
 REMOTE TERMINAL CHARACTER STREAM PROCESSING IN MULTICS

 by

 J. H. Saltzer
 Massachusetts Institute of Technology
 Project MAC; and
 Department o£ Electrical Engineering
 Cambridge, Massachusetts

 and

 J. F, Ossanna
 Bell Telephone Laboratories Incorporated
 Murray Hill, New Jersey

 March 10. 1970

 PREPRINT

 This is a preprint of a paper to be delivered at the
 1970 Spring Joint Computer Conference, in Atlantic City,
 New Jersey, May 5-7, 1970.

This paper was originally prepared off-line. This M0121
file is the result of scanning an original paper
copy, followed by OCR and manual touchup.

 REMOTE TERMINAL CHARACTER STREAM PROCESSING IN MULTICS

 by

 J. H. Saltzer and J. F. Ossanna

 ABSTRACT

 This paper describes system design and human engineering con-

siderations pertinent to the processing of the character stream between

a remote terminal and a general-purpose, interactive computer system.

 The Multics system is used to provide examples of: terminal

escape conventions which permit input of a full character set from a

limited terminal, single character editing for minor typing mistakes,

and reformatting of input text to produce a canonical stored form.

 A formal description of the Multics canonical form for stored

character strings appears in an appendix.

March 10, 1970

Introduction

 There are a variety of considerations which are pertinent to the

design of the interface between programs and typewriter-class remote

terminal devices in a general-purpose time-sharing system. The con-

ventions used for editing, converting, and reduction to canonical form of the

stream of characters passing to and from remote terminals is the subject

of this paper. The particular techniques used in the Multics* system

are presented, as an example of a single unified design of the entire

character stream processing interface. The sections which follow contain

discussion of character set considerations, character stream processing

objectives, character stream reduction to canonical form, line and print

position deletion, and other interface problems. An appendix gives a

formal description of the canonical form for stored character strings used
in Multics.
Character set considerations

 Although for many years computer specialists have been willing

to accept whatever miscellaneous collection of characters and codes

their syatems were delivered with, and to invent ingenious compromises

when designing the syntax of programming languages, the impact of today's

computer system is felt far beyond the specialist, and computer printout

is (or should be) received by many who have neither time nor patience

to decode information printed with inadequate graphic versatility. Report

generation has, for some time, been a routine function. Recently,

on-line documentation aids, such as RUNOFF [3], Datatext (IBM Corp.) or

RAES (General Electric Co.) have attracted many users. Especially for

•Multics is a comprehensive genera1 purpose time-sharing system implemented
on the General Electric 645 computer system. A general description of
Multics can be found in reference [1] or [2].

Saltzer & Ossanna: Character Stream Processing -2-

the latter examples it is essential to have a character set encompassing

both upper and lower case letters. Modern programming languages can

certainly benefit from availability of a variety of special characters

as syntactic delimiters, the ingenuity of PL/I in using a small set

notwithstanding.

 Probably the minimum character set acceptable today is one like

the USASCII 128-character set [4] or IBM'S EBCDIC set

with the provision that they be fully supported by upper/lower case

printer and terminal hardware. The definition of support of a character

set is almost as important as the fact of support. To be fully useful,

one should be able to use the same full character set in composing program

or data files, in literal character strings of a programming language,

in arguments of calls to the supervisor and to library routines requiring

symbolic names, as embedded character strings in program linkage information,

and in input and output to typewriters, displays, printers, and cards.

However, it may be necessary to place conversion packages in the path to

and from some devices since it is rare to find that all the different

hardware devices attached to a system use the same character set and character codes.

Character stream processing considerations

 The treatment of character stream input and output may be degraded,

from a human engineering point of view, unless it is tempered by the

following two considerations:

 1. If a computer system supports a variety of terminal devices

 (Multics, for example, supports both the IBM Model 2741 [5]

 and the Teletype Model 37 [6]) then it should be possible

 to work with any program from any terminal.

Saltzer & Ossanna: Character Stream Processing -3-

 2. It should be possible to determine from the printed page,

 without ambiguity, both what went into the computer pro-

 gram and what the program tried to print out.

 To be fully effective, these two considerations must apply to all

input and output to the system itself (e.g., when logging in, choosing

subsystems, etc.) as well as input and output from user programs, editors,

etc.

 As an example of the "device independence" convention, Multics

uses the USASCII character set in all internal interfaces and provides

standard techniques for dealing with devices which are non-USASCII.

When using the GE-645 USASCII line printer or the Teletype Model 37,

there is no difficulty in accepting any USASCII graphic for input or

output from any user or system program. In order to use non-USASCII

hardware devices, one USASCII graphic (the left slant) is set aside as a

"software escape" character. When a non-USASCII device (say the IBM 2741

typewriter with an EBCDIC print element) is to be used, one first makes

a correspondence, so far as possible, between graphics available on the

device and graphics of USASCII, being sure that some character of the

device corresponds to the software escape character. Thus, for the IBM 2741,

there are 85 obviously corresponding graphics; the EBCDIC overbar, cent

sign, and apostrophe can correspond to the USASCII circumflex, left slant,

and acute accent respectively, leaving the IBM 2741 unable to represent

six USASCII graphic characters. For each of the six missing characters a

two character sequence beginning with the software escape character

is defined, as shown in Table I. The escape character itself, as well

Saltzer & Ossanna: Character Stream Processing -4-

as any illegal character code value, is represented by a four character

sequence, namely the escape character followed by a 3-digit octal repre-

sentation of the character code. Thus, it is possible from an IBM 2741

to easily communicate all the characters in the full USASCII set.

 A similar, though much more painful, set of escape conventions

has been devised for use of the Model 33 and 35 Teletypes. The absence

of upper and lower case distinction on these machines is the principal

obstacle; two printed 2-character escape sequences are used to indicate

that succeeding letters are to be interpreted in a specific case shift.

 Note that consideration number two above, that the printed record

be unambiguous, militates against character set extension conventions

based on non-printing and otherwise unused control characters. Such

conventions inevitably lead to difficulty in debugging, since the printed

record cannot be used as a guide to the way in which the input was inter-

preted.

 The objective of typewriter device independence also has some

implications for control characters. The Multics strategy here is to

choose a small subset of the possible control characters, give them

precise meanings, and attempt to honor those meanings on every device,

by interpretation if necessary. Thus, a "new page" character appears

in the subset; on a Model 37 teletype it is interpreted by issuing a

form feed and a carriage return; on an IBM 2741 it is interpreted by

giving an appropriate number of new line characters.*

 Of the 33 possible USASCI[control characters, 11 are defined

in Multics as shown in Table II.

*This interpretation of the form feed function is consistent with the
International Standards Organization option of interpreting the 1ine-
feed" code as "new line" including carriage return.

Saltzer & Ossanna: Character Stream Processing -5-

 Alternate
ASCII Character ASCII Normal EBCDIC "edited"
 Name Graphic Escape Escape.

Right Square Bracket] ¢>

Left Square Bracket [¢<

Right Brace } ¢)

Left Brace { ¢(

Tilde ~ ¢t

Grave Accent ` ¢'

 TABLE I - Escape conventions for input and output
 of USASCII from an EBCDIC typewriter.

Saltzer & Ossanna: Character Stream Processing -6-

USASCII
NAME

MULTICS
NAME MULTICS MEANING

BEL BEL Sound an audible alarm.

BS BS Backspace. Move carriage back one column.
The backspace implies overstriking rather
than erasure.

HT HT Horizontal Tabulate. Move carriage to
next horizontal tab stop. Default tab
stops are assumed to be at columns 11,
21, 31, 41, etc.

LF NL New Line. Move carriage to left edge
of next line.

SO RRS Red Ribbon Shift.

SI BRS Black Ribbon Shift

VT VT Vertical Tabulate. Move carriage to next
vertical tab stop. Default tab stops are
assumed to be at lines 11, 21, 31, etc.

FF NP New Page. Move carriage to the left
edge of the top of the next page.

DC2 HLF Half-Line Forward Feed.

DC4 HLR Half-Line Reverse Feed.

DEL PAD Padding Character. This character is
discarded when encountered in an output
line.

 TABLE II USASCI Control Characters as Used in Multics

Saltzer & Ossanna: Character Stream Processing -7-

 Red and black shift characters appear in the set because of their

convenience in providing emphasis in comments, both by system and by

user routines. The half-line forward and half-line reverse feed

characters were included to facilitate experimentation with the Model 37

Teletype; these characters are not currently interpretable on other

devices.

 One interesting point is the choice of a "null" or "padding"

character used to fill out strings after the last meaningful character.

By convention, padding characters appearing in an output stream are to be

discarded, either by hardware or software. The USASCII choice of code

value zero for the null character has the interesting side effect that if

an uninitialized string (or random storage area) is unintentionally added

to the output stream, all of the zeros found there will be assumed nulls,

and discarded, possibly leaving no effect at all on the output stream.

Debugging a program in such a situation can be extraordinarily awkward,

since there is no visible evidence that the code manipulating the

offending string was ever encountered.

 In Multics, this problem was considered serious enough that the

USASCII character "delete" (all bits one) was chosen as the padding

character code. The zero code is considered illegal, along with all

other unassigned code values, and is printed in octal whenever encountered.

 As an example of a control function not appearing in the character

set, the printer-on/printer-off function (to allow typing of passwords)

is controlled by a special call which must be inserted before the next

call to read information. This choice is dictated by the need to get back

a status report which indicates that for the currently attached device,

the printer cannot be turned on and off. Such a status report can be

returned as an error code on a special call; there would be no convenient

Saltzer & Ossanna: Character Stream Processing -8-

way to return such status if the function were controlled by a character

in the output stream.*

Canonical Form for Stored Character Strings

 Probably the most significant impact of the constraint that the

printed record be unambiguous is the interaction of that constraint with

the carriage motion control characters of the USASCII and EBCDIC sets.

Although most characters imply "type a character in the current position

and move to the next one," three commonly provided characters, namely

backspace, horizontal tab, and carriage return (no line feed) do cause

ambiguity.

 For example, suppose that one chooses to implement an ALGOL

language in which keywords are underlined. The keyword for may now

be typed in at least a dozen different ways, all with the same printed

result but all with different orders for the individual letters and back-

spaces. It is unreasonable to expect a tranalator to accept a dozen

different, but equivalent, ways of typing every control word; it is

equally unreasonable to require that the typist do his underlining in

a standard way since if he slips, there is no way he can tell from his

printed record (or later protestations of the compiler) what he has done

wrong. A similar dilemma occurs in a manuscript editing system if the

user types in underlined words, and later tries to edit them.

 An answer to this dilemma is to process all character text

entering the system to convert it into a canonical form. For example,

*The initial Multics implementation temporarily uses the character codes
for USASCII ACK and NAK for this purpose, as an implementation expedient.
In addition, a number of additional codes are accepted to permit experi-
mentation with special features of the Model 37 Teletype; these codes may
become standard if the features they trigger appear useful enough to
simulate on all devices.

Saltzer & Ossanna: Character Stream Processing -9-

on a "read" call Multics would return the string:

 <BS>f<BS>o_<BS>r

(where <BS> is the backspace character) as the canonical character string

representation of the printed image of for independently of the way

in which it had been typed. Canonical reduction is accomplished by scanning

across a completed input line, associating a carriage position with each

printed graphic encountered, then sorting the graphics into order by

carriage or print position. When two or more graphics are found in the

same print position, they are placed in order by numerical collating

sequence with backspace characters between. Thus, if two different

streams of characters produce the same printed image, after canonical

reduction they will be represented by the same stored string. Any pro-

gram can thus easily compare two canonical strings to discover if they

produce the same printed image. No restriction is placed on the human

being at his console; he is free to type a non-canonical character stream.

This stream will automatically be converted to the canonical form before

it reaches his program. (There is also an escape hatch for the user

who wants his program to receive the raw input from his typewriter,

unprocessed in any way.)

 Similarly, a typewriter control module is free to rework a

canonical stream for output into a different form if, for example, the

different form happens to print more rapidly or reliably.

 In order to accomplish canonical reduction, it is necessary that the

typewriter control module be able to determine unambiguously what precise

physical motion of the device corresponds to the character stream coming

Saltzer & Ossanna: Character Stream Processing -10-

from or going to it. In particular, it must know the location of physical

tab settings. This requirement places a constraint on devices with movable

tab stops; when the tab stops are moved, the system must be informed of

the new settings.

 The apparent complexity of the Multics canonical form, which is

formally described in Appendix I, is a result of its generality in dealing

with all possible combinations of typewriter carriage motions. Viewed

in the perspective of present day language input to computer systems,

one may observe that many of the alternatives are rarely, if ever, encoun-

tered. In fact for most input, the following three statements, describing

a simplified canonical form, are completely adequate:

 1. A message consists of strings of character positions

 separated by carriage motion.

 2. Carriage motions consist of New Line or Space characters.

 3. Character positions consist of a single graphic or an

 overstruck graphic. A character position representing

 overstrikes contains a graphic, a backspace character, a

 graphic, etc., with the graphics in ascending collating

 sequence.

 Thus we may conclude that for the most part, the canonical stream

will differ little with the raw input stream from which it was derived.

 A strict application of the canonical form as given in Appendix I

has a side effect which has affected its use in Multics. Correct

application leads to replacement of all horizontal tab characters with

space characters in appropriate numbers. If one is creating a file of

Saltzer & Ossanna: Character Stream Processing -11-

tabular information, it is possible that the ambiguity introduced by the

horizontal tab character is in fact desirable; if a short entry at the left

of a line is later expanded, words in that entry move over, but items in

columns to the right of that entry should stay in their original carriage

position; the horizontal tab facilitates expressing this concept. A

similar comment applies to the form feed character.

 The initial Multics implementation allows the horizontal tab

character, if typed, to sneak through the canonical reduction process and

appear in a stored string. A more elegant approach to this problem is

to devise a set of conventions for a text editor which allows one to type

in and edit tabular columns conveniently, even though the information

is stored in strictly canonical form. Since the most common way of storing

a symbolic program is in tabular columns, the need for simple conventions

to handle this situation cannot be ignored.

 It is interesting to note that most format statement interpreters,

such as those commonly implemented for FORTRAN and PL/I, fail to maintain

proper column alignment when handed character strings containing embedded

backspaces, such as names containing over struck accents. For complete

integration of such character strings into a system, one should expand

the notion of character counts to include print position counts as well

as storage position counts. For example, the value returned by a built-in

string length function should be a print position count if the result is

used in formatting output; it should be a storage location count if the

result is used to allocate space in memory.

Saltzer & Ossanna: Character Stream Processing -12-

Line and Print Position Deletion Conventions

 Experience has shown that even with sophisticated editor programs

available, two minimal editing conventions are very useful for human input

to a computer system. These two conventions give the typist these editing

capabilities at the instant he is typing:

 1. Ability to delete the last character or characters typed.

 2. Ability to delete all of the current line typed up to

 this point.

(More complex editing capabilities must also be available, but they

fall in the domain of editing programs which can work with lines previously

typed as well as the current input stream.) By framing these two

editing conventions in the language of the canonical form, it is possible

to preserve the ability to interpret unambiguously a typed line image

despite the fact that editing was required.

 The first editing convention is to reserve one graphic, (in

Multics, the "number" sign), as the erase character. When this cha-

racter appears in a print position, it erases itself and the contents

of the previous print position. If the erase follows simple carriage

motion, the entire carriage motion is erased. Several successive erase

characters will erase an equal number of preceding print positions or

simple carriage motions. Since erase processing occurs after the

transformation to canonical form, there is no ambiguity as to which

print position is erased; the printed line image is always the guide.

Whenever a print position is erased, the carriage motions (if any) on

the two sides of the erased print position are combined into a single

carriage motion.

Saltzer & Ossanna: Character Stream Processing -13-

 The second editing convention reserves another graphic, (in

Multics, the "commercial at" sign) as the kill character. When this

character appears in a print position, the contents of that line up

to and including the kill character are discarded. Again, since the kill

processing occurs after the conversion to canonical form, there can be

no ambiguity about which characters have been discarded. By convention,

kill is done before erase, so that it is not possible to erase a kill

character.

Other Interface Conventions

 Two other conventions which can smooth the human interface on

character stream input and output are worth noting. The first is that

many devices contain special control features such as line feed without

carriage movement, which can be used to speed up printing in special

cases. If the system-supplied terminal control software automatically

does whatever speedups it can identify, the user is not motivated to try

to do them himself and risk dependence on the particular control feature

of the terminal he happens to be working with. For example, the system

can automatically insert tabs (followed by backspaces if necessary)

in place of long strings of spaces, and it also can type centered short

tabular information with line feed and backspace sequences between lines.

 The second convention has been alluded to already. If character

string input is highly processed for routine use, there must be available

an escape by which a program can obtain the raw, unconverted, non-canonical,

and unedited keystrokes of the typist, if it wants to. Only through such

an escape can certain special situations (including experimenting with a

Saltzer & Ossanna: Character Stream Processing -14-

different set of proposed processing conventions) be handled. In

Multics, there are three modes of character handling--normal, raw, and

edited.* The raw mode means no processing whatsoever on input or

output streams, while the normal mode provides character escapes, canonical

reduction, and erase and kill editing. The edited mode (effective only

on output if requested) is designed to produce high quality, clean copy;

every effort is made to avoid using escape conventions. For example,

illegal characters are discarded and graphics not available on the output

device used are typed with the "overstrike" escapes of Table I, or else

left as a blank space so that they may be drawn in by hand.

Conclusions

 The preceding sections have discussed both the background consi-

derations and the design of the Multics remote terminal character stream

interface. Several years of experience in using this interface, first

in a special editor on the 7094 Compatible Time-Sharing System and

more recently as the standard system interface for Multics, have indi-

cated that the design is implementable, usable and effective. Probably

the most important aspect of the design is that the casual user, who

has not yet encountered a problem for which canonical reduction, or character

set escapes, or special character definitions are needed, does not need

to concern himself with these ideas; yet as he expands his programming

objectives to the point where he encounters one of these needs, he finds

that a method has been latently available all along in the standard system

interface.

*The "raw" mode is not yet implemented.

Saltzer & Ossanna: Character Stream Processing -15-

 There should be no assumption that the particular set of conventions

described here is the only useful set. At the very least, there are

issues of taste and opinion which have influenced the design. More

importantly, systems with only slightly different objectives may be able

to utilize substantially different approaches to handling character

streams,

Acknowledgments

 Many of the techniques described here were developed over a

several year time span by the builders of the 7094 Compatible Time-Sharing

System (CTSS) at MIT Project MAC, and by the implementers of Multics,

a cooperative research project of the General Electric Company, the Bell

Telephone Laboratories, Inc., and the Massachusetts Institute of Tech-

nology.

 The usefulness of a canonical form for stored character strings

was independently brought to my attention by E. Van Horne and C. Strachey;

they had each implemented simple canonical forms on CTSS and in the TITAN

operating system for the ATLAS computer, respectively. F. J. Corbato’

and R. Morris developed the pattern of escape sequence usage described

here. Others contributing to the understanding of the issues involved

in the character stream interface were R. C. Daley, S. D. Dunten, and

M, D. Mcllroy.

 Work reported here was supported in part by the Advanced Research

Projects Agency, Department of Defense, under Office of Nava1 Research

Contract Nonr-4102(01). Reproduction is permitted for any purpose of

the United States Government.

Saltzer & Ossanna: Character Stream Processing -16-

 APPENDIX I

The Multics Canonical Form

 To describe the Multics canonical form, we give a set of defini-

tions of a canonical message. Each definition is followed by a discussion

of its implications. PL/I-style formal definitions are included for the

benefit of readers who find them useful [7]. Other readers may safely

ignore them at a small cost in precision. In the formal definitions,

capitalized abbreviations stand for the control characters in Table II.

 1. The canonical form deals with messages. A message consists

 of a sequence of print positions, possibly separated by,

 beginning, or ending with carriage motion.

 message ::= [carriage motion] [print position]...[carriage motion] ...

Typewriter input is usually delimited by action characters, that

is, some character which, upon receipt by the system, indicates

that the typist is satisfied with the previous string of typing.

Most commonly, the new line character, or some variant, is used

for this function. Receipt of the action character initiates

canonical reduction.

The most important property of the canonical form is that graphics

are in the order that they appear on the printed page reading from

left to right and top to bottom. Between the graphic characters

Saltzer & Ossanna: Character Stream Processing -17-

appear only the carriage motion characters which are necessary

to move the carriage from one graphic to the next. Overstruck

graphics are stored in a standard form including a back space

character (see below).

2. There are two mutually exclusive types of carriage motion,

gross motion and simple motion.

 gross motion
 carriage motion ::= simple motion

 gross motion simple motion

Carriage motion generally appears between two graphics; the

amount of motion represented depends only on the relative position

of the two graphics on the page. Simple motion separates charac-

ters within a printed line; it includes positioning, for example,

for superscripts and subscripts. Gross motion separates lines.

3. Gross motion consists of any number of successive New Line

(NL) characters,

 gross motion ::= { NL } ...

The system must translate vertical tabs and form feeds into new

line characters on input.

4. Simple motion consists of any number of Space characters (SP)

followed by some number (possibly zero) of vertical half-line

forward (HLF) or reverse (HLR) characters. The number of vertical

half line feed characters is exactly tlie number needed to move

the carriage from the lowest character of the preceding print

position to the highest character of the next print position.

Saltzer & Ossanna: Character Stream Processing -18-

 [HLF]...
 simple motion ::= [SP] ...
 [HLR]...

The basis for the amount of simple carriage motion represented

is always the horizontal and vertical distance between successive

graphics that appears on the actual device. In the translation

to and from the canonical form, the system must of course take

into account the actual (possibly variable) horizontal tab stops

on the physical device.

In some systems, a "relative horizotal tab" character is defined.

Some character code (for example, USASCII DC1) is reserved for this

meaning, and by convention the immediately following character

storage position contains a count which is interpreted as the size

of the horizontal white space to be left. Such a character fits

smoothly into the canonical form described here in place of the

successive spaces implied by the definition above. It also minimizes

the space requirement of a canonical string. It does require some

language features, or subroutines, to extract the count as an

integer, to determine its size. It also means that character

comparison is harder to implement; equality of a character with one

found in a string may mean either that the hoped for character

has been found or it may mean that a relative tab count happens

to have the same bit pattern as the desired character; reference

to the previous character in the string is required to distinguish

the two cases.

5. A print position consists of some non-zero number of character

positions, occupying different half line vertical positions in

Saltzer & Ossanna: Character Stream Processing -19-

the same horizontal carriage position. All but the last character

position of a print position are followed by a backspace character

and some number of HLF characters.

 print position ::= character position [BS [HLF] ... character

 position] ...

6. A character position consists of a sequence of graphic formers

separated by backspace characters. The graphic formers are ordered

according to the USASCII collating sequence of the graphics they

contain. (The first graphic former contains the graphic with the

smallest code, etc.) Two graphic formers containing the same

graphic will never appear in the same character position.

 character position ::= graphic former [BS graphic former] ...

Note that all possible uses of a backspace character in a raw

input stream have been covered by statements about horizontal

carriage movements and overstruck graphics.

7. A graphic former is a possibly zero-length setup sequence

of graphic controls followed by one of the 94 USASCII non-blank

graphic characters.

 graphic former ::= [setup sequence] one of the 94 USASCII

 graphic characters

8. A graphic setup sequence is a color shift or a bell (BEL)

or a color shift followed by a bell. The color shift only appears

when the following graphic is to be a different color from the

preceding one in the message.

 setup sequence ::=

Saltzer & Ossanna: Character Stream Processing -20-

In the absence of a color shift, the first graphic in a message

is printed in black shift. Other control characters are treated

similarly to bell. They appear immediately before the next

graphic typed, in the order typed.

By virtue of the above definitions, the control characters HT, VT, and

CR will never appear in a canonical stream.

Saltzer & Ossanna: Character Stream Processing -21-

 REFERENCES

[1] Corbató, F. J., et.al., "A New Remote-Accessed Man-Machine System"

 AFIPS Conference Proceedings, 27 (1965 FJCC), Spartan Books,

 Washington, D.C., 1965, pp. 185-247.

[2] The Multip1exed Information and Computing Service: Programmer's

 Manual, M.I.T. Project MAC, Cambridge, Mass., 1969 (to be pub-

 lished).

[3] Saltzer, J, H,, "Manuscript Typing and Editing,” in The Compatible

 Time-Sharing System: A Programmer's Guide. 2nd Edition, M.I.T.

 Press, Cambridge, Massachusetts, 1965.

[4] "USA Standard Code for Information Interchange," X3. 4-1968,

 USA Standards Institute, October, 1968.

[5] "IBM 2741 Communications Terminal," IKM Systems Reference Library,

 Form A24-3415, IBM Corporation, New York.

[6] "Model 37 Teletypewriter Stations for DATA-PHONE Service,"

 Bell System Data Communications Technical Reference, American

 Telephone and Telegraph Company, New York, September, 1968.

[7] "PL/I Language Specifications," IBM System Reference Library,

 Form C28-6571, IBM Corporation, New York.

Saltzer & Ossanna: Character Stream Processing -22-

