
TO:
FROM:
SUBJ:
DATE:

MSPM Distribution
J. H. Saltzer
BC.2.00
04/14/67

The introduction to character 1/0 1 BC.2.00 1 has been updated
and revised to include suggestions \iiJhich have come from
many sources. The primary change is that the order of
erase editing and escape processing is reversed.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BC.2.00 PAGE 1

Published: 04/14/67
(Supersedes: BC.2.00 1 01/02/66)

Identification

Introduction: Character Input/Output for Multics
J. H. Saltzer 1 F. J. Corbat6 1 J. F. Ossanna

purpose

The following subsections of this section set forth standards
and conventions for character input 1 output 1 and storage
within Multics. The subsections are divided as follows:

BC.2.00 Introduction: Character Input/Output for Multics.

BC.2.01 ASCII character set.

BC.2.02 The canonical form.

BC.2.03 Erase and Kill conventions.

BC.2.04 Escape conventions.

BC.2.05 Requirements for DIM specifications

Character Set and £scapes

'All character input and output on Multics is done in terms
of a single standard character set, the revised ASCII
set. All of the graphics of the ASCII set are acceptable
in the interface between the Multics I/0 system and the
user. Therefore~ one character (the left slant) has been
reserved by the I/0 system as an escaQg character to allow
input and output of missing characters on devices which
do not have the full ASCII graphic complement. (To minimize
the visual impact of escape sequences for commonly used
characters~ certain overstrike combinations are also reserved
to represent these characters.) Certain of the ASCII
controls (e.g., "NelrJ 1 ine" or "Backspace") are given specific
meanings by the I/O system and are functionally performed
wherever possible on output, or else they are printed
with a graphic escape. The remaining control characters
may be typed in or out using graphic escape conventions.

MULTICS SYSTEM-PROGRAfv1MERS"' fv1ANUAL SECTION BC.2.00 PAGE 2

Thus stored character strings are made up of arbitrary
ASCII characters. The printed equivalent of a stored
string may or may not include escape sequences or overstrikes
for some graphics or controls 1 depending on whether or
not the device on which the string \rJas printed can represent
or perform the ASCII characters involved.

Section BC.2.01 describes the ASCII set as used on Multics~
while BC.2.0L~ describes the complete set of escape conventions.

In this section we first discuss input character processing,
since it is more complicated; a short discussion of output
character processing then follows.

Canonical f..Q.rm

The I/O system rearranges all character strings read through
it into a standard or canonical form. After this rearrangement,
the characters in the stored string are in the order that
they appear on the printed page, rather than the order
that they were typed. (If no special controls such as
backspace were typed, the stored string is already in
that order~ so no reordering is done.) Multiple characters
appearing in the same column 1 or print position, as a
result of using backspace or similar functions, are arranged
in the stored string so that all of the components of
a single print position can be easily identified.
Canonicalization is done on a line-by-line basis.

A general objective of the transformation to canonical
form is that a given printed line image should be represented
by a unique string of characters. To this end, all carriage
motion (tabs, backspaces~ and spaces) which results in
white space appearing between printed graphics is represented
in the stored string simply as some number of space characters.
Further conventions are made to permit half-line forward
and reverse feed control characters to add subscripts
and superscripts. Section BC.2.02 describes the conventions
of the canonical form completely and precisely.

Erase §.O..Q .lS.LU g_dij:ipg

Since the typical human typist makes many mistakes, the
I/0 system provides two standard editing conventions to
allow him to correct not iced blunders on the spot. Two
graphics are reserved (the typist may choose which t~;~Jo
if he does not like the system default choice of the number
sign and at sign) to mean ~Las~ and kill, respectively.

~1ULTICS SYSTEM-PROGRAM~~ERS' MANUAL SECTION BC.2.00 PAGE 3

When the erase character appears in a print position by
itself 1 the preceding print position and the print position
containing the erase character itself are discarded from
the line. When the kill character appears in a print
position, it and all preceding print positions in that
line are discarded. Processing is arranged in such a
way that erase and kill editing can be applied to incorrectly
typed escape sequences.

By making the erase and kill conventions apply to print
positions, two advantages are gained: the character string
ultimately stored depends only on the appearance of the
typed line and not on the order of typin~; and the typist
can easily perform overstriking of graph1cs in the print
positions preceding typed erase characters.

Erase and kill editing are described in detail in BC.2.03.

Break detection

The final service performed by the I/0 system on character
streams from interactive typewriters is break character
detection. Break character detection allows a typist
to tell his program 11 all right, I have typed a complete
message; look at it. 11 The arrival of a break character
is the signal that the processing described above should
be done, and that the resulting message should be handed
to the program. To understand the way in which break
characters are handled, the block diagram of figure one
provides a conceptual picture of character flow on input.
The term conceptual is appropriate, since the functions
represented by the various blocks are probably tightly
intertangled in a few modules to minimize character buffering
and hand 1 ing.

Coming from the typewriter is a raw stream of characters,
generated by the typevJri ter hardware. A 1 so generated
by the typewriter and channel hardware are system interruots,
generally coincident with certain characters, but also
occurring on things such as hardware buffer overflow.
The character stream and interrupt source are indicated
at the left side of the diagram. Data flow, including
direction, is indicated by dotted 1 ines, and solid arrm\ls
indicate ciosed subroutine calls.

,-.,
MULTICS SYSTEM-PROGRM·it·1ERS' MANUAL SECTION BC.2.00 PAGE 4

At the right side of the figure is the user program 1 which
when it needs more input calls on its own syntax scanner.
The syntax scanner calls upon the library I/0 system for
input from the stream being typed at the typewriter.
Generally~ the user does not want the entire (unending)
stream but rather a certain part 1 such as a fixed number
of characters~ or all characters up to and including the
next occurrence of a specific character or pattern of
characters. This character or pattern is known as a break.

Typically~ the typist has not yet typed a message~ much
less a break 1 so the I/0 system will initiate I/0 by calling
the GIOC interface module 1 and block this process pending
arrival of a break.

The typist produces a stream of characters~ and occasionally
generates an interrupt. He does not generate the interrupt
explicitly~ but does so rather as a result of typing certain
characters (such as~ line). The specific characters
which cause interrupts are established by the I/0 system
when the user connects his program to the typewriter and
defines his break pattern. For example~ if the break
pattern is "any amount of horizontal carriage motion~''
the I/O system must arrange for hardware interrupts vvhenever
the typist types a space 1 a horizontal tab 1 or a new line.

When the interrupt arrives 1 the typewriter manager process
is awakened. The ravJ stream of input from the type'.i•Jriter
is now passed through the following four operations in
order:

1. Convert the raw string of characters from the device
into a "1 ine image" in wh :i.ch the graphics typed in
each print position are collected together and arranged
in storage in the order that they appear on the printed
page 1 rather than the order in which they were typed.
If the raw device character codes were not ASCII 1 they
are converted to ASCII in this step.

2. Perform erase snd kill editing on the stored print
positions. The erase-changing and kill-changing escape
sequences are recognized as part of this step.

3. Remove all remaining defined escape sequences from the
stored str:i.ng 1 combining print positions \ll}hen an
escaped backspace character is encountered 1 and inserting
space for escaped tabs. If the typed string contained
escaped backspaces or tabs 1 the stored line image may
novJ differ considerably from the originally typed 1 ine
image.

- ' . .,....

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BC.2.00 PAGE 5

4. Produce a standard (canonical) strin~ of ASCII characters
which represents the resulting line 1mage~

The final string of characters is returned to the calling
program. Note that by this time it is possible that the
character which actually triggered the break is not the
last one in the string., because of line-image rearrangement.,
or may not even be in the string any more., because of
erase editing or canonicalization.

The user may now., of course., further process the input
for his program in whatever way he likes., as indicated
by the "syntax scanner" box on the block diagram.

Our simple illustration here does not attempt to include
the complications of typewriter read-ahead., an additional
function also performed by the device interface module
if requested. A description of typewriter read-ahead
strategy will be found in BF.11.

Character Output

Output character processing is considerably simpler than
input., since there is no equivalent of erase and kill
processing. The basic objective of conventions made on
output is that the printed page should provide an
unambiguous representation of the stored stringoffered

·for output. This objective needs to be completely realized
only for stored strings which are in canonical form.

Graphic characters vJhich are not available on the output
device are represented either as escape sequences or as
particular (reserved) overstrike combinations. Defined
Multics control characters are functionally imitated.,
if not directly available on the device., or if inimitable
they are printed as escapes (as for example., the red shift
character on an all-black device). Control characters
which are not defined for Multics are printed as octal
escapes.

A device may have specialized control functions not included
in the list of defined Multics control characters (e.g . .,
a single code causing a jump to the 3rd tab stop., followed
by a single backspace.) In such cases., the programmer
cannot exercise direct control of these functions through

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BC.2.00 PAGE 6

the standard device interface modules. Instead 1 any time
a sequence of defined characters (e.g. 1 29 successive
blanks) is to be typed which could profitably use some
function~ a clever device interface module may invoke
it. In general 1 the strategy of the device interface
module is to make as full use as possible of the available
features of the device to accomplish speedy and reliable
printing of canonical ASCII strings. For another example 1

the DIM is DQi constrained to type characters in the order
they appear in the stored string if there is another order
which would type faster.

))

Hard-Core -~~~~~· --------~ I/O System
Library I/O

System
1 ~ User Procedures --.....

Device I l
User's:

GIOC "Read"
SY.intaH User

type- I ~ inter- Interface
I writer --' face i - --. Procedure

module I
Module I

I l --
) I I

\ l. A
/ '

I

\ ' I '
\ I

,.
I

,,
I \ t'

/ ' I I I '
/ ' \ I ' I . " 'l

Convert Perform Remove 1

raw strin Erase and Escape Canonical
--

to ASCII Kill Sequences ASCII
line image Editing string

! ·- - - • Data path I I
I I
I 1':>- Closed subroutine call •
: I

Figure 1 ---- Input character processing

)

- ~
Cj -C)
Ul

Ul
·<
Ul
-f
("T1

3
I ..,

:;o
0
l7>
;o
)>
3
:3:
("T1
:;o
Ul

'
~
z c
l>
r

Vl
1"11
("')
-:1
~
a z
ro
C)

•
N .
a
a
;g
G>
("T1

.... ,

