
MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BC.3.04 PAGE 1 

I""'· Publlsheda 10/02/67 

r'' I 

ldsntlficatlon 

System Controller Addressing 
J. H. Saltzer 

DiSCUS§ iOn 

In a 645 processor operating In appending mode all lnstruct!cns 
which generate operand addresses have these addresses 
run through the appending (page and segment) hardware_ 
and through the interlace and port selection hardware. 
This statement applies even to the Instructions which 
address the system controllers themselves_ rather than 
the memory addresses contained within the system controllers. 
Several such instructions exist_ to.manlpulate special 
registers located within a system controller -- the Interrupt 
cells_ the interrupt mask register_ the calendar clock. 
register_ and the alarm cloc~ register. By hardware interface 
convention_ the absolute address resulting after appending_ 
interlace_ and port selection need merely lle anywhere 
within the system controller containing the register of 
interest for the instruction to work properly. 

For a program which wishes to_ for example_ read the contents 
of the calendar clock register In system controller 3_ 
It is a non-trivial t~sk to generate a segment-number 
word-number pair which results In an absolute address 
lying within system controller 3. Even if the program 
somehow discovers a location within some segment which 
works, It may stop working as soon as the file system 
reloads the page containing the magic location Into another 
absolute address. 

To provide a way of addressing system controllers, the 
following strategy Is followed in Multlcsa 

a. For each system control~er, dedicate one 
64-word page whose base address lies In that 
system controller. (It Is not obvious that 
thls Is possible wlth interlace_ since one 
might guess that interlace would cause all pages 
to be based in the same system controller. The 
600-llne Interlace scheme is unusual In that It 
does not cause all addresses which are k(mod)B 
to lle in system controller k. Thus strategy 
a. Is possible.) 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BC.3.04 PAGE 2 

b. Make up a page table for which the first m 
entries point to the m pages dedicated above. 
The remaining entries in the page table are 
filled with directed faults. 

c. Include a segment descriptor word pointing to 
this page table in the template descriptor segment. 

Now, if the segment descriptor word is in position scas_segno, 
one may generate an address lying in the appropriate system 
controller by, for example, 

eabbb 
smcm 

scas_segno 
bbfk*64 

which sets the interrupt mask in controller~. 

It should be pointed out here that the programmer does 
not generally know the value of k to use to get to the 
register he wants -- the approprTate value changes every 
time the hardware configuration is modified. ITS pointers 
of the form scas_segnoiR*64 are therefore placed in the 
system communication segment at initialization or reconfiguration 
time, by a program which knows the current hardware configuration. 
The programmer now writes the instruction 

smcm <scs>l[mask_ptr],* 

using indirect addressing through the symbolic name of 
the appropriate ITS pointer to get at the register he 
wants. A complete description of the system communication 
segment, giving the list of symbolic entry names, and 
the system controller addressing segment are found in 
BK.4.01-3. 

An appropriate hardware modifl~tion to the 645 processor 
to simplify system controller addressing would be to discover 
during operation decoding that the instruction is a system 
controller addressing instruction, and instead of processing 
the effective address of the instruction normally, consider 
the low-order three bits of the word number of the effective 
address to be port selection bits. Thus the first instruction 
above would be replaced simply by 

smcm k 

and the second, using indirect addressing would still be 

smcm <scs> I [x], * 
but location x of scs now contains just the number k in the 
address field. 


