate within a single address space.
For simplicity, the tasking package runs each task to completion (either "block,"
awaiting a wakeup, or "yield," allowing other tasks to run) using a round robin
scheduler.

The combination of the development environment and programming environment
required one bootstrapping program to be constructed_an RS-232 port file-copying
program for the PC that could take a file being pushed at it by UNIX and store it in the
PC file system. The development environment on UNIX produced loaded, ready-to-run
command files; the bootstrap provided a way of getting those command files into the PC
for execution. The first real network program developed was one that implemented a
standard file transfer protocol, and as soon as that program was operational the
bootstrap was no longer needed[11].

PCIP over asynchronous serial ports

When the IBM PC was first announced there was no local area network interface
available for it, but several manufacturers seemed intent on supplying them within a
year or so. Rather than building a piece of special hardware that would be soon
discarded, we opted to use the PC's asynchronous serial port as a temporary substitute.
To connect the asynchronous serial port to an existing local area network, a token ring,
we configured a Digital Equipment Corporation LSI-11 to contain both a token ring
network interface and a small number of asynchronous serial ports. This LSI-11 came
to be known as the PC-Gateway. The PC-Gateway was programmed to treat the set of

PCIP paper Prepublication version of January 18, 1985 Page 7

asynchronous ports as a local network, and to act as a packet-forwarding gateway
between that local network and the token ring. When the PC was ready to send a
packet of data, it merely sent the packet as a sequence of 8-bit bytes over the
asynchronous port. This approach made the combination of the asynchronous port
driver, the port, the serial line, and the PC-Gateway a unit that could later be replaced
by a local network driver and a network hardware interface.

There were two useful results from the PC-Gateway. First, it permitted
substantial progress to be made in implementing and polishing the network code for the
PC. When local network hardware did become available for the PC, the only software
effort was to replace the asynchronous port driver with a network interface driver.
Second, it turned out to be surprising useful, and was not discarded when network
interfaces arrived. Instead, dial-up modems were attached to unused asynchronous
ports of the PC-Gateway to permit people who had PC's at home to connect to the
network using telephone lines.

There was mixed success with the PC gateway using asynchronous lines. On a
9.6 kbit/s line, there was no major problem in performing either file transfers or using
remote login, even with character-at-a-time remote echo. On a 1.2 kbit/s dial-up
telephone line, file transfers were reasonably successful. (Sometimes the transmission
time involved in sending a long packet over a 1.2 kbit/s line would cause the remote
system to time out and abort the file transfer. Eventually, most other implementations
learned to be patient enough to tolerate telephone-line transfers.) For remote login to
time-sharing systems that work in character-at-a-time remote echo mode, each time the
user typed a character, a packet in excess of 25 bytes was transmitted over the low-
speed line. It was thus very easy for a fast typist to saturate the connection to the PC-
Gateway, and echoing fell far behind the typist.

The problem of low-speed line saturation in one-character-per packet node could
have been overcome by employing data compression. Many of the bytes in each packet
of a TCP connection are likely to be identical to those of the previous packet. An
algorithm was discussed, but never implemented, to take advantage of this observation
and transmit only the differences between the current packet and the previously
transmitted packet. Compression was never implemented because the arrival of high-
speed local area network interfaces reduced demand for remote login over 1.2 kbit/s
lines. However, if the effort had been undertaken to increase performance on 1.2 kbit/s
telephone lines we believe that it would have been technically feasible.

One of the lessons learned from implementing the PC-Gateway was that a dial-up
packet forwarder opens a new world of opportunities when compared with a dial-up
terminal concentrator. When only terminal concentrator ports are available, files are
usually transferred between mainframe computers and PC's using one of several
embedded protocols such as KERMIT, developed at Columbia University[12]. One of
the problems with such embedded protocols is that there are several different ones, so
the PC and the mainframe may not have one in common. When that is the case, some
staging process must be employed whereby the user first moves the file from its original
site to one that implements the same protocol available on the PC, and then transfers
the file over the asynchronous connection. In contrast, the PC-gateway allowed
implementation of a standard network file transfer protocol (TFTP) on the PC itself,
which made file transfer immediately usable with all the other network participants.

PCIP paper Prepublication version of January 18, 1985 Page 8

But even more important, all other network services, such as node name resolution,
time-of-day service, etc., become available to the PC, and the PC can respond to
requests initiated by other systems, inquiring about presence, identity, existence of
files, etc.

There is no reason why both terminal concentration and packet forwarding cannot
be provided on a single port. Our advice to future implementors of network terminal
concentrators is to provide an escape mechanism so that a PC can directly send and
receive network packets carrying any protocol the PC finds useful. This escape can give
the PC the opportunity to make fuller use of the network possibilities.

Tailoring the implementation to the environment

There are a few characteristics of desktop computer operation that are quite
different from mainframe operation, and these characteristics affect the way in which
the network is integrated with the system. The most important of these is that the
desktop computer is often_perhaps usually_not "on the network". When not in use, a
desktop computer is often powered off, perhaps to reduce the noise and heat in the
office in which it is located. Even when powered on, one cannot expect the network
software to be always in operation. Some desktop computer application software
packages operate by taking over the entire machine, sometimes to prevent pirate copies
of the program from being made and sometimes simply because they require every
scrap of memory in order to perform usably.

Thus the software in the personal computer cannot expect to maintain a
continuous record of the state of the network; instead it must be organized so that it
can quickly discover whatever state it needs when it is called into operation. To cope
with the "normally-off-the-network" paradigm of operation, the various PCIP programs
do not attempt to retain any discovered network information at all for the use of the
next program that may use the network. Because one has no idea what other
application program may run between two network programs, the up-to-dateness and
integrity of any state variable stored in primary memory is questionable, and it is safer
to rediscover the network information rather than to depend on a stored value. Thus if
one initiates a file transfer with another site, such facts as the round trip time to that
site, its network address, and the Ethernet address of an intervening gateway are all
discovered, used during the transfer, and then discarded. If the next command to be
typed is another file transfer to the same site the listed facts are all rediscovered again.
This approach, while perhaps seeming wasteful, actually costs quite little and has a
very large payoff in improved reliability of the network software. In contrast with our
experience with other network implementations that maintain network state
continuously, in PCIP one almost never encounters the situation in which anomolous
behavior (caused by recorded state getting out of step with real state) leads to a need to
reboot the system or explicitly reinitialize the network code to get it working again.
(However, all is not roses. Because there is no protection between supervisor and user
in the PC, bugs in either the network code or in a user application can cause a system
crash, requiring a reboot to recover. During application programming such crashes are

PCIP paper Prepublication version of January 18, 1985 Page 9

fairly common, providing another reason why one cannot depend on maintaining
network state records.)

Another aspect of this expectation of frequent detachment from the network is
that the PC network implementation makes no attempt at all to maintain a table of
(user oriented, character-string) names of other nodes and their network addresses.
Keeping such a table in step with the name tables in nodes that are always online (and
which depend on that usual onlineness in informing one another of changes) would be a
major challenge. So instead the PC depends on the availability of node name
translation services provided by many of the always-online network systems.

A related problem is that the network software must be able to discover quickly
environment parameters (such as network addresses of nearby gateways and other
servers or the number of the network to which it is attached) rather than expecting that
the user types them in each time when a network program is used. To provide such
environment parameters, the PCIP implementation uses a trick: A piece of code is
installed as a DOS device driver, but this piece of code does not actually control a real
device. Instead, calls to read from this device cause the code to send back a stream of
environment information, in a standard format. Every PCIP program knows how to
interpret this stream, and thereby has a quick way of discovering the facts about the
environment it needs. A customization program allows the application user to set up
this pseudo device driver. Using a pseudo device driver provides this information much
more rapidly than reading a file, and it is far easier to change as compared with the
alternative of assembling the information in as constants of the programs. (The DOS
2.0 environment variable feature in principle provides an equally good way to do this
job, but unfortunately the space allocated by DOS for environment variables was
insufficient.)

Tailoring the implementation to the application

Perhaps the most interesting strategy used by the PCIP software to obtain good
performance in a small machine is the tailoring of the network implementation to
match the application that will use it. There are several examples of this tailoring that
illustrate the idea. The primary examples are in the implementation of the end-to-end
transport protocol, TCP. This implementation was designed to work optimally with
only one application protocol, the "User Telnet" remote login protocol[13]. The idea of
tailoring is that the knowledge that the only application is remote login should guide
implementation decisions in the transport protocol.

Some of the decisions simply relate to how much standard TCP function to
implement. The PC TCP can only originate connections; no provision was made for
other nodes to make connections to the PC, because that feature is not needed by User
Telnet. Similarly, PC TCP can maintain only one connection at a time, because User
Telnet requires only one connection. A substantial amount of table management code is
thus unneeded.

PCIP paper Prepublication version of January 18, 1985 Page 10

TCP includes a sliding window for flow control. The PC TCP simply ignores the
window values sent to it by the remote login server, because when it is used for remote
login, the only data sent to the login service is that typed by a person at a keyboard,
and that data rate is almost certain to be lower than the rate that the service can
accept data. (If once in a great while the service falls behind so far that the typist gets
ahead of the offered window, no loss of data occurs—the login service simply stops
acknowledging the data, and the PC TCP has for error control a timeout-resend
strategy that retries until the service catches up.) The simplicity that results from
ignoring windows makes the code both smaller and faster.

To minimize copying of data and space occupied by packet buffers, the TCP send
function is tailored in another way with the knowledge that data comes from a typist.
Only one packet buffer is provided for output data, and this packet buffer is set up with
certain fields, such as the source and destination addresses, precalculated, since they
never change. When the user types a character, Telnet calls the TCP send function
with the character as the argument, and send merely drops the character into the
precalculated packet buffer, adjusts any remaining fields, and calls the local network
driver with a pointer to the packet buffer. Because the output is to a high-speed local
area network the network driver will complete the dispatch of the packet before
returning to TCP. It is thus safe for TCP to assume that it now has control of, and can
change the contents of the output buffer. If the user types another character before the
login service acknowledges the earlier one, Telnet calls TCP as usual, but TCP's send
function simply slips this new character into the same packet buffer following the
earlier character, and dispatches this packet containing, now, two characters. If the
earlier packet is lost in transit (and thus no acknowledgement of it ever comes back
from the service) this new two-character packet will act as the resend.

This technique of adding characters to the output packet buffer as they are typed
has a limit, of course; if the typist fills the packet buffer (500 characters, which allows
at least 30 seconds of frantic typing) before the remote service acknowledges the first
character typed the typist must be asked to stop; the TCP send function simply returns
an error condition to Telnet when the single packet buffer is full, and Telnet notifies the
typist to desist. This situation occurs very rarely in practice. Normally, the remote
service receives a packet and sends back an acknowledgement of the oldest typed
characters. The PC TCP, upon seeing that acknowledgement, adjusts the characters in
the output packet buffer by sliding them back so that the first unacknowledged
character is first in the output buffer. Usually, the acknowledgement is for all the
outstanding data, and no copying occurs at all.

This whole collection of techniques of output buffer management reduces path
length, buffer space, and packet copying, but all of them depend on the knowledge that
the send function will be used in a particular way. If one tried to use this tailored TCP
to send a file consisting of many large blocks of data, its performance would be very
poor. It might overrun the file server, because it ignores that server's flow control
windows, leading to many unnecessary retransmissions. It could accept only one
packet of data to be sent at a time, because it has only one packet buffer, and it cannot
reuse that buffer until acknowledgement comes from the other end that the receiver
has accepted the data. There would be much time spent copying the large blocks of
data from one end of the packet buffer to the other as acknowledgements came back.
And, finally, the implementor of the file transfer program would find that the TCP send

PCIP paper Prepublication version of January 18, 1985 Page 11

interface accepts only one byte on each call, so sending a block of data would require an
inefficient repeated call loop.

For data flowing to the PC, a completely different set of considerations holds. In
this direction, the PC TCP implements flow control windows because it can be overrun
by an active, high-powered time-sharing system. However, there are still opportunities
for tailoring the implementation.

The most serious problem with incoming data is not just that it arrives too fast,
but that in the ARPANET some servers sometimes transmit a separate packet for each
byte of data they send. Since the TCP window controls the number of outstanding
bytes rather than the number of outstanding packets, the window does not prevent a
flood of packets if the data is being sent in this very inefficient way. The problem shows
up if the PC cannot keep up with the rate of arriving packets; fairly soon a packet gets
missed and thus not acknowledged. The sending site eventually times out and resends,
starting with the missed packet. The time-out shows up as a noticeable pause in the
flow of data to the user's screen. The PC TCP required a special buffering scheme to
deal with a large number of arriving small packets. Since running a complete terminal
emulator is actually more time-consuming than processing incoming packets, the PC
emulator is permitted to handle only a few bytes at a time before returning to the TCP
level to see if more packets have come in. This strategy permits as much processor time
as possible to be allocated to packet handling. (As described in the next section, the PC
terminal emulator is invoked by an "upcall" from TCP, so limiting it is actually quite
easy_TCP simply calls the emulator with an argument consisting of the number of
characters it thinks the emulator can handle.)

This implicit flow control mechanism between the emulator and TCP replaces the
more general explicit flow control system that would have to be implemented if TCP
had been designed to cope with arbitrary client protocols including, for example, file
transfer.

At least one more, minor opportunity for tailoring exists in this direction. Since
the customer application is remote login, it is a good bet that the largest quantity of
data that will ever arrive in a single burst over a connection from the remote login
service is one screen full, a predictably finite amount of data. Thus TCP input buffers
and window size need be provided just for this amount and no more. If an ambitious
server process aspires to send more than one screenful of data in a burst, the window
mechanism acts as a throttle. In the most common case everything proceeds smoothly
and optimally and the window is not a limit. In an unusual case performance may
suffer but no data is lost.

Upcalls

The combination of the tasking package and the C language features of static
storage and procedure variables are used extensively throughout the network
implementation in a style of programming known locally as "upcall/downcall". (In some
of the more recently developed window management systems, and the Pilot file system,

PCIP paper Prepublication version of January 18, 1985 Page 12

the same style of programming is sometimes known as "callback"[14].) In this style of
programming, some tasks are waiting for events at "high" levels, for example in
application programs. When an event occurs the application program operates by
calling "down" to lower level network implementation programs. This is the usual style
of programming of operating systems. However, other tasks wait for signals at low
levels, inside network driver programs, for example. When a signal starts them,
perhaps because a packet has arrived, they operate by handling the packet operations
at their level, and then calling "up" to higher levels of network protocol and eventually
"up" to the application.

The denotation "up" and "down" can be misleading, because a call "up" can lead to
a call "down" as part of its implementation. For example, the arrival of a packet may
result in an upcall to dispose of the packet, and during that upcall one or more
downcalls to send acknowledgements, flow control messages, or an application-level
response.

Figure two illustrates in a simplified example the use of this organization in the
implementation of the Telnet remote login protocol. In that figure, in the left column,
the top level application program creates a parallel task (in the right column) to handle
arriving packets using upcalls. The top level program proceeds to initialize static
procedure variables in anticipation of upcalls at the several network protocol levels.
The main task then concentrates on sending typed characters to the remote server.
Meanwhile, in the right column, all packets coming from the remote server are noticed
at a low level by the network driver, which calls upward, using the previously
initialized tables of procedure variables, eventually reaching the screen display
procedure of the terminal emulator. Although the actual programs are complicated by
error conditions, the basic flow of control illustrated in this figure is complete and,
relative to other implementations we have seen, quite simple[15].

The upcall/downcall programming style, together with a tasking package that
allows several tasks to operate within a single address space is the primary set of tools
used to gain leverage against the third performance-draining effect mentioned
earlier_that the current generation of operating systems doesn't provide agile,
lightweight support for the parallel operations that are required to run a network
implementation. An upcall also provides a natural way for a network implementation
layer to receive data from below and pass it up higher without having to copy it just to
insure that it doesn't get deallocated by the lower level. Thus some leverage is also
obtained against the first performance-draining effect_too much buffering at protocol
layer boundaries. Another example of the simplifying effect of upcalls was mentioned
in the previous section, which described their use to provide implicit flow control
between TCP and Telnet.

Getting around DOS

The implementation of the Remote Virtual Disk protocol for the PC was an
interesting exercise. The DOS operating system has a provision for user-installed disk
drivers, so there was an obvious place to integrate the RVD interface. However, the

PCIP paper Prepublication version of January 18, 1985 Page 13

RVD driver is rather different from most drivers; since it implements a network
protocol inside, it contains all the support tools we implemented for the other protocol
packages, including our tasking scheduler and our timer manager. Since PC DOS is not
designed to be re-entrant, the driver cannot call on DOS for any services, so it must re-
create any DOS functions it needs. The resulting exercise causes the implementer of
RVD to stand on his head to get some things done, and produces a device driver for
DOS with considerably more sophisticated operating system features than DOS itself.

There was one limitation imposed by DOS that we have not yet tried to
circumvent. Since the network package for RVD was hidden inside what DOS thought
was a disk driver, that network package was not available for use by other applications.
Since only one driver can control the physical network interface at a time, no other
network application could use RVD service. This limitation meant that, for example,
one could not use the file transfer protocol to move a file to or from an RVD disk. Such
transfers currently require a two-stage operation, moving the file via a disk physically
at the local PC and copying it from there to or from the RVD disk. Removing this
restriction could be done by adding an ad hoc communication path directly from the
application to the RVD package, a path that a more flexible operating system might
have provided.

Our experience with RVD clearly showed that the PC had enough power to
support this kind of protocol, and that such a feature could be very helpful. Even with
its limitations, RVD is in wide use in our laboratory. However, the limitations of DOS
2.0 increased the difficulty of this project, and reduced somewhat the value of the final
service. Fortunately, this sort of limitation seems to be going away as the creators of
operating systems expand their vision of the capabilities of a PC class machine. For
example, in a UNIX-based operating system such as XENIX or PCIX, the restriction on
RVD use by other network applications would not be necessary.2

On size and scale

While the CPU of the PC can access 1 mbyte of memory, all of the PCIP packages
can operate in a 128 kbyte configuration. (This small size was fortunate, because it
happened that the available C compiler used a "small memory model", limiting one
loaded program to 64 kbytes of code and 64 kbytes of data.) The individual packages
are relatively small; combined they easily meet this constraint. Consider the
decomposition of the code space of the file transfer package, TFTP:

 TFTP user and server 7650 bytes
 UDP 2812
 IP 4614
 ethernet driver 5744
 network common library 1198
 timer and tasking package 2314

PCIP paper Prepublication version of January 18, 1985 Page 14

2 UNIX is a trademark of AT&T. XENIX is a trademark of MicroSoft Corporation.
PCIX is a trademark of Interactive Systems Corporation.

 C run time support 7569
 total 31901 bytes

The largest, most complex package is the Telnet command. It uses TCP and UDP
(for name resolution) and contains a TFTP server. This command consists of the
modules above, plus:

 Telnet 7392 bytes
 TCP 5946
 total 45339 bytes

The size of Telnet includes the size of the screen manager as well as the protocol
implementation. Notice that Telnet and TCP are individually the most complex modules
implemented.

An interesting observation about the scale of a network package for a personal
computer comes from examination of a typical package, the one that does file transfer.
The implementation of TFTP user and server is done in three C language programs and
one C language "include" file, of common data structure definitions. That set of
programs implements just the box labeled "Trivial File Transfer" in figure one. These C
programs together total about 1020 lines of code (excluding comments,) of which about
450 lines implement the main stream of the protocol, 505 lines handle error conditions,
and 65 were provided as aids for debugging. The 50% figure for handling error
conditions in our experience is typical for network code that is intended to be
reasonably robust. A similar fraction was noted by Clark in his implementation of the
TFTP protocol in PL/I for the Multics system. Probably much more than half the
intellectual effort of design and debugging went into that part of the code, since it tends
to involve untangling of things that didn't go right, rather than straightforwardly
moving on to the next step of the protocol. The 1000-line figure for TFTP as a whole
indicates that the overall size of network packages is well within the capability of a
desktop computer.

The lesson to be drawn from all these numbers is that with proper system
support, good organization, and attention to the client being supported, a network
protocol package need not be a large module.

When we examine the performance of the programs, we find that the bottlenecks
are not in the protocol implementations themselves, but in resources the applications
utilize. The code wasn't written with great concern for performance because it was
expected that the bottlenecks would be found outside of the protocol implementations.
The low cost of context switching and few data copies allow fast transfer of data
through the protocol layers. For instance, TFTP writing to a floppy disk frequently
achieves an end-to-end useful data rate of 13 kbit/s, about the writing speed of the
floppy disk. With a Winchester disk, TFTP can transfer data over the network at a rate
of about 55 kbit/s, again about the writing speed (for small blocks) of the disk drive
itself. When tests are done in which TFTP discards data as soon as it is received,
network transfers run as fast as 110 kbit/s. Thus the bottlenecks in file transfer seem
to be the disk systems, and improvements that we might make to the protocol
implementation would not substantially alter the transfer rates achieved.

PCIP paper Prepublication version of January 18, 1985 Page 15

A second example is Telnet. Monitoring shows that it spends 50% of its processing
time in the Heath H19 terminal emulator. Another 30% is spent idle, waiting for
something to do. For a real performance breakthrough in Telnet, the terminal emulator
would have to be improved, rather than the IP or TCP implementation. While some
speed could be gained by small changes to the TCP implementation, the terminal
emulator is the real bottleneck.

Conclusions

In the beginning of this paper, we identified three problems that can beset the
implementor of network protocols:

1) The architected layer structure of the protocol can prove unsuitable as a
structuring technique for the implementation.

2) An implementation that attempts to serve several clients may either be very
complex or provide poor performance to some or all clients.

3) The operating system chosen may provide poor support for the needed program
structure.

The impact of these problems is that a full implementation of a protocol suite
tends to be sufficiently bulky and slow that a realization inside a personal computer
seems impractical. We have shown to our satisfaction that this need not be so. We
produced a running and useful implementation that is consistent with the speed and
size of an IBM PC, by identifying and using techniques that directly combat the
problems identified above.

To avoid the excessive interfacing code that results from classical layering, we
used an interface technique, upcalls, that put the asynchronous boundaries in the
implementation only where they are needed. Subroutine calls, always more efficient
than process switches, are used wherever possible.

To combat the high cost of generality, we abandoned it wherever abandonment
really seemed to pay off. Instead of producing a virtual circuit protocol that attempted
good performance for all clients, we tailored the implementation to remote login.
Compared to other implementations of more generality that we have examined, this
code was substantially smaller and simpler to produce.

To solve the problem of an unsuitable operating system, we provided fragments of
our own, as part of the network code. This kind of replacement is not always possible,
but in this case it both proved the benefit of proper system support for protocols, and
demonstrated the flexibility of the programming environment of the PC.

We feel very strongly that it is a good approach to produce implementations that
are tailored to specific clients, as opposed to more general implementations. The
drawback of this technique is that if several clients are to be supported, it is necessary

PCIP paper Prepublication version of January 18, 1985 Page 16

to produce several different implementations of the support program, which produces
unwelcome increases in maintenance costs. In other projects we have done this sort of
multiple implementation, and do not feel that the development effort is substantial.
Many parts of the implementation, such as the protocol state machine, can be reused.
To help control the maintenance cost, we are now exploring different modularity
techniques in which the protocol state machine for a layer is implemented as a general
module, while the data flow paths are supplied by each client, using a standard
interface.

Acknowledgements

The implementation of the programs described here was supported by the IBM
Corporation in a general grant for computer science research at M.I.T. Many of the
ideas were borrowed, and some of the code was ported, from projects supported at
M.I.T. by the Defense Advanced Research Projects Agency. The first implementation of
TFTP was accomplished by Karl Wright, and the initial implementation of Telnet was
done by Louis Konopelski. David Bridgham wrote the terminal emulator used in Telnet.
Chris Terman kindly supplied the C-language development system. Several early users,
including especially Fernando Corbato and Robert Iannucci, acted as uncomplaining
guinea pigs while the network code was being debugged. Finally, one of the anonymous
referees of this paper provided extensive comments of unusual depth and insight.

References

1. ---, Internet Protocol Transition Workbook, SRI International, Network Information
Center, Menlo Park, CA, March, 1982.

2. ---, Internet Protocol Implementation Guide, SRI International, Network Information
Center, Menlo Park, CA, August, 1982.

3. Cooper, G. H., "An Argument for Soft Layering of Protocols," Massachusetts
Institute of Technology, Department of Electrical Engineering and Computer Science
S.M. thesis, May, 1983. Available as M.I.T. Laboratory for Computer Science
Technical Report, TR-300, May, 1983.

4. ---, "Heathkit Manual for the Video Terminal, Model H19," Heath Company, Benton
Harbor, Michigan, 1979.

5. Saltzer, J. H., "PC/IP User's Guide," M.I.T. Laboratory for Computer Science,
December, 1984.

6. Greenwald, M., "Remote Virtual Disk Protocol Specifications," Technical
Memorandum, Massachusetts Institute of Technology Laboratory for Computer
Science, Cambridge, MA. In Preparation.

PCIP paper Prepublication version of January 18, 1985 Page 17

7. Seawright, L. H. and MacKinnon, R. A., "VM/370--A Study of Multiplicity and
Usefulness," IBM Systems Journal 19, 1, 1979, pp. 4-17.

8. Laselle, J., et al., "EtherShare User's Guide," 3COM Corp., Mountain View, CA,
July, 1983.

9. Goldstein, B.C., et al., "Directions in Cooperative Processing Between Workstations
and Hosts," IBM Systems Journal 23, 3 (1984) pp. 236-244.

10. Microsoft, Inc., Disk Operating System, Version 2.0, IBM Corporation, Boca Raton,
Fla., January, 1983.

11. Wright, Karl D., "A File Transfer Program for a Personal Computer," Massachusetts
Institute of Technology, Department of Electrical Engineering and Computer Science
S.B. thesis, April, 1982. Available as M.I.T. Laboratory for Computer Science
Technical Memorandum, TM-217, April, 1982.

12. DaCruz, F. and Catchings, B., "KERMIT: A File-Transfer Protocol for Universities,"
BYTE 9, 6 (June, 1984) pp. 255-278.

13. Konopelski, Louis J., "Implementing Internet Remote Login on a Personal
Computer," Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science S.B. thesis, December, 1982. Available as M.I.T.
Laboratory for Computer Science Technical Memorandum, TM-233, December, 1982.

14. Reid, L. R., and Karlton, P. L., "A File System Supporting Cooperation Between
Programs," ACM Operating Systems Review 17, 5, October, 1983. pp. 20-29.

15. Romkey, J. L., "IBM PC Network Programmer's Manual," M.I.T. Laboratory for
Computer Science, December, 1984.

PCIP paper Prepublication version of January 18, 1985 Page 18

PCIP paper Prepublication version of January 18, 1985 Page 19

PCIP paper Prepublication version of January 18, 1985 Page 20

Jerome H. Saltzer: Biographical Note

Jerome H. Saltzer was born in Nampa, Idaho, on October 9, 1939. He received the
degrees of S.B. in 1961, S.M. in 1963, and Sc.D. in 1966, from the Massachusetts
Institute of Technology, all in Electrical Engineering.

Since 1966, he has been a faculty member of the Department of Electrical
Engineering and Computer Science, M.I.T., where he has been active in the formulation
of the undergraduate curriculum in Computer Science, including development of the
core subject on the engineering of computer systems. At the M.I.T. Laboratory for
Computer Science he participated in the refinement of the Compatible Time-Sharing
System (CTSS) and then was involved in all aspects of the design and implementation
of the Multiplexed Information and Computing Service (Multics). More recently, his
research activities have involved the connection of computers with communication
systems, including the design of a token-passing ring local network, exploration of the
problems of high-performance protocol implementations, and interenterprise
connection. He is Technical Director of M.I.T. Project Athena, using networked desktop
computers to improve undergraduate science and engineering education.

Professor Saltzer is a Fellow of IEEE, and a member of ACM, AAAS, Sigma Xi,
Eta Kappa Nu, and Tau Beta Pi.

David D. Clark: Biographical Note

Dr. David D. Clark, Senior Research Scientist, at the M.I.T. Laboratory for
Computer Science received the B.S.E.E. degree with distinction from Swarthmore
College, Swarthmore, PA in 1966, the S.M. and E.E. degrees, in 1968, and the Ph.D.
degree in 1973, from the Massachusetts Institute of Technology, Cambridge, MA.

Since 1967 he has been associated with the Laboratory for Computer Science at
M.I.T., where he is currently a Senior Research Scientist in the Distributed Computer
Systems group. His first activities at M.I.T. were a variety of projects related to the
development of the Multics operating system, including design of an I/O system and a
programming language for system implementation. He has been a participant in the
development of the ARPANET during the last ten years, and is currently chief protocol
architect for the DARPA Internet project, which is developing standards for
Department of Defense networking. His current research effort is the development of
efficient network protocols and computer operating systems suitable for use with high
speed local area networks.

Dr. Clark is a member of the IEEE, ACM, and Sigma Xi.

PCIP paper Prepublication version of January 18, 1985 Page 21

John Romkey: Biographical Note

Mr. John Romkey is currently a senior in the Electrical Engineering and
Computer Science Department at the Massachusetts Institute of Technology and
expects to receive his B.S. in June, 1985. He began working on a TCP/IP
implementation with Professor Jerome Saltzer in January, 1982, and is currently
working on a distributed mail system with Dr. David Clark.

Wayne C. Gramlich: Biographical Note

Mr. Wayne C. Gramlich received his B.S. degree in Electrical Engineering and
Mathematics, with honors, in 1979 from Carnegie-Mellon University. He also received
his M.S. degree from Carnegie-Mellon in Electrical Engineering with the Computer
Engineering Option.

In 1979 Mr. Gramlich entered the graduate school at the Massachusetts Institute
of Technology working towards a Ph.D. in ELectrical Engineering and Computer
Science. His work has been in the areas of computer networks, personal computers,
and distributed systems. Mr. Gramlich's unfinished Ph.D. dissertation is entitled
"Checkpoint Debugging."

Mr. Gramlich currently works for Sun Microsystems in the area of programming
environments.

His hobbies include programming his personal computer, building electronic
projects, reading science fiction, woodworking, metalworking and amateur rocketry.

Authors and Affiliations

Professor Jerome H. Saltzer
 Massachusetts Institute of Technology
 Laboratory for Computer Science
 545 Technology Square, NE43-513
 Cambridge, MA 02139

Dr. David D. Clark
 Massachusetts Institute of Technology
 Laboratory for Computer Science
 545 Technology Square, NE43-540
 Cambridge, MA 02139

Mr. John L. Romkey
 Massachusetts Institute of Technology
 Laboratory for Computer Science
 545 Technology Square, NE43-503

PCIP paper Prepublication version of January 18, 1985 Page 22

 Cambridge, MA 02139

Mr. Wayne C. Gramlich
Address when the work reported in this paper was reported:
 Massachusetts Institute of Technology
 Laboratory for Computer Science
 545 Technology Square, NE43-511
 Cambridge, MA 02139

Current address:
 Sun Microsystems, Inc.
 2550 Garcia Avenue
 Mountain View, CA 94043]

PCIP paper Prepublication version of January 18, 1985 Page 23

