
MULTICS SVSTEM-PROGRAMMERS 1 MANUAL SECTION BK.2 .01 PAGE 1

Published: 11/10/66

Identification

Overview of Interrupt Handling
J. H. Sa 1 tze r

Discussion

An Interrupt, by Multics definition, is caused by a signal from
some source other than a condition within the hardware
of the processor. An interrupt may be triggered, for
example, by an I/0 device, or another processor. (A condition
detected within the processor such as accumulator overflow
or addressing failure, causes a Fault. Cf. BK.3, below.).
An interrupt si~nal may be temporarily ignored, although
remembered (inhlbited), in one of two ways:

1. by operating the processor in inhibited mode.
This mode will inhibit all interrupts.

2. by placing a mask on selected interrupt sources.
Only interrupts arising from those sources will
be inhibited.

An important difference between inhibited mode and masking
is that a processor must be executlng in a master mode
segment in order to remain in inhibited mode. On the
other hand, once a mask is set, by a master mode instruction,
the mask remains effective even when control passes to
a slave procedure:

Interrupts occuring in the Multics system are divided
into two mutually exclusive categories, named system and
p_rocess. The system interrupts arise from I/0 devices
and the Calendar Clock. Process interrupts are triggered
directly or indirectly by a processor operating in the .
Traffic Controller module of the supervisor. System interrupts
!'llay be viewed as signals from outside the system directed
to some process in the system, generally not the one running
on the processor being interrupted. System interrupts
are interpreted to have the meaning "start doing something"
to some process in the system.

Process interrupts~ on the other hand, are directed by
the Traffic Controller to the process currently executing
on some processor. Process interrupts are interpreted
to mean: "change your execution state" to the process
which is interrupted. As might be expected, system and
process interrupts are handled in quite different patterns.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.2 .01 PAGE 2

All interrupts are passed directly to the Interrupt Interceptor
module by a transfer instruction in the processor interrupt
vector •. This transfer instruction is set up at system
initialization or reconfiguration time. The Interrupt
Interceptor is a standard Multics procedure segment, except
for its unorthodox method of entry; it operates in master
mode, but not absolute mode. ·

The Interrupt Interceptor, after safe-storing machine
conditions (as described in BK. 1), calls one of several
interrupt handlers to service the particular interrupt
which occurred. The handler, a slave mode procedure,
performs the appropriate action, and returns to the Interrupt
Interceptor, which restores the processor state and returns
to the interrupted program.

Interrupts are assigned to priority classes; in general
when an interrupt of priority class 11X11 occurs, the Interrupt
Interceptor masks all interrupts of priority equal to
or below 11 X11 • The class assignment is accomplished by
a table which is read into core at system initialization
time. While handling a system interrupt, the Interrupt
Interceptor and the handler it calls use the processor
stack (BK. 1.03), a wired-down storage area in the processor
data segment, for calls and temporary storage; correspondingly,
while handling process interrupts, the process concealed
stack in the process data segment is used. 11 Cascaded"
interrupts (a high-priority interrupt interrupting handling
of a low-priority 1nterrupt) are thereby allowed. The
maximum number of cascaded external interrupts, determined
by the number of interrupt classes a processor is responsible
for, helps establish the required size of the processor
data segment for that processor.

~stem Interrupts

The general philosophy of handling system interrupts in
Multics is the following: System interrupts occur at
unpredictable and unscheduled times. To minimize the
effect of an interrupt upon orderly scheduling, the procedure
executed following the instant of the interrupt is restricted
to identifying the cause of the interrupt sufficiently
to wake up (schedule) an appropriate process to complete
its handling. The time required to handle the interrupt
is carefully accounted for and charged to the process
which is responsible for the interrupt. The execution .
meter is adjusted so that the process that was interrupted
will neither be charged for nor affected by the time spent
handling the interrupt.

I

/......_
·MULTICS SYSTEM-PROGRA~~MERS' ~1ANUAL SECTION BK.2.01

The following system interrupts may occur:

1. MSU-302 (3 interrupts per Drum Controller)

2. GIOC (8 interrupts per controller)

3. Calendar Clock (2 interrupts per clock)

Process Interrupts

The process interrupts have a specific meaning for the
process which was interrupted. For these interrupts~
the Interrupt Interceptor safestores machine conditions

PAGE 3

in the process concealed stack rather than the processor
stack. After masking any future Process Interrupts~ it
calls the Process Interrupt Handler. The Process Interrupt
Handler calls various entries of the Process Exchange,
depending on which process interrupt happened; control
of the processor may vanish from the process while in
the Process Exchange. When control returns to the Process
Interrupt Handler, it returns to the Interrupt Interceptor,
which restores the processor state and restarts the interrupted
procedure. The following process interrupts may occur:

1. Pre-emption interrupt (Handler should call restart).

2. Time-out interrupt (Handler should call restart or
possibly Wakeuo and Block. Note that the single
interval timer in each processor is shared by the
Traffic Controller, for pre-emption~ and by the
user, for loop limiting and program timing).

3. Quit Interrupt (Handler should call Block).

